
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 244–254
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

244

Multi-split Reversible Transformers Can Enhance Neural Machine
Translation

Yuekai Zhao1 Shuchang Zhou2 Zhihua Zhang3

1 Academy for Advanced Interdisciplinary Studies, Peking University
2 Megvii Inc.

3 School of Mathematical Sciences, Peking University
yuekaizhao@pku.edu.cn

zsc@megvii.com
zhzhang@math.pku.edu.cn

Abstract
Large-scale transformers have been shown the
state-of-the-art on neural machine translation.
However, training these increasingly wider
and deeper models could be tremendously
memory intensive. We reduce the memory
burden by employing the idea of reversible
networks that a layer’s input can be recon-
structed from its output. We design three
types of multi-split based reversible transform-
ers. We also devise a corresponding back-
propagation algorithm, which does not need
to store activations for most layers. Further-
more, we present two fine-tuning techniques:
splits shuffle and self ensemble, to boost trans-
lation accuracy. Specifically, our best mod-
els surpass the vanilla transformer by at least
1.4 BLEU points in three datasets. Our large-
scale reversible models achieve 30.0 BLEU in
WMT’14 En-De and 43.5 BLEU in WMT’14
En-Fr, beating several very strong baselines
with less than half of the training memory.

1 Introduction

Transformers (Vaswani et al., 2017) and their vari-
ants (So et al., 2019; Dehghani et al., 2019; Fonol-
losa et al., 2019; Liu et al., 2020; Zhu et al., 2020)
significantly enhance the performance of neural
machine translation (NMT). But this often requires
a large size of the hidden layer (e.g., Raffel et al.
(2019) used a dimension of 65K) or a deeper net-
work by stacking more building blocks (e.g., Liu
et al. (2020) used a 60-layer encoder). Training
large networks could be extremely memory inten-
sive and might even require model parallelization
across multiple GPUs (Brown et al., 2020). As a
result, reducing memory consumption is crucial to
train wider and deeper networks efficiently.

Backpropagation (BP) is commonly used for
training modern neural networks. BP needs to store
layer activations to calculate the parameter gradi-
ents, which severely increases the memory burden.

The idea of reversible networks can be a solution.
During training, a reversible network layer’s input
can be reconstructed from its output. BP is run
together with the reconstruction process, removing
the need to store all layer activations except for the
last layer. We extend the hidden dimension splitting
approach by Gomez et al. (2017) and design three
types of reversible transformers, namely, simple
reversible transformers (SIM-REV), single depen-
dent reversible transformers (SD-REV) and fully
dependent reversible transformers (FD-REV). We
also devise a corresponding BP algorithm for our
reversible models, which is significantly memory
efficient compared with the conventional BP.

Our reversible models rely on partitioning each
layer’s input and output into multiple equal splits.
This multi-split feature inspires us to develop two
fine-tuning techniques to further enhance transla-
tion accuracy. First, we randomly shuffle the output
splits to encourage information sharing. Second,
we train distinct translation models based on dif-
ferent output splits in the final decoder layer and
run model ensemble during inference. These two
techniques are applied after model convergence.
Only a few epochs of fine-tuning are sufficient for
boosting the translation performance. Also, both
techniques do not break the reversibility of our pro-
posed models.

We demonstrate that our reversible models can
achieve similar or better performance than vanilla
transformers do with less memory consumption.
Specifically, by employing reversible training and
the fine-tuning techniques, our best models can sur-
pass vanilla transformers by 1.5 BLEU (IWSLT’14
De-En), 2.0 BLEU (WMT’19 En-Lt) and 1.4
BLEU (WMT’14 En-De). Our large-scale models
also beat several very strong NMT models with less
than half the training memory on WMT’14 En-De
(30.0 BLEU) and WMT’14 En-Fr (43.5 BLEU).
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Figure 1: This figure is an illustration of different reversible architectures we explore. (a) shows a vanilla neural
network (NN), where F ,G andH are modules inside an NN layer. (b) shows SIM-REV, which resembles RevNets
most. (c) shows a 3-split SD-REV. The i-th output split Oi depends only on the i-th input split Xi and Oi−1. (d)
shows a 3-split FD-REV. Each output split Oi depends on all previous output splits O<i and all subsequent input
splits X≥i.

