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Abstract

Language modeling with BERT consists of
two phases of (i) unsupervised pre-training
on unlabeled text, and (ii) fine-tuning for
a specific supervised task. We present a
method that leverages the second phase to
its fullest, by applying an extensive num-
ber of parallel classifier heads, which are
enforced to be orthogonal, while adaptively
eliminating the weaker heads during train-
ing. We conduct an extensive inter- and intra-
dataset evaluation, showing that our method
improves the generalization ability of BERT,
sometimes leading to a +9% gain in accuracy.
These results highlight the importance of a
proper fine-tuning procedure, especially for
relatively smaller-sized datasets. Our code is
attached as supplementary.

1 Introduction

Recently, there has been an increasing number
of studies suggesting the use of general language
models, for improving natural language process-
ing tasks (Dai and Le, 2015; Peters et al., 2018;
Radford et al., 2018; Howard and Ruder, 2018).
Among the most promising techniques, the unsu-
pervised pretraining approach (Dai and Le, 2015;
Radford et al., 2018) has emerged as a very suc-
cessful method, that achieves state-of-the-art re-
sults on many language tasks, including senti-
ment analysis (Socher et al., 2013), natural lan-
guage inference (Williams et al., 2017) and similar-
ity and paraphrasing tasks (Dolan and Brockett,
2005; Cer et al., 2017). This approach incorpo-
rates a two-phase training procedure. The first
phase utilizes an unsupervised training of a gen-
eral language model on a large corpus. The sec-
ond phase applies supervision to fine-tune the
model for a given task.

More recently, unsupervised pretraining mod-
els such as BERT (Devlin et al., 2018), XLNET

(Yang et al., 2019) and RoBERTa (Liu et al., 2019),
have achieved unprecedented performance. For
example, in the GLUE benchmark (Wang et al.,
2018), BERT (Devlin et al., 2018) was reported to
achieve performance that exceeds human level
on a few different datasets, such as QNLI (Ra-
jpurkar et al., 2016), QQP (Chen et al., 2018) and
MRPC (Dolan and Brockett, 2005). However, de-
spite the great progress achieved by these task-
specific and dataset-specific models, it is not yet
clear how well they can generalize to different
tasks, how well they generalize when evaluating
the same task on different datasets, and how to
improve this generalization ability.

In our work, we extend the multiverse method
of (Littwin and Wolf, 2016), which was shown to
improve transfer learning in the computer vision
task of face recognition and on the CIFAR-100
small image recognition dataset. The multiverse
loss generalizes the cross entropy loss, by simul-
taneously training multiple linear classification
heads to perform the same task. In order to pre-
vent multiple copies of the same classifier, in the
multiverse scheme, each classifier is mutually or-
thogonal to the rest of classifiers. The number of
multiverse heads used was limited, never more
than seven and typically set to five.

We propose a novel fine-tuning procedure for
enhancing the generalization ability of the recent
unsupervised pretrained language models, by em-
ploying a large number of multiverse heads. The
essence of our technique is as follows: given a pre-
trained language model and a downstream task
with labeled data, we fine-tune the model using
a maximal number of multiverse classifiers. The
fine-tuning goal is to both minimize the task loss
and an orthogonality loss applied to the classifi-
cation heads. When enforcing orthogonality hin-
ders the classifiers’ performance, we detect and
eliminate the less effective classification heads.
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The technique, therefore, preserves a maximal
set of classifiers, which is comprised of the best
performing ones. By maintaining this maximal
subset during training, our method leverages mul-
tiverse loss to its fullest. Hence, we name our
method Maximal Multiverse Learning (MML).

Our contributions are as follows: (1) we present
MML, a general training procedure to improve
the transferability of neural models. (2) we ap-
ply MML on BERT and report its performance on
various datasets. (3) we propose a set of cross
dataset evaluations using common NLP bench-
marks, demonstrating the effectiveness of MML,
in comparison to regular BERT fine-tuning and
to alternative regularization techniques.

2 Related work

Many recent breakthroughs in NLP employ unsu-
pervised pretraining of language models. The dif-
ferent variants can be categorized into two main
approaches: (1) feature-based models, such as
(Peters et al., 2018) and (2) fine-tuning models,
such as (Devlin et al., 2018; Liu et al., 2019; Yang
et al., 2019). The former technique utilizes a lan-
guage neural-based model as a feature extractor.
The extracted features may be used for the train-
ing of another model, receiving the extracted fea-
tures as input. The second approach utilizes a
similar pre-trained model, but fine-tunes it in
an end-to-end manner to specialize on a given
task. During the fine-tuning phase, all of the pa-
rameters of the model are updated and a rela-
tively small number of parameters are trained
from scratch.

