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Abstract

Computational modelling of political dis-
course tasks has become an increasingly im-
portant area of research in natural language
processing. Populist rhetoric has risen across
the political sphere in recent years; how-
ever, computational approaches to it have been
scarce due to its complex nature. In this paper,
we present the new Us vs. Them dataset, con-
sisting of 6861 Reddit comments annotated for
populist attitudes and the first large-scale com-
putational models of this phenomenon. We
investigate the relationship between populist
mindsets and social groups, as well as a range
of emotions typically associated with these.
We set a baseline for two tasks related to pop-
ulist attitudes and present a set of multi-task
learning models that leverage and demonstrate
the importance of emotion and group identifi-
cation as auxiliary tasks.

1 Introduction

Political discourse is essential in shaping public
opinion. The tasks related to modelling political
rhetoric have thus been gaining interest in the natu-
ral language processing (NLP) community. Many
of them focused on automatically placing a piece
of text on the left-to-right political spectrum. For
instance, much research has been devoted to de-
tecting bias in news sources (Kiesel et al., 2019)
and predicting the political affiliation of politicians
(Iyyer et al., 2014) and social media users, more
generally (Conover et al., 2011; Pennacchiotti and
Popescu, 2011; Preotiuc-Pietro et al., 2017). Other
works conducted a more fine-grained analysis, iden-
tifying the framing of political issues in news ar-
ticles (Card et al., 2015; Ji and Smith, 2017). Re-
cently, the field has also turned attention towards
modelling the spread of political information in so-
cial media, such as detecting fake news or political
perspectives (Li and Goldwasser, 2019; Chandra
et al., 2020; Nguyen et al., 2020).

Populism has taken the spotlight in political
communication in recent years. Various countries
around the globe have experienced a surge of pop-
ulist rhetoric (Inglehart and Norris, 2016) in both
the public and political space. Despite this, ap-
proaches to computational modelling of populist
discourse have so far been scarce. Due to the flexi-
ble nature of populism, annotating populist rhetoric
in text is challenging, and the existing research in
this area has relied on small-scale analysis by ex-
perts (Hawkins et al., 2019). In this paper, we
present a new dataset' of Reddit comments anno-
tated for populist attitudes and the first large-scale
computational models of this phenomenon. We
rely on research in social- and behavioural sciences
(e.g., political science and social psychology) to
operationalise a definition of populism and an an-
notation procedure that allows us to capture and
generalise the crucial aspects of populist rhetoric
at scale.

In social sciences, populism is essentially de-
scribed as a not fully developed political ideology
and a series of background beliefs and techniques
(Aslanidis, 2016), traditionally centred around the
Us vs. Them dichotomy. In one of the first attempts
to fully define populism (Mudde, 2004), it is de-
scribed as a thin ideology around the distinction
between ‘the people’, which includes the ‘Us’, and
‘the elites’ describing the “Them’, and with politics
being a tool for ‘the people’ to achieve the com-
mon good or ‘the popular will’ (Kyle and Gultchin,
2018; Rodrik, 2019). Through different platforms,
populism uses this rhetoric that revolves around
social identity (Hogg, 2016; Abadi, 2017) and the
Us vs. Them argumentation (Mudde, 2004). While
right-wing populism tends to be characterised by
fear, resentment, anger and hatred, left-wing pop-
ulism is associated with shame and guilt (Otjes and
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Louwerse, 2015; Salmela and von Scheve, 2017a).
Moreover, emotions have been shown to be crucial
in shaping public opinion more generally (Marcus,
2002, 2003; Demertzis, 2006; Rico et al., 2020).

The design of our annotation scheme and the
dataset are inspired by this research, particularly
the link between populist rhetoric and both social
identity and emotions. Our dataset consists of com-
ments posted on Reddit that explicitly mention a
social group. We collect the comments posted
in response to news articles across the political
spectrum. Through crowd-sourcing, we annotate
supportive, critical and discriminatory attitudes to-
wards the group, as well as a range of emotions
typically associated with populist attitudes. At
the same time, given the relevance of news in the
spread of such mindsets, we investigate the rela-
tionship between news bias and the Us vs. Them
rhetoric. Our data analysis reveals interesting inter-
actions between populist attitudes, specific social
groups and emotions.

We also present a series of computational mod-
els, automatically identifying populist attitudes,
based on RoBERTa (Liu et al., 2019). We exper-
iment in a multi-task learning framework, jointly
modelling supportive vs. discriminatory attitudes
towards a group, the identity of the group and emo-
tions towards the group. We demonstrate that joint
modelling of these phenomena leads to significant
improvements in detection of populist attitudes.

2 Related work

2.1 Psychology research on populism

Populist rhetoric revolves around social identity
(Hogg, 2016; Abadi, 2017; Marchlewska et al.,
2018; Bos et al., 2020) and the Us vs. Them ar-
gumentation (Mudde, 2004). Social identity ex-
plores the relations of individuals to social groups.
Turner and Reynolds (2010) study the evolution of
research into social identity and explain the Us vs.
Them as an inter-group phenomenon, exposing its
relation to social identity where the “self is hier-
archically organised and that it is possible to shift
from intra-group (‘we’) to inter-group (‘us’ versus
‘them’) and vice versa.”

Emotions constitute a part of the populist
rhetoric and have been essential for information
processing and the formation of (public) opinion
among citizens (Marcus, 2002; Gétz et al., 2005;
Demertzis, 2006). While social identity and socio-
economic factors have been considered primary

indicators of populism’s growth (Rooduijn and Bur-
goon, 2018), emotional factors have lately become
a focus within empirical studies, particularly re-
garding the reactions and spread of populist views
(Hameleers et al., 2017). Specific appraisal pat-
terns have characterised emotions, 1.e. an adverse
event for which one blames the other is felt as
anger - a pattern of appraisals is referred to as
Core Relational Themes (Smith and Lazarus, 1993;
Lazarus, 2001), which are the central (therefore
core) harm or benefit that underlies each of the neg-
ative and positive emotions (Smith and Lazarus,
1993; Moors et al., 2013). Latest attempts to scruti-
nise populism from the communication science and
social psychological perspective have described
populist communication and language (Abadi et al.,
2016; Rico et al., 2017) and demonstrated its oper-
ationalisation through experimental research (Wirz
et al., 2018) as being successful in inducing emo-
tions (Bakker et al., 2020). According to the con-
cept of media populism (Krdmer, 2014; Mazzoleni
and Bracciale, 2018), media effects can further
evoke hostility toward the perceived ‘elites’ and
(ethnic/religious) minorities, as it contributes to the
construction of social identities, such as in-groups
and out-groups (i.e., Us vs. Them).