2 Methodology

We introduce reversible transformers in this section.
The definition and benefits of layer reversibility are
given in Section 2.1. Section 2.2 shows three types
of reversible architectures based on partitioning the
layer input along the hidden/embedding dimension.
Section 2.3 details the backpropagation algorithm
we use. Finally, in Section 2.4, two techniques that
can fit into the reversible training framework are
introduced for further boosting model performance.

2.1 Reversible Architectures
A neural network layer is said to be reversible if
its input can be reconstructed from its output. Usu-
ally, a network is trained in a forward-backward
fashion. The activations in each layer are calcu-
lated in the forward process and stored for gradient
computation in the backward process. The require-
ment for storing activations is memory intensive
and often becomes a bottleneck for network train-
ing. However, if a network has reversible building
blocks, we do not need to store the activations for
most layers since they can be computed during the
backward process.

A reversible layer can be designed in two ways.
The first way is that this layer has an analytical
inverse (Gomez et al., 2017; Jacobsen et al., 2018;
Chang et al., 2018; MacKay et al., 2018). The sec-
ond way is to compute the layer input via numerical
methods, e.g., the fixed-point iteration (Behrmann
et al., 2019). We focus on the first way follow-
ing the dimension-splitting approach proposed by
RevNets (Gomez et al., 2017). We give a brief re-

view of RevNets. X is the network input, which
is split into two halves X1 and X2. F and G are
modules inside a layer (e.g., 3 × 3 convolutions).
The forward process is as follows:

O1 = X1 + F (X2); O2 = X2 +G(O1). (1)

X1, X2 can be reconstructed from O1, O2 by:

X2 = O2 −G(O1); X1 = O1 − F (X2). (2)

2.2 Reversible Transformers
Transformers (Vaswani et al., 2017) achieved
the state of the art performance in several tasks
(Edunov et al., 2018; Brown et al., 2020). De-
spite its success, training transformers is mem-
ory intensive. We propose three reversible trans-
formers inspired by RevNets (Gomez et al.,
2017) to reduce the training memory consump-
tion. X is the layer input. O is the layer out-
put. X and O are partitioned into n equal splits
along the hidden/embedding dimension. X =
{X1, X2, · · · , Xn}, O = {O1, O2, · · · , On}.
F1, F2, · · · , Fn are modules inside a layer (e.g.
self-attention, fully connected layer).

Simple Reversible Transformer (SIM-REV)
X is split into two halves X1, X2. For each mod-
ule Fi inside a layer, the forward process resembles
RevNets by changing F and G in Equation (1) into
Fi. Part (b) of Figure 1 demonstrates the case of a
layer with three modules:

Y1 = X1 + F1(X2); Y2 = X2 + F1(Y1)

Z1 = Y1 + F2(Y2); Z2 = Y2 + F2(Z1)

O1 = Z1 + F3(Z2); O2 = Z2 + F3(O1)

(3)
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This is the simplest way to introduce reversibility
into a transformer layer. But the computation com-
plexity is doubled compared with vanilla transform-
ers since each module function Fi is used twice.

Single Dependent Reversible Transformer (SD-
REV) We propose another reversible architecture
to reduce the computational complexity. The i-th
output split Oi depends only on Xi and Oi−1. The
forward process is as follows:

O1 = X1 + F1(X2)

O2 = X2 + F2(O1)

. . .

On = Xn + Fn(On−1)

(4)

The reconstruction of X given O is also straight-
forward:

Xn = On − Fn(On−1)

Xn−1 = On−1 − Fn−1(On−2)

. . .

X1 = O1 − F1(X2)

(5)

Part (c) of Figure 1 shows a 3-split example of
SD-REV. With only half of SIM-REV’s computa-
tional complexity, experiments show that SD-REV
can achieve similar or even better performance as
SIM-REV does.