The usage of multiple classifiers can be found
in few places in the literature. In GoogLeNet
(Szegedy et al., 2015), the authors use multiple
classifier heads in different places in the model
architecture. The additional classifiers led to bet-
ter propagation of the gradients during training.
However, with the advent of better conditioning
and normalization methods, as well as with the
modern introduction of skip connections in ar-
chitectures such as the ResNet (He et al., 2016),
the practice of adding intermediate branches, for
the sake of introducing an auxiliary loss at lower
layers, was mostly abandoned.

The multiverse loss was shown to promote
transfer learning and to lead to a low-dimensional
representation in the penultimate layer (Littwin
and Wolf, 2016). However, the current literature

does not present any methodological way to se-
lect the number of multiverse heads and the idea
was only applied for a handful of parallel classi-
fiers. In MML, hundreds of multiverse heads are
used, leading to a tradeoff between the classifier
accuracy and the orthogonality constraint. MML
balances the two terms by pruning, during train-
ing, the under-performing heads.

3 Method

Let W = {wi }w
i=1 be the vocabulary of tokens in a

given language. Let Y be the set of all possible
sentences generated by W , including the empty
sentence. A language model M : Y ×Y → Rd re-
ceives a pair of elements from Y and returns a
vectors of d dimensions. Given a dataset with n
training samples, s1...sn ∈ Y ×Y , each associated
with a label yi ∈ [1...c], we denote the coding vec-
tor of each sample by di := M(si ). As a concrete
example, for the BERT model, di is the latent em-
bedding of the CLS token.

Common language models employ a classifier
C :Rd →Rc that projects the coding vectors di ∈
Rd by a d × c matrix, Fd×c = [ f1, ..., fc ], ( fi ∈ Rd ),
and then adds a bias term b ∈Rc :

C (di ) = d T
i Fd×c +b (1)

The output of C is a logit vector, and pseudo-
probabilities are obtained by applying softmax
pi

(
yi

)= eC (di )yi /
∑c

j=1 eC (di ) j .
Different from the single-classifier

models, our model utilizes a multiverse
classifier C : Rd → Rc×m defined as
C (di ) = (C1(di ), ...,Cm(di )), where m is a
multiplicity parameter,

{
C j :Rd →Rc

}m
j=1 are

parallel classifiers, each with different weights,
applying the same function as Eq. 1. :

C j (di ) = d T
i F j

d×c +b j (2)

Additionally, we will define B = {
β j ∈ {0,1}

}m
j=1

as a set of binary scalars. Each classifier head C j

will be associated with a different binary scalarβ j ,
which is set during training. In our experiments,
we set m to be equal to the coding vector size
d , which entails a full rank of active multiverse
classifiers at the beginning of the training.
The loss function is composed of two compo-
nents, the task loss and the multiverse loss. Defin-
ing active multiverse classifiers as those that are
associated with a value β j = 1, the task loss op-
timizes the performance of all active multiverse
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Figure 1: A schematic illustration of the MML model. The task loss comprises a loss-term for each multiverse
classifier, using the given labels of the task at hand. The mutual orthogonality tables hold the absolute value of
the dot product calculated between the weights of all classifiers, across the different classes. Since orthogonal-
ity of a classifier with itself is ignored, we set the diagonal to 0. Following multiverse loss definition and since
orthogonality is symmetric, only half of each table value is passed to the multiverse loss.

Algorithm 1 MML training. The MeanShift func-
tion returns the center of the clusters. Params:
K = 1000, γ = 0.99, T hr eshold = 5, α = 2 · e−5,
λ= 0.005.
∀1 ≤ j ≤ m : β j ← 1, a j ← 0
for step = 1,2, ... do

Sample a minibatch {(si , yi )}t
i=1

MCθ ← ∇θ

[
λ · Lmv (C ,B) +

1
t

∑t
i=1Lt ask

(
M ,C ,B , {(si , yi )}t

i=1

)]
for 1 ≤ j ≤ m do

a j ← (1 − γ) · a j +(
γ · 1

t

∑t
i=1Lt ask

(
M ,C ,B , {(si , yi )}t

i=1

))
θ← θ + Adam(θ, MCθ, α)
if step%K = 0 and

∑
j β j ≥ T hr eshold then

clusters ← MeanShift
({

a j |β j = 1
}m

j=1

)
if |cluster s| ≥ 2 then

for 1 ≤ j ≤ m do
β j ← 0, if a j ∉ mi n(cluster s)

classifiers, each independently, using the supervi-
sion obtained by the given labels. The multiverse
loss soft-enforces orthogonality among the active
classifiers. Its purpose is to regularize the model
by encouraging M to produce coding vectors that
are robust enough to be effective for a large num-
ber of orthogonal classifiers.