2.2 Modelling political discourse in NLP

Handcrafted features such as word-frequency
(Laver et al., 2003) were initially the base of NLP
approaches to model political data. Thomas et al.
(2006) introduced the Convote dataset of US con-
gressional speeches, and applied an support-vector
machine (SVM) classifier leveraging discourse in-
formation to identify policy stances in it. One of
the first uses of neural networks on political text
was the work of Iyyer et al. (2014), who used a re-
current neural network (RNN) to identify the party
affiliation on the Convote dataset. Li and Gold-
wasser (2019) detected the political perspective
of news articles using a long short-term memory
(LSTM) and a graph convolutional network (GCN)
on user data from Twitter. Other research investi-
gated the framing effect in news articles, which is a
mechanism that promotes a particular perspective
(Entman, 1993). Card et al. (2015) presented the
Media Frame Corpus, which explores policy fram-
ing within news articles. Ji and Smith (2017) devel-
oped a discourse-level Tree-RNN model to identify
the framing in each article, by using this corpus
dataset. Huguet Cabot et al. (2020) addressed this
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task by leveraging emotion and metaphor detection
in an MTL setup. Other works have also explored
sentence-level framing (Johnson et al., 2017; Hart-
mann et al., 2019).

Hate speech detection is not limited to the anal-
ysis of political discourses. However, it is related
to exposing populist rhetoric in digital commu-
nication (Meret and Pajnik, 2017; Estelles and
Castellvi Mata, 2020). Several NLP approaches
(Mishra et al., 2020), as well as recent shared tasks
(Zampieri et al., 2019, 2020) have been proposed
to tackle this widespread problem.

While political bias and framing have been
widely explored, research on modelling populist
rhetoric is still in its nascent stages. Previous work
in this area focused on a general description of
populism to determine whether a particular text,
such as a party manifesto or a political speech con-
tains what is understood as populist rhetoric or
attitudes (Hawkins, 2009; Rooduijn and Pauwels,
2011; Manucci and Weber, 2017). Manual anno-
tation was necessary to perform this analysis, of-
ten by experts, which also limited the scope and
amount of data used, while the resulting datasets
are not sufficiently large to train current machine
learning models. Furthermore, the description of
what constitutes populist rhetoric is still diffuse
and covers many different aspects. Hawkins et al.
(2019) used holistic grading to assess whether a
text is populist or not, to later determine the de-
gree of ‘populism’ of individual political leaders,
thus creating the only existing dataset of populist
rhetoric, the Global Populist Database.

3 Dataset creation

Data collection. By annotating Reddit com-
ments that refer to a social group, we monitored
how online discussions target them and whether
the text showed a positive or negative attitude to-
wards that social group, ranging from support to
discrimination. While this process did not ensure
capturing the complexity behind the Us vs. Them
rhetoric, we detected comments directed at cer-
tain groups (out-groups) and the attitude towards
them within an online community (in-group). We
restricted this to six specific groups that populist
rhetoric has targeted as an out-group, Immigrants,
Refugees, Muslims, Jews, Liberals and Conser-
vatives. Current research has shown these groups
are common targets of populism in the US, UK and
across Europe (Inglehart and Norris, 2016; Mudde

and Kaltwasser, 2018). Note that to annotate suf-
ficient comments per group we limit the current
work to six groups, which is by no means a com-
plete list of targeted groups. We encourage future
research to broaden the scope of groups covered.

We chose to extract data from Reddit, (1) due
to its availability through the Pushshift repository®
(Baumgartner et al., 2020) and the Google Bigquery
service, (2) its social identity dynamics (in-group
vs. out-group) as close-nit communities created
by sub-Reddits, (3) its nature as a social news ag-
gregation platform, and (4) that it has been shown
to encourage toxic communication between users
and hate speech towards social groups (Massanari,
2017; Salminen et al., 2020; Munn, 2020). To filter
the data for annotation, we followed several steps.
(1) We identified submissions in Reddit which
shared a news article from a news source listed at
the AllSides website?, (2) we extracted comments
which are direct replies to the submission where
both the news article title and the comment match
any of the keywords for our groups. Keywords
were devised using online resources from the Anti
Defamation League* as well as by consulting social
scientists. The full list of keywords can be found
in Appendix A Table 4. (3) We selected comments
with a minimum of 30 words and a maximum of
250 words, and sampled from specific periods dur-
ing which each group was actively discussed on
Reddit. See Appendix A Table 3 for details. (4)
We removed comments that contained keywords
from multiple social groups to make the annotation
process more straightforward. (5) We randomly
sampled 300 comments per group and news source
bias according to AllSides (left, centre-left, centre,
centre-right, right), resulting in a total of 9000 Red-
dit comments. Note that the bias is not directly
related to individual comments, but rather to the
news article the comment responded to.

Annotation procedure. To capture the Us vs.
Them rhetoric, we asked: What Kind of language
does this comment contain towards _group_?,
where _group_ corresponds to the specific social
group that comment refers to. Respondents had
four options: Discriminatory, Critical, Neutral
or Supportive. An extended description and an
example as presented to annotators can be found
in Appendix A.2, and Figure 5. We asked anno-

*https://pushshift.io/
*https://www.allsides.com/unbiased-balanced-news
*https://www.adl.org/
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tators a second question to capture the emotions
expressed towards the group in the same comment.
We extended Ekman’s model of 6 Basic Emotions
(Ekman, 1992) to a 12-emotions model, which in-
cludes a balanced set of positive and negative sen-
timents. Specifically, we included emotions previ-
ously shown to be associated with populist attitudes
(Demertzis, 2006). We also provided the annotators
with a brief description of each emotion, inspired
by the concept of Core Relational Themes (Smith
and Lazarus, 1990). The positive emotions are
Gratitude, Happiness, Hope, Pride, Relief and
Sympathy, and the negative emotions are Anger,
Fear, Contempt, Sadness, Disgust and Guilt. De-
tailed descriptions can be found in Appendix A.2
along with an example 6. The annotation was con-
ducted on Amazon Mechanical Turk (MTurk) and
its framework can be accessed here.