Fully Dependent Reversible Transformer (FD-
REV) The SD-REV only encodes information in
neighbour splits. The lack of interaction between
distant splits may make the model less expressive.
We force each output split Oi to depend on all
previous output splits O<i and all subsequent input
splits X≥i, while preserving the reversibility of the
network layer. Despite the increased computational
complexity, we hope the model to have a better
generalization ability. A detailed description of the
FD-REV’s forward process is as follows:

O1 = X1 +

n∑
i=2

F1(Xi)

. . .

Ok = Xk +

n∑
i=k+1

Fk(Xi) +

k−1∑
j=1

Fk(Oj)

. . .

On = Xn +

n−1∑
j=1

Fn(Oj)

(6)

The reversibility of FD-REV is ensured by:

Xn = On −
n−1∑
j=1

Fn(Oj)

. . .

Xk = Ok −
n∑

i=k+1

Fk(Xi)−
k−1∑
j=1

Fk(Oj)

. . .

X1 = O1 −
n∑

i=2

F1(Xi)

(7)

Part (d) of Figure 1 illustrates FD-REV in a 3-split
case. Experiments in Section 3 shows that allowing
interaction between distant splits is beneficial for
translation performance.

Instantiation The building blocks of transform-
ers are attention based modules and position-wise
feed-forward layers:

Encoder : Self-Attn→ FFN

Decoder : Self-Attn→ Cross-Attn→ FFN

For SIM-REV, each of the above modules are
transformed into reversible modules, where S is an
input/output split:

Encoder: F1(S) = α(S + Self-Attn(S)),

F2(S) = α(S + FFN(S))

Decoder: F1(S) = α(S + Self-Attn(S)),

F2(S) = α(S + Cross-Attn(S)),

F3(S) = α(S + FFN(S))

For an n-split SD-REV or FD-REV (actually it has
an n-split encoder and an (n + 1)-split decoder),
we use multiple Self-Attn modules and a single
Cross-Attn/FFN module within each layer:

Encoder: Fk<n(S) = α(S + Self-Attnk(S)),

Fn(S) = α(S + FFN(S))

Decoder: Fk<n(S) = α(S + Self-Attnk(S)),

Fn(S) = α(S + Cross-Attn(S)),

Fn+1(S) = α(S + FFN(S))

Applying layer normalization (LN) to the layer out-
put O is crucial to better convergence in training
transformers. However, it requires extra storage
to calculate the reverse of LN. We use the ReZero
(Bachlechner et al., 2020) technique as a substi-
tution of LN. Each layer has a distinct re-scaling
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weight α which is initialized to zero. α is trained
together with other network parameters using Al-
gorithm 1 in Section 2.3.

2.3 Backpropagation with Reconstructing
Activations

In the backward pass, we are given the activa-
tions O = {O1, · · · , On} and their total deriva-
tives dO = {dO1, · · · , dOn}. We wish to com-
pute the inputs X = {X1, · · · , Xn}, their total
derivatives dX = {dX1, · · · , dXn} and the deriva-
tives of model parameters in F1, · · · , Fn. For SIM-
REV, the backpropagation (BP) algorithm has no
difference with that in Gomez et al. (2017). Such
that our main focus is to derive the resulting BP
algorithm for SD-REV and FD-REV.

The forward pass of SD-REV and FD-REV can
be combined into a more general form:

Ok = Xk +Gk(Xi>k, Oj<k, θk)

where k ∈ {1, · · · , n}.
(8)

SD-REV corresponds to Gk = Fk(Ok−1) and
FD-REV corresponds to Gk =

∑n
i=k+1 Fk(Xi) +∑k−1

j=1 Fk(Oj). Algorithm 1 defines the BP rule
of this general form reversible network. Gradients
for model parameters are computed in line 9 of
Algorithm 1 as a side effect. A repeated apply of
Algorithm 1 allows us to perform BP through a
sequence of reversible layers, only requiring the
activations and their derivatives of the top layer.
In this way, the storage cost for activations can be
small and independent of network depth.

2.4 Splits Shuffle and Self Ensemble
In this section, we propose two multi-split based
fine-tuning methods that can enhance model per-
formance, namely, splits shuffle and self ensemble.