As mentioned earlier, each classifier C j is as-
sociated with a binary value β j , which controls
the applicability of the classifier and is config-
ured during training. Under the context of the
loss function, setting β j to 0 would eliminate the
impact of the j th classifier head C j for both the
task loss and multiverse loss.

For a multi-class classification task, we apply
the following task loss:

Lt ask =−Σn
i=1Σ

m
j=1L

j ,i
cceβ j (3)

where n is the number of training samples, and

L j ,i
cce = yi log (C j (M(si ))yi ) is the cross entropy

loss. For a binary classification task we set C :
Rd → R2×m and use the same loss from Eq. 3.
For a regression task, we replace L j

cce with L j ,i
L2 =∥∥yi −C j (M(si ))

∥∥2
2.

The second loss term enforces orthogonality
between the set of classifiers, for each class sepa-
rately, using the multiverse loss:

Lmv =Σ j ,r,s>r

∣∣∣ f r>
j f s

j βrβs

∣∣∣ (4)

where f r
j is the j th column of the weight matrix

that corresponds to classifier Cr .
The total loss Ltot al is defined as: Ltot al =

Lt ask +λLmv . Similar to (Littwin and Wolf, 2016),
we set λ = 0.005, throughout all of our experi-
ments. The MML model is illustrated in Fig. 1.
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The training algorithm begins with an initializa-
tion of the aggregated model (M ,C ,B). M may
be initialized by any pre-trained general language
model. The multiverse classifiers are randomly
initialized from scratch, and all classifiers are ini-
tially activated, by setting β j = 1 for ∀β j ∈ B .

During training, we track the performance
of each multiverse classifier separately. Every
K steps, we search for a subset of the top-
performing classifiers. When we find such a sub-
set, we eliminate the less performing classifiers
by setting their corresponding βs to 0.

In order to detect the top-performing classi-
fiers, we calculate a moving average variable a j

for each multiverse classifier. Specifically, a j

holds the moving average of the task loss value

L j
t ask associated with classification head C j . a j

is being updated for every training step, using the
moving average momentum constant of 0.99.

Every K steps, we run the MeanShift algo-
rithm (Comaniciu and Meer, 2002) on the set{

a j |β j = 1
}

to obtains the modes of the under-
lying distribution. MeanShift is a clustering al-
gorithm that reveals the number of clusters in a
given data, and retrieves the corresponding cen-
troid for each detected cluster. In our case, Mean-
Shift is applied on 1D data and by utilizing it, we
identify the subset of top-performing multiverse
heads as the cluster associated with the minimal
centroid value. Next, we eliminate the rest of the
multiverse heads, by setting their corresponding
β to 0. This adaptive elimination is stopped, when
we reach a minimal number of active heads, see
Alg. 1.
At inference, we use the active multiverse heads
to retrieve predictions. Specifically, given a sam-
ple si , we calculate the logits ŷ as:

ŷ :=
∑m

j=1 C j (M(si )) ·β j∑m
j=1β j

(5)

for classification tasks, we apply the softmax func-
tion on ŷ , and return its output. For regression
tasks, we simply return ŷ .

4 Results

In this study, we evaluate MML, applied on a pre-
trained BERT (Devlin et al., 2018) model, using
nine NLP datasets, while employing two differ-
ent settings: (1) fine-tuning on different down-
stream tasks from the GLUE benchmark (Wang
et al., 2018), and (2) cross dataset evaluations for

different datasets of the same or similar tasks. For
the first, we fine-tune MML on each dataset sepa-
rately, and evaluate its performance on the devel-
opment set and the test set of the same dataset.
For the second, we evaluate our fine-tuned MML
models on the train and development set of other
datasets within the same task category. This al-
lows us to study the generalization level of all
models, across different datasets. Additionally,
we perform an ablation study and report empir-
ical results that showcase the efficacy of MML,
compared to other multiverse schemes and to a
BERT model with a higher dropout rate.