Annotation reliability. Once the MTurk annota-
tion was completed, we deployed the CrowdTruth
2.0 toolkit (Dumitrache et al., 2018) to assess the
quality of annotations and to identify unreliable
workers. CrowdTruth includes a set of metrics to
analyse and obtain probabilistic scores from crowd-
sourced annotations. Worker Quality Score (WQS)
is a metric that measures each worker’s perfor-
mance, by leveraging their agreement with other
annotators and the difficulty of annotation. The Me-
dia Unit Annotation Score (UAS) is given for each
comment and possible answer, indicating the prob-
ability with which each option could be the gold
label. Finally, Media Unit Quality score (UQS) de-
scribes the quality of annotation for each comment.
We removed annotations by workers with a WQS
lower than 0.1 and those with high disagreement
after manually checking their responses, and re-
computed the metrics. We removed comments left
with only one annotator and comments with a UQS
lower than 0.2. This resulted in 4278 comments
with 5+ annotators, and 2564 comments with less,
which constitute our final dataset.

Following the same procedure as Demszky et al.
(2020), we computed inter-rater correlation (Del-
gado and Tibau Alberdi, 2019) by using Spearman
correlation. We took the average of the correlation
between each annotator’s answers and all other an-
notators’ average answers that labelled the same
items. We obtain a range between 0.5 and 0.13
per emotion. The lowest agreement is for Relief
(0.13), in line with Demszky et al. (2020), where
the lowest value for correlation agreement being

Of course Dems are stealing the elections. They are
playing by a different set of rules - being ruthless and
violent. Dems take no prisoners and show no mercy to
their enemies. The sooner GOP realizes it, the better.
Because we have to up our game. If things go this way,
we have only one way to save this country - Martial Law
and kick every single liberal out!

Label UsVsThem Group Emotions
Discriminatory 1 Liberals  Contempt,
Disgust & Fear

You do realize it’s sad to celebrate the US cutting the
number of refugees down, right? These are people who
come here seeking a safe haven from the violence or
despair of their home countries, and we’re turning them

away.
Label UsVsThem Group Emotions
Supportive 0 Refugees Sympathy

Figure 1: Two samples of our Us Vs. Them dataset.

0.16, and 0.17 for Relief. The full distribution can
bee found in Appendix A.3 Figure 7.

4 Data analysis

4.1 UsVsThem scale

For the Us vs. Them question, we aggregated the
answers into a continuous scale. To obtain a score
for each comment, we computed the CrowdTruth
UAS for each of the labels assigned to it and then
take a weighted sum. We assigned the weight of
0 to the Supportive label, 1/3 to Neutral, 2/3 to
Critical and 1 to Discriminatory. The frequency
distribution of comments on this scale can be seen
in Appendix A.4 Figure 8. From now on, we will
refer to it as the UsVsThem scale.

The scale is skewed, with an overall mean of
0.551+0.265. Although our data selection was ran-
dom across the selected news sources and groups,
there are more comments with negative attitudes
towards selected groups than positive or neutral
ones due to its nature and our keyword selection.

We performed a two-way ANOVA (Analysis
of Variance) test (Fujikoshi, 1993) on news bias
and social groups as independent variables and the
UsVsThem scale as the dependent variable to see
whether the interactions between groups and news
bias are significant. One-way tests show statisti-
cal significance. Interestingly, there was a statis-
tically significant interaction between the effects
of social groups and bias on the UsVSThem scale,
F(1,20) = 12.33,p < 0.05. Values can be found
in Appendix A.4 Table 5. Therefore, we explored
the interaction between them and the influence of
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Figure 2: Comment frequency distribution on the UsVs-
Them scale per social group and news source bias. The
mean for the scale is shown at the x axis.

news bias on how each group is perceived. We per-
formed a Tukey HSD test to check for significance
between means in the UsVsThem scale.

Social groups. There were differences between
groups in terms of the UsVsThem scale when look-
ing at the comment frequency distributions in Fig-
ure 2. For Refugees, the distribution was rela-
tively flat as they received a similar amount of
positive and negative attitude comments. [mmi-
grants showed a similar distribution with fewer
comments in the higher end, i.e. the group received
less discrimination than Refugees. Despite the two
share many inherent similarities, these differences
may be explained by negative media coverage of
Refugees portrayed as a threat and being attributed
to negative attitudes. Muslims received a higher
amount of discriminatory comments than any other
group. On the other hand, Conservatives showed a
similar mean, due to a very high amount of critical
comments. Liberals also received a relatively high
amount of critical comments. Both share moder-
ately low tails, as they received less support and
discrimination. Finally, Jews showed lower critical
and discrimination values, with most values around
Neutral, having the lowest mean value of all social
groups. These variations translate into a significant
(p < 0.05) difference between the means of each
group, except for Conservatives and Muslims, and
for Liberals and Refugees.

News source bias. In this case, the bias was not
directly associated with the comment itself. How-
ever, differences in the distribution of comments
and the out-group attitudes based on the original

article’s bias can be observed, as shown in Figure
2. Moreover, means increased from the centre-left
to the right bias. Interestingly, there was no sym-
metry at the centre bias, contrary to the Horseshoe
Theory (Hanel et al., 2019), which argues both
ends of the political spectrum closely resemble one
another. In terms of significant differences, all bi-
ases were significantly different from the right bias
(p < 0.05), and there was a significant difference
between centre-left and centre-right (p < 0.05).
The remaining groups showed no significant differ-
ence.