1Automatic differentiation routines, e.g. tf.gradient,
torch.autograd.backward

Algorithm 1 BP Algorithm for Multi-Split Re-
versible Networks
Input:

Layer output: O = {O1, · · · , On};
Derivatives of O: dO = {dO1, · · · , dOn};
Modules: G1, · · · , Gn;

Output:
Layer input: X = {X1, · · · , Xn};
Derivative of X: dX = {dX1, · · · , dXn};

1: X = {}; dX = {}
2: for k in n to 1 do
3: C = Ok; O = O \ {Ok}
4: if k == n then
5: gradk = dOk

6: else
7: gradk = dOk + C.grad
8: end if
9: gk = Gk(X,O, θk); gk.backward1(gradk)

10: Xk = C − gk;X = X ∪ {Xk}
11: end for
12: dX1 = grad1, dX = {dX1}
13: for k in 2 to n do
14: dXk = Xk.grad + gradk
15: dX = dX ∪ {dXk}
16: end for

First, we train a reversible transformer till conver-
gence. Then, several epochs of fine-tuning with one
of these techniques can improve model accuracy.

Splits Shuffle A reversible transformer consists
of several reversible layers. The inputs of a certain
layer are the outputs of its preceding layer, which
we denote as O = {O1, · · · , On}. Note that if
the order of Oi is randomly shuffled, the whole
network is still reversible as long as we keep a
record of the shuffling order. This property inspires
us to do the following fine-tuning technique:

• For each layer in the reversible network, sam-
ple b ∼ Bernoulli(p).

• If b = 1, uniformly sample a shuffle or-
der {i1, · · · , in} from all perturbations of
{1, · · · , n}.

• Next layer’s input is O = {Oi1 , · · · , Oin}.

Figure 2 shows the splits shuffle process. At infer-
ence time, we set p to 0. The idea behind splits
shuffle is to apply dropout in the structure level.
Splits shuffle provides a way to combine exponen-
tially many network architectures efficiently. In
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order to let each structure perform well, each split
is forced to become more expressive.

Self Ensemble Model ensemble is a commonly
used method for boosting translation performance
(Zhou et al., 2017; Wang et al., 2020b). Model
ensemble usually requires multiple distinct models
to output their probability distributions over the
vocabulary. The ensemble process is both com-
putational and memory intensive. Our multi-split
model offers a new chance that we can view each
split of the final output as an independent model.
Our self ensemble technique works as follows:

• Oi is a split in the final layer output, y is the
translation target, FC stands for a fully con-
nected layer: Pi = Softmax(FC(Oi)); li =
loss(Pi, y)

• Sample a weight wi ∼ uniform(0, 1). Final
loss l =

∑n
i=1wili/

∑n
i=1wi.

Figure 3 illustrates the self ensemble method. At
inference time, the final distribution is an average
of Pi output by each split Oi. We manage to learn
an ensemble of transformers in a single reversible
transformer. The inference-time memory and com-
putational consumption are largely reduced com-
pared with conventional ensemble methods.

3 Experiments

3.1 Datasets, Architectures and Training

Datasets We experiment on four standard cor-
pora to demonstrate reversible transformers’ ef-
fectiveness: (1) IWSLT’14 German-English (De-
En), which consists of 160K training sentence
pairs. (2) WMT’19 English-Lithuanian (En-Lt),
which consists of 800K training sentence pairs.
(3) WMT’14 English-German (En-De), which con-
sists of 4.5M training sentence pairs. (4) WMT’14
French-English (En-Fr), which consists of 36M
training sentence pairs. Tokenization is done by
Moses2. We employ BPE (Sennrich et al., 2016)
to generate a shared vocabulary for each language
pair. The BPE merge operation numbers are 10K
(IWSLT’14 De-En), 20K (WMT’19 En-Lt), 32K
(WMT’14 En-De), 40K (WMT’14 En-Fr). The
evaluation metric is BLEU (Papineni et al., 2002).
We use beam search for test datasets with a beam
size of 8 and a length penalty of 0.7.

2https://github.com/moses-smt/mosesdecoder

Architectures We experiment with all architec-
tures proposed in Section 2.2. Multi-split based
models have larger hidden dimensions than vanilla
transformers do. We use a smaller embedding size
than the hidden size by factorizing the word em-
bedding matrix. N is the vocabulary size, d is the
hidden size. The original word embedding matrix
E ∈ RN×d is factorized into a multiplication of
two matrices of size N × l and l× d, where l� d.
We denote l as the embedding size. The embedding
size for each language pair is 128 (IWSLT’14 De-
En), 256 (WMT’19 En-Lt, WMT’14 En-De base
models), 512 (WMT’14 En-De and WMT’14 En-
Fr large models). For a specific language pair, we
manage to ensure almost identical parameter sizes
across different model architectures. One can refer
to Appendix A for some details.

Training All models are trained on 8 RTX
2080Ti GPU cards with a mini-batch of 3584 to-
kens unless otherwise stated. We use the same
learning rate scheduling strategy as (Vaswani et al.,
2017) does with a warmup step of 4000. The learn-
ing rates are set to 5 × 10−4 (IWSLT’14 De-En),
7× 10−4 (WMT’19 En-Lt, WMT’14 En-De base).
The dropout probability and label smoothing fac-
tor are all set to 0.1. For training large models in
Section 3.4, we increase the dropout probability
to 0.3 and the learning rate to 1 × 10−3. We also
accumulate gradients for 16 batches.

3.2 Machine Translation Results

To make comparisons between various architec-
tures, we carry experiments on all corpora except
WMT’14 En-Fr. Results are summarized in Ta-
ble 1. In general, the best reversible architecture
can outperform the transformer baseline by 1.1
(IWSTL’14 De-En), 1.5 (WMT’19 En-Lt) and 0.8
(WMT’14 En-De) BLEU points.

All models we propose deliver similar or supe-
rior performance to the vanilla transformer. SD-
REV-2 (2 means the split number is 2) is almost
as good as SIM-REV with only half the compu-
tational complexity. For SD-REV, translation per-
formance increases as the split number becomes
larger. A higher split number means more interac-
tion between separate splits, which may benefit the
translation quality. The good performance of FD-
REV further indicates that interactions between
splits should be encouraged. FD-REV translates
best among different architectures. Increasing the
split number is not necessary for FD-REV, since it



249

Model IWSLT’14 De-En WMT’19 En-Lt WMT’14 En-De

Parameters BLEU Parameters BLEU Parameters BLEU

Transformer (Baseline) 61.0 M 27.3
Transformer (Our impl.) 20.3 M 33.7 38.3 M 20.1 62.9 M 27.4

SIM-REV (Ours) 20.3 M 33.8 38.3 M 20.6 62.9 M 27.4

SD-REV-2 (Ours) 20.7 M 33.7 38.0 M 20.5 51.9 M 27.4
SD-REV-3 (Ours) 20.6 M 34.0 38.0 M 20.9 51.6 M 27.8
SD-REV-4 (Ours) 20.2 M 34.2 38.0 M 21.1 51.9 M 28.0

FD-REV-2 (Ours) 20.7 M 34.8 38.0 M 21.0 51.9 M 28.2
FD-REV-3 (Ours) 20.6 M 34.3 38.0 M 21.0 51.6 M 27.7
FD-REV-4 (Ours) 20.2 M 34.1 38.0 M 21.6 51.9 M 27.7

Best + Shuffle Splits (Ours) 20.7 M 35.2 38.0 M 22.0 51.9 M 28.8
Best + Self Ensemble (Ours) 20.7 M 35.1 38.0 M 22.1 51.9 M 28.3

Table 1: Machine translation results on different test sets. SD-REV-n represents an n-split single dependent re-
versible transformer, as is the case with FD-REV-n. The best results are all achieved by FD-REV. We explore
splits shuffle and self ensemble techniques with the best architecture for each language pair. Both of the tech-
niques benefit translation performance. The bold numbers are the best BLEU scores without using the fine-tuning
techniques. The numbers with an underline are the overall best BLEU scores for a certain language pair.