Groups and news source bias. In line with the
above-mentioned bias effect, there was almost al-
ways a significant difference between right and
centre-right bias and the rest for each group. Only
right bias showed a distinct high value and a neg-
ative attitude towards Immigrants, which even ex-
ceeds those towards Refugees. With the excep-
tion of the attitude towards Conservatives, centre,
centre-left and left showed lower degrees of nega-
tive attitude towards any of the groups. Full results
can be seen in Appendix A.4 Table 6 and Figure 10.

4.2 Emotions

Instead of using CrowdTruth for emotions, we con-
sidered an emotion as being present in the comment
provided that at least 1/4 of annotators selected it.
In case more than half of annotators marked that
comment as Neutral, it was labelled as Neutral.
This way, a comment can contain more than one
emotion, except for Neutral. Unless specified oth-
erwise, in this subsection Neutral refers to emotion-
ally neutral.

In Figure 3 we present the correlations between
the values for each emotion dimension and the
UsVsThem scale across all comments, in the same
fashion as Demszky et al. (2020). We show the hi-
erarchical relations at the top, demonstrating which
emotions interact more strongly with each other.
The frequency of emotions in our dataset is as fol-
lows: Anger 1724, Contempt 2538, Disgust 1843,
Fear 1136, Gratitude 70, Guilt 170, Happiness
59, Hope 307, Pride 174, Relief 37, Sadness 122,
Sympathy 1139, Neutral 2094.

Emotions and the UsVsThem scale. We were
interested in the interaction between emotions and
social identity by exploring how the UsVsThem
scale is shaped for each emotion. Not surprisingly,
comments with negative emotions showed a higher
value on the UsVisThem scale and a high correlation
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Figure 3: Correlation heat-map for different emotions.

with it, except for Guilt and Sadness. Contempt
showed the strongest correlation, while Anger and
Fear showed a higher proportion of Discrimina-
tory comments. Guilt and Sadness, on the other
hand, are characterised by a lower amount of com-
ments in the Discriminatory range. In line with
these results, the UsVsThem scale had a negative
correlation with Sympathy and Neutral comments,
and while Sympathy was the most frequent positive
emotion, other emotions displayed a very similar re-
lation to the UsVsThem scale. These results are vi-
sualised in Figure 3 including the UsVsThem scale
and the distributions are summarised in Figure 9 in
Appendix A.4.

Emotions and groups. We used a two-sided pro-
portion z-test to check for significant differences
since emotions are discrete variables. More than
25% of comments towards Muslims and Refugees
showed Fear, with no significant difference be-
tween the two, followed by Immigrants at 21.5%
and other groups at less than 10%. Another no-
table finding is that Contempt (47.7%) and Disgust
(44.4%) were significantly higher towards Con-
servatives, particularly the latter, which for other
groups never exceeded 30% of comments. Sympa-
thy for Liberals (6.5%) and Conservatives (6.9%)
was significantly lower when compared to other
groups. Hope was present in a significantly higher
number of comments for Liberals (7.9%). The val-
ues for all proportions can be found in Appendix
Appendix A.4 Table 7.

Emotions and bias. Not many differences be-
tween biases were found. Most salient was the

right bias showing a higher value in all negative
emotions, significantly for Anger (31.5%), Con-
tempt (43.4%) and Fear (21.9%). All proportion
values can be found in Appendix A.4 Table 8.

5 Modelling populist rhetoric
5.1 Main tasks

Our models’ main focus was to assess to which
degree a social group is viewed as an out-group
and whether in a negative or discriminatory manner.
Our annotation procedure provided a scale from
Supportive to Discriminatory for each comment.
While this scale is artificial and highly dependent
on our task’s context, it provides a good indication
of how strongly a social group is targeted in social
media comments.

Regression UsVsThem. In our models, we ex-
plored two different main tasks. The first task was
to predict the values on the UsVsThem scale in
a regression model. This scale provides a score
for each comment, which illustrates the attitude
towards a social group mentioned in the comment
ranging from Supportive (closer to 0) to Discrimi-
natory (closer to 1). Values in between depict an
intermediate attitude, Neutral lies at 1/3, and Criti-
cal at 2/3. By predicting the score, we modelled
the out-group attitude of each comment. We used
33% of the data as the test set, and 13.4% as the
validation set.

Classification UsVsThem. Our second task was
to classify each comment in a binary fashion as
whether the comment shows a negative attitude to-
wards a group, i.e., Critical or Discriminatory, or
not, i.e., Neutral or Supportive. This task resulted
in a relatively balanced dataset, with 56% of Crit-
ical or Discriminatory comments. We used the
same splits as before.

5.2 Auxiliary tasks

Emotion detection. Interactions between pop-
ulist rhetoric and emotions have been explored
in political psychology through surveys and be-
havioural experiments (Fischer and Roseman,
2007; Tausch et al., 2011; Salmela and von Scheve,
2017b; Redlawsk et al., 2018; Rollwage et al.,
2019; Nguyen, 2019; Roseman et al., 2020). This is
consistent with our findings in section 4 and further
motivates modelling emotions in the context of pop-
ulist rhetoric. For each comment, emotions were
annotated as a Boolean vector. For our task, some
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emotions were rarely annotated or only present
alongside more frequent ones. They increased the
difficulty of the task while not providing relevant
information. To simplify the auxiliary task, we
considered the 8 most common emotions, Anger,
Contempt, Disgust, Fear, Hope, Pride, Sympathy
and Neutral.

Group identification. In the work of Burnap and
Williams (2016), types of hate speech were differ-
entiated based on race, religion, etc., and mod-
els were trained specifically on those categories.
In ElSherief et al. (2018), data-driven analysis of
online hate speech explored in profundity the dif-
ferences between directed and generalised hate
speech, and Silva et al. (2016) analysed the dif-
ferent targets of hate online. In our case, the Us
vs. Them rhetoric metric showed significant dif-
ferences for each group as we have seen in the
previous section. Therefore, we hypothesised that
the information bias (Caruana, 1993) the group
identification task provides will help understand
the Us vs. Them rhetoric aimed at the different so-
cial groups, which motivated its role as an auxiliary
task.