Model WMT’14 En-De WMT’14 En-Fr

Parameters BLEU Parameters BLEU

Ott et al. (2018) 214.0 M 29.3 214.0 M 43.2
Wu et al. (2019) 213.0 M 29.7 213.0 M 43.2
So et al. (2019) 218.1 M 29.8 221.2 M 41.3
Kitaev et al. (2020) 204.0 M 29.1
Lioutas and Guo (2020) 209.0 M 29.6 209.6 M 43.2

Best 188.5 M 29.3 193.0 M 42.8
Best + Shuffle Splits 188.5 M 30.0 193.0 M 43.5
Best + Self Ensemble 188.5 M 29.7 193.0 M 43.5

Table 2: Machine Translation Accuracy
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already encodes information from different splits.
The remaining experiments are organized as fol-

lows: (1) In Section 3.3, we apply splits shuffle and
self ensemble to the best models for each language
pair. (2) In Section 3.4, we experiment with large
model size for two large corpora, namely, WMT’14
En-De and WMT’14 En-Fr. We also try splits shuf-
fle and self ensemble to validate their effectiveness.

3.3 Splits Shuffle and Self Ensemble

In this section, we focus on fine-tuning techniques
to boost translation performance. After model con-
vergence when training with Algorithm 1, we apply
splits shuffle or self ensemble for fifteen epochs

(IWSLT’14 De-En), five epochs (WMT’19 En-Lt)
and one epoch (WMT’14 En-De). For the shuffle
probability p, we use 0.3. Results are also summa-
rized in Table 1.

Both fine-tuning techniques yield a performance
gain over the original model. Splits shuffle is
slightly better than self ensemble. Also, splits shuf-
fle does not increase inference-time computational
cost while self ensemble does. Several interesting
phenomena are worth mentioning. First, the final
validation perplexity decreases for splits shuffle and
increases for self ensemble. Since both techniques
are helpful, it is reasonable to think that splits shuf-
fle indeed enhances model performance while self
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Methods De-En En-Lt

ReZero (+) 34.8 21.6
ReZero (−) 32.8 19.9

Reversible Training (+) 34.8 21.6
Reversible Training (−) 34.8 21.6

Table 3: Ablation Study of ReZero and Reversible
Training. De-En represents IWSLT’14 De-En. En-Lt
represents WMT’19 En-Lt. + represents using a cer-
tain method. − stands for training without a certain
method.

ensemble benefits more from the ensemble process.
Second, a combination of splits shuffle and self
ensemble fails to converge. The combination task
may be too challenging for the model to learn even
the model is already in a sub-optimal state. Third,
we can use splits shuffle and self ensemble from
the beginning. However, such complicated training
objectives also bring no performance gain. Details
can be found in Appendix B.

3.4 Performance and Memory Consumptions
of Large Models

In this section, we investigate large-scale reversible
transformers. Experiments focus on two aspects.
First, whether reversible models’ performance is
comparable or even better than the non-reversible
models? Second, how much GPU memory can be
saved when using Algorithm 1 for backpropaga-
tion (BP). We choose FD-REV-2 which performs
best for WMT’14 En-De in Section 3.2. The hid-
den dimension is doubled, resulting in a similar
parameter size with other large-scale models.

As shown in Table 2, FD-REV-2 achieves com-
parable results in both datasets. The fine-tuning
techniques in Section 2.4 offer a chance to enhance
model performance further. We follow the settings
for WMT’14 En-De in Section 3.3 and find out that
large-scale models benefit more from splits shuffle
and self ensemble. We can surpass various strong
baselines by using splits shuffle for only one epoch
of fine-tuning. Specifically, we achieve 30.0 BLEU
points for WMT’14 En-De and 43.5 BLEU points
for WMT’14 En-Fr.

We also compare the training memory consump-
tion between three different settings: (1) Training
Transformer-Big with conventional BP. (2) Train-
ing FD-REV-2 with conventional BP. (3) Training
FD-REV-2 with Algorithm 1. WMT’14 En-De is
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the training dataset. We use a batch size of 2390 to-
kens and carry out one epoch of training. Figure 4
illustrates the memory consumptions of three train-
ing settings. Transformer-Big and FD-REV-2 are
similar to each other in GPU memory consumption.
Reversible BP with Algorithm 1 removes the need
to store activations for most layers, requiring about
half of the GPU memory as conventional BP does.