5.3 Model architecture

We used the Robustly Optimized BERT Pretraining
Approach (RoBERTa) (Liu et al., 2019) in its BASE
variant as provided by Wolf et al. (2019).

Multi-task learning. In all setups, tasks shared
the first eleven transformer layers of RoBERTa.
The final 12th layer was task-specific, followed by
a classification layer that used the hidden repre-
sentation of the <s> token, to output a prediction.
We used scheduled learning, where the losses of
each task are weighted and changed during train-
ing. We also experimented with a three-task MTL
model where the two auxiliary tasks are learned
simultaneously.

We assigned three different loss weights associ-
ated with each task, )\, for the main task, either
regression or binary classification; A, for emotion
detection; A\, for group identification. For MTL
with one auxiliary task, Ay, + Ae = Ay + Ay = 2,
while for the three-task MTL: A\, + Ae + Ay = 3.

Regression UsVsThem. We used Mean Squared
Error loss with a sigmoid activation function for
the main task. For emotion identification as the
auxiliary task, we used Binary Cross-Entropy loss,

and for the group identification, we used Cross-
Entropy loss, both with sigmoid activation. For
all MTL models, there was a warm-up period of
w epochs, after which the weight is changed to
Ag=10"2and A\ =107, and \c = A\, = 107°
for the three-task setting.

Classification UsVsThem. We used Cross-
Entropy loss with a sigmoid activation function
for the main task. The remaining tasks were kept
the same as with the Regression case above. For
all MTL models, there was a warm-up period of
w epochs, after which the weight was changed to
Ag=10"2and A, = 1072, and A\, = )\, = 107°
for the three-task setting.

5.4 Experimental setup

Regression UsVsThem. We report model perfor-
mance in terms of Pearson correlation coefficient
(R). We found the optimal STL hyperparameters
using the validation set: a learning rate of 3e — 05,
a lineal warm-up period of 2 epochs and dropout of
0.15. The batch size used was 128. These hyperpa-
rameters were kept constant across our experiments
for the regression UsVsThem task. For the emotion
detection MTL setup, A\e = 0.15 and w = 8. For
the groups MTL, A\, = 0.15 and w = 5. For the
three-task MTL model we obtained optimal val-
idation performance by setting w = 8 and both
Ag = Ae = 0.073, which was the equivalent of
Ag = Ae = 0.05 for the two-task MTL.

Classification UsVsThem. Similarly, we ran a
grid-search to find the best hyperparameters for the
classification setup. For the STL model, we ob-
tained a learning rate of 5e — 05, a warm-up of 2
epochs and an extra dropout of 0.2. For emotions-
MTL, A\¢ = 0.2 and w = 8. For the groups-related
MTL, A\, = 0.25 and w = 5. For the three-task
MTL, A. = 0.95, \; = 0.25, and w = 8. For
both regression and classification, we report perfor-
mance averaged over 10 different seeds.

5.5 Results

Results are presented in Table 1. We find that MTL
outperforms STL in both versions of our task.

Regression UsVsThem. The STL baseline
showed a 0.545 Pearson R to the gold score. When
emotion identification was used as an auxiliary
task, the performance increased by almost one
point, to 0.553. The groups MTL setup showed a
higher increase, up to 0.557. Both improvements
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STL

MTL, Emotion MTL, Group MTL, Emotion & Group

Pearson R 0.545 £ 0.005
Accuracy  0.705 £ 0.006

0.553 + 0.009
0.710 £ 0.009

0.557 £ 0.012
0.711 £ 0.007

0.570 £ 0.009
0.717 £ 0.004

Table 1: Results for the Us vs. Them rhetoric as regression and classification tasks. Significance compared to STL
is bolded (p < 0.05). Significance compared to two-task MTL is underlined (p < 0.05). Average over 10 seeds.

were significant compared to the STL model, using
the Williams test (Williams, 1959). Perhaps all the
more interesting is that the three-task MTL model
achieved the highest performance, even without
its hyperparameters being specifically tuned as
with the other setups. It resulted in a Pearson R of
0.570, i.e. over 2 points performance increase over
STL, a statistically significant improvement over
both STL and the remaining two MTL approaches.

Classification UsVsThem. Although not shown
in the table, the accuracy baseline for a majority
class classifier would be 0.550. All models highly
surpassed that, with the real baseline set by the STL
setup achieving a 0.705 accuracy. Results for the
MTL approaches were similar to what we observed
in the regression task. Emotion-MTL increased
performance by half a point, to 0.710, as did group-
MTL, with 0.711. The best performing model was
again the three-task MTL, at 0.717, yielding a sta-
tistically significant improvement over STL, using
the permutation test.

5.6 Analysis

Qualitative and error analysis. We selected
comments with higher values on the scale where
MTL improved the STL baseline predictions for the
regression task. Comments with high emotion va-
lence were better predicted by models that included
emotion identification. Comments that had group-
specific rhetoric with references to (derogatory)
terms such as ‘illegal aliens’ were better predicted
by models that incorporated group identification
(see the first example in Table 2).

The standard deviation of the difference between
the STL and the three-task predictions was just
0.055. This means that MTL helped capture nu-
anced information that improved prediction; how-
ever, comments with high squared error for STL
still showed similar behaviour for MTL models.
This aspect is shown in Appendix A.5 Figure 11.
All models’ squared error showed a pair-wise Pear-
son correlation higher than 0.92. This observa-
tion prompted us to investigate comments with
a high squared error. We identified three differ-
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Figure 4: Three-task MTL main task specific layer.

ent sources. (1) Comments with emotionally
charged language, slurs, or insults, which may
often be associated with a more negative attitude to-
wards a group, were mispredicted due to not being
negative towards such group or being used ironi-
cally or satirically. (see second example in Table 2).
(2) Reference to multiple groups: we removed
comments that included keywords from similar
groups, however it was impossible to account for
all the terms that may refer to other groups. Hence,
there are comments for which the prediction seems
to be about a target different than the one at an-
notation time (see the third example in Table 2).
More examples can be found in Appendix A.5 Ta-
ble 9. (3) Annotation error is expected in any
crowd-sourced annotation. While these were not
as frequent as to pose a problem during training,
they did occur as incorrect model predictions that
can mistakenly decrease performance.

Analysis of model representations. Our qualita-
tive analysis showed that auxiliary tasks had a pos-
itive effect on predictions. Still, it cannot explain
how the model changes its underlying structure
and Reddit comments’ encoding. We explored how
auxiliary tasks affected how the network encodes
information through its layers to get a better under-
standing. We used -Distributed Stochastic Neigh-
bour Embedding (t-SNE) (van der Maaten and Hin-
ton, 2008), a stochastic technique for dimension-
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Reddit Comment

Does anyone else think it’s absurd that we have Muslims serving in our congress? Literal foreign agents acting as if
they hold the interests of the country and its people at heart? They never talk about the will of the people. It’s always
some bullshit about how white men (who founded and built this country) are evil and we need to let in more 3rd
worlders who want to bomb and kill us. This is literal clown world tier nonsense.

You proud of yourselves, making 3 year olds represent themselves in immigration court? You fucking proud of that
insanity? All for the sake of keeping out a gang that has already been in America for a long time, meanwhile regular
home grown white kids are murdering dozens of their own classmates but goddam, at least they we’re legal, amirite

Conservatives have every right to revolt. If we don’t get our way we will destroy the country. I hope the left keeps
pushing us to provoke a civil war. Or maybe Commiefornia should secede. Maybe that’s the best thing that can
happen, a complete break up. That way we can have our ethnostate, and the left can have their degenerate cesspool
without us paying taxes for it. The US is dead anyway. It’s time to burn this diverse shithole to the ground. It will be
the ultimate proof that diversity doesn’t work.

Label MTL,E. & G. MTL, Emo. MTL, Groups STL Group Emotions
1 1.000 0.872 0.870 0.847 0.759 Muslims Anger, Contempt, Disgust & Fear
2 0.02 0.774 0.874 0.740 0.834 Immigrants Sympathy
3 0.071 0.729 0.773 0.747 0.8 Conservatives Hope & Pride

Table 2: Examples of predictions for comments. Predictions are averages over 10 seeds for each model.

ality reduction focused on high dimensional data
visualisation. We used it to visualise the hidden
representations of the test set comments in-between
transformer layers across the network. We present
the results for both STL and the three-task MTL in
Appendix A.5 Figures 12 and 13, where for both
the first layers showed some structure not related
to the tasks at hand. As we were using pre-trained
weights from RoBERTa, this could be explained
by the first layers modelling lower-level language
characteristics as shown empirically in Tenney et al.
(2019), where probing mechanisms indicate early
layers being more relevant for tasks such as POS
tagging. For STL, the last layers showed the UsVs-
Them scale continuously in the y axis. Once we in-
troduced the auxiliary tasks of group identification
and emotion classification differences in the last
layers were exacerbated. For three-task MTL the
last layers showed clusters for each social group,
and related groups were closer together, such as
Refugees and Immigrants, or Liberals and Conser-
vatives. We also observe a radial distribution with
highly emotional comments further away from the
centre. Comments with very distant values on the
scale (Discriminatory and Supportive) were closer
together than with those in the mid-range (Neutral
and Critical) as seen in Figure 4 and Appendix A.5
Figure 15. While paradoxical, our interpretation
is that the model leverages the valence of emotion,
where Discriminatory and Supportive comments
are more loaded with emotion. This leads to a bet-

ter performance of MTL compared to STL. This
idea is supported by the distribution of emotions
on the last layer, where emotionally neutral com-
ments are closer to the centre of the plot, while
more emotionally charged comments radially in-
crease, visualised in Appendix A.5 Figure 14. In
Appendix A.5 Figures 16 and 17 we present the
emotion distribution for the group and emotion-
specific layers, respectively.

6 Conclusions

We presented a new, large-scale dataset of pop-
ulist rhetoric and the first series of computational
models on this phenomenon. We have shown that
joint modelling of emotion and populist attitudes
towards social groups enhances performance over
the single-task model, further corroborating pre-
vious research findings in various social sciences.
Future work may deploy social information (e.g.,
Twitter) or explore the interactions of populist at-
titudes and the political bias of news articles as
provided in our Us Vs. Them dataset.
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A Supplemental material

A.1 Data collection

Time ranges

Events

Conservatives
Liberals

Muslims

Immigrants

2016/09/15 - 2016/12/15
2018/09/15 - 2018/12/15
2016/09/15 - 2016/12/15
2018/09/15 - 2018/12/15
2016/11/01 - 2017/11/30
2018/04/01 - 2018/05/01
2019/03/01 - 2019/06/01
2016/11/01 - 2017/11/30
2017/01/15 - 2017/03/15
2018/06/17 - 2018/07/01

Election periods
Election periods

Trump Muslim ban,
Mosque attacks.

Migrant caravans,
Children at the US
border

2018/10/01 - 2019/02/01

Jews 2018/10/20 - 2018/11/25  Christchurch shooting

Table 3: Events and periods used for each group. If
comments were not sufficient, they were sampled ran-
domly from other time ranges. Refugees did not have
enough overall comments to be filtered by time range.

News Title Comment

Refugees refugee, asylum seeker refugee, asylum seeker,

undocumented, colonization

Immigration -migra-, undocumented, -migra-, undocumented,
colonization colonization

Muslims muslim, arab, muhammad, muslim, arab, muhammad,
muhammed, islam, hijab, = muhammed, islam, hijab,
sharia sharia

Jews -jew(i/s)-, heeb- , sikey-, -jew(i/s)-, heeb- , sikey-,
-zionis-, -semit- -zionis-, -semit-

Liberals antifa, libtard, communist, antifa, libtard, communist,

socialist, leftist, liberal,
democrat

altright, alt-right,
cuckservative, trumpster,
conservative, republican

socialist, leftist, liberal,
democrat

altright, alt-right,
cuckservative, trumpster,
conservative, republican

Conservatives

Table 4: Keywords used in our data filtering process.
The use of more emotionally laden terms is justified by
their low occurrence compared to more common terms
just to ensure a more diverse dataset.