4 Analysis

Splits Shuffle Probability We study the impact
of splits shuffle probability p. For all language
pairs, we use the best models as mentioned in Sec-
tion 3.3 and Section 3.4. The results are summa-
rized in Figure 5. We find out that a medium p
value (0.3 ≤ p ≤ 0.5) yields the largest BLEU
increase. A small p value is insufficient to enhance
model generalization ability since the model has
already been optimized for several epochs. Mean-
while, a very large p value makes the model highly
unstable and hard to converge.

ReZero We study the impact of the ReZero tech-
nique. ReZero works as a substitution for layer
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normalization (LN). We can not apply LN to each
layer’s output O due to the requirement of re-
versibility. Instead, we can apply LN to each output
split Oi. We compare using ReZero with using LN
on Oi. Table 3 shows the results. Translation per-
formance drops severely and the model converges
more slowly. Therefore we choose to use ReZero
throughout our experiments.

Reversible Training vs. Normal Training Re-
versible training saves GPU memory. However,
reconstructing activations over many layers can in-
troduce numerical errors. Inaccurate gradients may
hurt model performance, so that it is important to
compare the model performance between using re-
versible training and conventional backpropagation
(BP). As shown in Table 3, reversible training does
not hurt model performance. Also, since we update
the model parameters for the same number of times,
the convergence speed is almost identical between
reversible training and conventional BP.

Memory Consumption of Deep Models Re-
versible transformers are more memory efficient
when the model gets deeper. We validate this ar-
gument with a simple experiment. First, we get
a mini-batch of 2390 tokens. Then, one step of
parameter update is done by conventional BP or re-
versible training. We gradually increase the model
depth and keep a record of the corresponding mem-
ory consumption in a single RTX TITAN GPU
card. Results are shown in Figure 6. Deeper mod-
els mean more activations to store when using con-
ventional BP, while reversible training only needs
to store the extra model parameters. The memory
consumption gap can be up to 12.6 GB when we
use a 30-layers encoder and a 30-layers decoder.

Computational Overhead Roughly speaking,
our proposed network is composed mostly of fully
connected (FC) layers. For an FC layer withN con-
nections, the forward and backward passes require
approximately N and 2N add-multiply operations,
respectively. As the reconstruction during back-
propagation (BP) adds another N add-multiply op-
erations, training with Algorithm 1 will be 33%
slower. We compare the training speed of 4 struc-
tures, namely, FD-REV-2-base, FD-REV-2-big,
Transformer-base, Transformer-big. We train
on WMT’14 En-De for one epoch, using a batch
size of 3584 tokens. Experiments are done on a
single RTX Titan GPU card with 24 GB memory.
The speed measurement is words per second (wps).

Structures use-rev Speed (wps)

FD-REV-2-base × 10320
FD-REV-2-base X 7831
FD-REV-2-big × 3735
FD-REV-2-big X 2788
Transformer-base × 10081
Transformer-big × 3879

Table 4: Training speed comparison between Trans-
formers and our best reversible networks. The term
use-rev being X means training with Algorithm 1. Oth-
erwise, we train the network with conventional back-
propagation.

From Table 4, we can see that FD-REV-2 trains
almost as fast as vanilla Transformers when em-
ploying conventional BP. The apply of Algorithm
1 adds about 33% to 38% training time, which in
turn saves about half the memory consumption.

5 Related Work

Reversible Networks The idea of reversible
training without storing activations was first intro-
duced by RevNets (Gomez et al., 2017). Jacobsen
et al. (2018) attempted to use RevNets to learn rep-
resentations without loss of information. Chang
et al. (2018) associated well-posed ODEs with re-
versible networks. MacKay et al. (2018) extended
RevNets to recurrent networks. Behrmann et al.
(2019) showed that a simple normalization step
could make standard ResNet architectures invert-
ible. Generative flows are often combined with
reversible networks. Kingma and Dhariwal (2018)
used invertible convolutions to train a generative
model. Later works (Huang et al., 2018; Tran et al.,
2019; Ma et al., 2019) studied generative flows
with reversible networks in discrete data.