A.2 Description of the annotation options

Discriminatory or Alienating. Annotators were
asked to mark this in case the comment was either,
(A) alienating or portraying a social group as neg-
ative, (B) a threat, danger or peril to society, (C)
trying to ridicule it and attack that group as lesser
or worthless.

Critical but not Discriminatory. In case the
comment was critical, but not to the extent of the
first option, annotators were asked to mark this
option.

Supportive or Favorable. This answer refers to
comments expressing support towards that group,
by defending it or praising it.

Neutral. This option was offered in case none
of the above applied, either because the group
was only mentioned but the comment was not ad-
dressed at them, or there was no opinion whatso-
ever expressed towards the group, such as express-
ing purely factual information.

Annotators were first asked to select whether
the comment showed a ‘Positive’, ‘Negative’ or
‘Neutral’ sentiment towards the specified group.
With this approach, we intended to simplify the
task and guide annotators, which then were offered
to choose from 6 positive or 6 negative emotions
according to sentiment they initially chose. In case
annotators selected Neutral no further options were
provided. The descriptions for each emotion were:

Positive emotions: Gratitude Someone is do-
ing/causing something good or lovely.
Happiness/Joy> Something good is happening.
Something amusing or funny is happening.

Hope Something good/better might happen (sooner
or later).

Pride Someone is taking credit for a good achieve-
ment.

Relief Something bad has changed for the better.
Sympathy Someone shows support or devotion.

Negative emotions: Anger. Someone is causing
harm or a negative/undeserved outcome, while this
could have been avoided.

Someone is acting in an unjustified manner
towards people.

Someone is blocking the goals of people.
Anxiety/Fear Something negative might/could
happen (sooner or later), which threatens the
well-being of people.

Contempt Someone is inferior (for example,
immoral, lazy or greedy).

Someone is incompetent (for example, weak or
stupid).

Sadness Something bad or sad has happened.
Someone has experienced a loss (for example,
death or loss of possessions).

Moral Disgust® Someone behaves in an offensive
way (for example, corrupt, dishonest, ruthless, or
unscrupulous behavior).

Guilt/Shame’ Someone sees him-/herself as
responsible for causing a harmful/ immoral/
shameful/ embarrassing outcome to people.

SReferred to as Happiness for simplicity
SReferred to as Disgust for simplicity
"Referred to as Guilt for simplicity
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Here's what's gonna happen. One of these days, these guys aren't just going to ice a few
European civilians. They're going to blow up the Notre Dame, or destroy a priceless work of
European art at the Louvre, and then the shit will really hit the fan. | want to he careful how | word
this but ask yourself a question. If the Nazis had won WWII, do you think Islam would be
threatening European civilians in the hearts of London, Paris, and Berlin today?

What kind of language does this comment contain towards Muslims?

Discriminatory or Alienating .

Critical but not Discriminatory

Supportive or Favorable

Neutral

The previous comment implies that all who follow Islam threaten European civilization, even suggesting
that Nazis would have prevented that. Therefore, the answer is Discriminatory or Alienating

Figure 5: Example of the first question as reference presented to MTurk annotators.

Which primary emotion does the text show towards Muslims?

Positive

Please select at least one type of type of Negative emotion the text primarily contains towards
Muslims. You may select up to two emotions if the text contains them.

Anger

Someone is causing harm or a negative/undeserved outcome, while this could have
been avoided.

Someone is acting in an unjustified manner towards people.

Someone is blocking the goals of people.

Anxiety/Fear

Something negative might/could happen (sooner or later), which threatens the well-
being of people.

Contempt
Someone is inferior (for example, immoral, lazy or greedy).

Someone is incompetent (for example, weak or stupid).

Moral Disgust
Someone behaves in an offensive way (for exampie, corrupt, dishonest, ruthless, or
unscrupulous behavior).

Guilt/Shame
Someone sees him-/herself as responsible for causing a
harmful/immoral/shameful/fembarrassing outcome to people.

Sadness
Something bad or sad has happened.
Someone has experienced a loss (for example, death or loss of possessions).

Neutral

The exemplary comment describes Muslims and Islam as a threat that will "blow out the Notre Dame or
destroy...", therefore it sees it as dangerous and posing a threat.

Figure 6: Example of the second question as reference presented to MTurk annotators.
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A.3 Reliability
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Figure 7: Number of annotations per
emotions and the inter-rater correlation.

We also applied the algorithm called Leave-
One-Rater-Out PPCA Cowen et al. (2019), using
Bonferroni correction on p-values. Principal Pre-
served Component Analysis (PPCA) finds principal
components which instead of preserving variance
within a single dataset as conducted in PCA, pre-
serve the cross-covariance between two different
datasets, in our case being a comparison between
annotations by one rater and a random set of other
raters. In this manner, we can assess the degree of
agreement and whether all component dimensions
are significant, indicating significant emotion di-
mensions to be preserved. In our setup, the largest
p-value for a dimension was 1.2e — 03, with all
other dimensions showing much smaller values.
This supports the idea that our emotion dimensions
are significant, in order to be kept.

A.4 Data analysis

Supportive Neutral Critical Discriminatory
. \ ) \

400
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Boos NN
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Figure 8: Distribution for the UsVsThem scale. Val-

ues closer to 0 are more supportive towards the target

group, while higher values indicate a higher degree of

criticism or eventually discrimination.

Predictor Sumof df Mean F P partial
Squares Square n?

(Intercept) 258247 1 2582.47 46 x 10  0.000

Groups 22.05 5 4.41 78.73 0.000 0.04

Bias 4.82 4 1.21 21.52 0.000 0.01

Groups x Bias  13.82 20 0.69 12.33 0.000 0.03

Error 492.63 8794 0.06

Table 5: Two-way ANOVA test.
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Conservatives Liberals  Immigrants Refugees Jews Muslims
left 0.6687¢" 0.5407%7  0.471" 0.524" 0.433  0.5547%"
centre-left  0.669"%" 0.513"7  0.447" 0.507" 0.422  0.556"%"
centre 0.6467%" 048777 0.516" 0.541" 0.452 0.5737%"
centre-right 0.555% ¢! 0.602% !t 0.497" 0.557 0.433  0.682¢ 1!
right 0.543¢ 11 0.638%!l  0.6467 1l 0,625 0.467  0.696% !