Memory-Efficient Transformers Creating
memory-efficient transformers has attracted
immense interest in recent years. Most works
focus on proposing an optimized version of the
attention module. Liu et al. (2018); Child et al.
(2019); Kitaev et al. (2020); Ainslie et al. (2020);
Tay et al. (2020b) limited the attention span to
local neighborhoods. Wang et al. (2020a); Tay
et al. (2020a) employed low rank approximations
for attention matrices. Roy et al. (2020) achieved
sparse attention by k-mean clustering. Katharopou-
los et al. (2020) used a kernel-based self-attention
to reduce memory consumption. (Ho et al., 2019)
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operates on multi-dimensional tensors and applies
multiple attentions, each along a single axis of
the input tensor. Several works (Wu et al., 2019;
Lioutas and Guo, 2020; Beltagy et al., 2020;
Zaheer et al., 2020; Wu et al., 2020) incorporate
convolution networks into transformers. Except
for inventing new attention modules, weight
sharing (Dehghani et al., 2019; Bai et al., 2019;
Lan et al., 2020) is another practical approach to
decreasing the memory burden. Reversible models
are orthogonal to these approaches. A combination
of reversible models and variants of transformers
can further reduce memory consumption.

6 Conclusion

We have presented three types of multi-split based
reversible transformers which outperform vanilla
transformers. During backpropagation, activa-
tions for most layers need not be stored in mem-
ory because they can be reconstructed. Further-
more, we have proposed two fine-tuning tech-
niques, namely, splits shuffle and self ensemble.
Both techniques are easy to implement, and only
a few fine-tuning epochs are sufficient for boost-
ing translation performance. Our approach has
beaten several strong baselines in two large datasets
with fewer model parameters and much less train-
ing memory. Specifically, we have achieved 30.0
BLEU points in WMT’14 En-De and 43.5 BLEU
points in WMT’14 En-Fr. Also, one can trans-
form other network structures into their reversible
versions by applying our methods. We would ex-
plore more computer vision or natural language
processing tasks to widen reversible networks’ ap-
plicability.
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A Model Configuration

Table 5 details the model hyper-parameters. As we
use a factorized word embedding matrix, the em-
bedding size l is smaller than the hidden dimension
d. The hidden size d increases with the number
of splits n to ensure a similar parameter size for
a certain dataset. Another thing worth mention-
ing is that SD-REV and FD-REV have identical
parameter sizes as long as they have the same num-
ber of splits n, embedding size l and hidden size
d. Thus, we do not differentiate between SD-REV
and FD-REV in Table 5.

B More Results on Splits Shuffle and Self
Ensemble

We provide more experimental results on splits
shuffle and self ensemble as shown in Figure 7
and Figure 8. Using any of the techniques from
the beginning tend to hurt the model performance.
Meanwhile, fine-tuning with splits shuffle or self
ensemble after model convergence can bring some
performance gain. A combination of splits shuffle
and self ensemble fails to converge when limiting
the number of fine-tuning epochs (15 epochs for
IWSLT’14 De-En, 5 epochs for WMT’19 En-Lt, 1
epoch for WMT’14 En-De).
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Figure 7: Splits shuffle results. No splits shuffle vs. Fine-
tuning vs. Training from the beginning
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Figure 8: Self ensemble results. No self ensemble vs.
Fine-tuning vs. Training from the beginning

Dataset n l d

IWSLT’14 De-En 2 128 708
IWSLT’14 De-En 3 128 768
IWSLT’14 De-En 4 128 800

WMT’19 En-Lt 2 256 900
WMT’19 En-Lt 3 256 960
WMT’19 En-Lt 4 256 1040

WMT’14 En-De 2 256 1152
WMT’14 En-De 3 256 1200
WMT’14 En-De (Base) 4 256 1280

WMT’14 En-De (Big) 2 512 2304
WMT’14 En-Fr 2 512 2304

Table 5: Model configuration for SD-REV and FD-
REV.n represents number of splits. l is the embedding
size as mentioned in Section 3.1. d is the hidden size.
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