Table 6: Mean UsVsThem Regression scale for each group and bias.

Statistical significance is shown as super-

indexes, in case the mean is statistically different with other biases for that group. Ueft, ‘e centre-left, ¢ centre, "¢

centre-right, " right. Tested using Tukey HSD test.

Anger Contempt Disgust Fear Gratitude Guilt Happiness Hope Pride Relief Sadness Sympathy Neutral
Conservatives 28.5% 477%  444%  8.9% 1.3% 4.5% 14% 42% 4.1% 0.5% 2.4% 6.9% 23.7%
Liberals 22.4% 40.7% 28.3% 8.4% 1.3% 3.1% 08% 79% 29% 0.4% 1.6% 6.4% 32.6%
Jews 17.4% 22.8% 16.9% 8.2% 0.5% 1.3% 0.6% 23% 3.1% 0.6% 1.5% 23.8% 44.4%
Muslims 31.4% 392%  30.0% 26.1% 0.8% 2.5% 09% 2.0% 19% 0.3% 1.5% 15.1% 26.8%
Immigrants 23.5% 33.4% 18.8% 21.5% 1.5% 1.4% 08% 43% 22% 0.6% 1.6% 23.4% 30.9%
Refugees 26.9% 37.3% 21.8% 25.8% 0.7% 2.0% 0.6% 62% 1.0% 0.8% 2.0% 24.1% 25.3%
Table 7: Percentages of comments within each social group per emotion.
Anger Contempt Disgust Fear Gratitude Guilt Happiness Hope Pride Relief Sadness Sympathy Neutral
left 22.5% 35.8% 258% 15.1% 0.7% 2.4% 0.6% 49% 2.5% 0.5% 2.0% 18.6% 31.5%
centre-left 21.1% 34.1% 27.0% 13.5% 12% 2.6% 07% 50% 2.1% 04% 1.8% 18.1% 32.6%
centre 24.4% 35.2% 26.1% 15.0% 1.5% 2.1% 1.1% 5.0% 27% 0.7% 1.8% 15.1% 32.8%
centre-right 25.9% 36.3% 26.5% 17.0% 12% 2.4% 09% 39% 32% 0.7% 1.2% 17.8% 29.4%
right 31.5% 43.4% 29.0% 21.9% 0.6% 2.9% 09% 3.6% 22% 0.4% 2.1% 13.5% 26.4%
Table 8: Percentages of comments within bias in the news source per emotion.
Anger Contempt Disgust 00 Fear Gratitude
w00 500 200 20
400
300 300 200 15
300
200 200 10
200 100
100 100 100 5
Guilt Happiness Hope Pride Relief
40 15 100
a0 G
20 80
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. 40 20
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Figure 9: UsVsThem scale for each emotion.
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Figure 10: Distribution for the UsVsThem scale per social group and bias. The mean for the scale is shown at the
X axis.
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A.5 Analysis
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Figure 11: Squared error for STL and three-task MTL

n  Reddit Comment

1 Ican’t believe this bullshit. It’s literally come down to picking between letting refugees sleep in your bed
and fuck your wife and daughter or you’re a racist hate monger. Literally no point on the spectrum exists
between the two ends.

Label MTL,E. & G. MTL,E. MTL, G. STL  Group Emotions
0.920 0.646 0.752 0.376 0.655 Refugees Anger & Fear

2 As alegal immigrant, the newfound term ‘undocumented immigrant’ annoys the heck out of me. They’re
illegal aliens. Stop trying to sugarcoat it. It took me years to move here legally, and I resent those who
chose to do it illegally. The process is long but it is fair. Come in through the front door, not the backdoor.

Label MTL,E. & G. MTL,E. MTL, G. STL  Group Emotions
0.746  0.661 0.530 0.577 0.436 Immigrants Anger & Disgust

3 By every moral or ethical standard, it is your duty to refuse orders to “defend” the US from these migrants.
History will look kindly upon you if you do. There are thousands, if not millions, of us who will support
your decision to lay your weapons down.

Label MTL,E. & G. MTL,E. MTL, G. STL  Group Emotions
0.17  0.923 0.856 0.884 0.83  Immigrants Sympathy & Hope

4 I was about to be shocked, until i thought about the god damn state of the world, the western world is at the
moment at almost the same state, where at least a large minority wish the same thing of the Muslims. That
and god damn people THERE IS MILLIONS OF MUSLIMS NOT EVERYONE THINKS THIS WAY'!

Label MTL,E. & G. MTL,E. MTL, G. STL  Group Emotions
0.099 0.847 0.833 0.882 0.815 Muslims Sympathy

5 The Democrats are the ones preventing people? That’s funny. Who are the lawmakers in the state
legislatures that are constantly scheming up roundabout ways to defund planned parenthood and completely
outlaw abortion access, despite a large majority of Americans supporting at least some degree of abortion?
Hint: they’re not Dems.

Label MTL,E. & G. MTL, Emo. MTL, Groups STL Group Emotions
0.059 0.78 0.75 0.766 0.734 Liberals Sympathy

Table 9: 1 and 2 are examples of predictions for comments with high values on the UsVsThem scale where MTL
models showed an improvement over STL, 3 and 4 are examples of ambiguous and challenging comments and 5
is an example with mentions to more than one group with high error predictions. Predictions are averages of all 10
seeds predictions for each model.
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Figure 12: Hidden representations at each layer of the Transformer model for the single task model. Red represents
a value closer to 1 in the UsVsThem scale and blue closer to 0.
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Figure 13: Hidden representations at each layer of the Transformer model for the three-task MTL. The last plots
show the task specific Transformer layer output. Red represents a value closer to 1 in the UsVsThem scale and blue
closer to 0.
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