We adopt eight datasets from the GLUE bench-
mark (Wang et al., 2018) and one extra dataset
supporting the task of Natural Language Infer-
ence (NLI). The datasets can be arranged to form
the following three categories: (1) Inference tasks:
this category incorporates four datasets of nat-
ural language inference: RTE, MNLI, SNLI and
QNLI. RTE and QNLI are binary classification
tasks, whereas MNLI and SNLI are multilabel clas-
sification tasks (which possess an additional “neu-
tral” label). (2) Similarity and paraphrasing tasks:
this category includes three datasets: MRPC, QQP,
STS-B. MRPC and QQP are binary classifications
tasks, while STS-B is a regression task with labels
annotating the level of similarity between each
sentence pair. (3) Misc. datasets: this category
composed of two datasets that cannot be used
for the cross dataset evaluation, due to the lack
of commonality between their tasks: CoLA and
SST-2. We refer the reader to the appendix for
more details on the nine datasets.

4.1 Evaluation on GLUE datasets

We evaluated MML on the eight different datasets
from the GLUE benchmark, and compared to
BERT (Devlin et al., 2018). Each model was
trained and evaluated on a single dataset. De-
velopment and test set performance are being
reported for each model. In addition, we conduct
an ablation analysis for our method, presenting
the importance of our Maximal Multiverse Learn-
ing, which allows the training to adapt the num-
ber of multiverse classifiers to each dataset. The
first ablation experiment disables the classifier
elimination step during training and utilizes the
same MML architecture with a fixed number of
heads. The second ablation also disables the mul-
tiverse loss, leaving the training to optimize an
ensemble of classifiers, without enforcing the or-
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Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -

d
ev

el
o

p
m

en
ts

et BERT 86.6/- 91.3 92.3 93.2 60.6 90.0 88.0 70.4 84.0
MV-5 87.0/- 91.4 92.2 94.0 64.3 91.1 88.0 75.4 85.4
MV-1024 86.2/- 91.4 92.2 93.2 57.9 90.6 89.7 80.1 85.2
BERT-Drop 87.0/- 91.6 93.0 92.9 62.3 90.7 87.5 76.5 85.2
BERT-Ensemble 86.6/- 91.4 92.3 93.2 60.9 90.2 88.0 70.4 84.1
MML 87.2/- 91.7 93.0 94.0 64.5 91.1 89.0 80.1 86.3

te
st

se
t

BERT 86.7/85.9 89.3 92.7 94.9 60.5 86.5 85.4 70.1 83.2
MV-5 86.4 /85.9 88.9 92.2 94.1 56.9 87.4 86.3 70.6 82.8
MV-1024 87.0/85.9 89.1 92.2 93.8 54.8 86.8 86.1 74.2 82.9
BERT-Drop 86.6/86.0 89.3 92.8 94.1 56.1 87.9 85.3 74.1 83.2
BERT-Ensemble 86.6/86.0 89.2 92.3 94.1 60.1 86.4 86.1 70.4 83.1
MML 87.0/86.0 89.4 92.6 94.6 58.6 88.1 86.7 74.2 83.8
MML #heads 19 14 23 979 31 45 913 1024 -

Table 1: Results on GLUE benchmarks (Wang et al., 2018). BERT results taken from (Devlin et al., 2018). Accu-
racy scores are reported for all datasets, except STS-B, for which Spearman Correlation is reported. For MNLI,
accuracy scores are reported for both matched and mismatched test sets. The last row exhibits the number of
active multiverse heads of the converged MML model. For example, for MRPC, our MML model used 913 active
multiverse heads, while for MNLI, it maintained 19.

thogonality constraint.

The BERT model used is the BERT-Large
model (Devlin et al., 2018). It contains 24 atten-
tion layers, each with 16 attention heads with a
hidden layer of size d = 1024 dimensions. The
model was pre-trained using sentence pairs, to
both reconstruct masked words and to predict
whether the pairs are consecutive. BERT’s fine-
tuning for downstream tasks employs supervision
obtained by the given labels of each dataset.

MML utilizes the same pre-trained BERT-Large
model and is initialized with m = d = 1024 ac-
tive multiverse classifiers. During training, the
model converges to a smaller number of multi-
verse classifiers. The number of active multiverse
classifiers of each model is presented in last row
of Tab. 1.

Tab. 1 presents the results for six models: (1)
BERT (as a baseline), (2) MML, (3-4) two multi-
verse models utilizing a fixed number of multi-
verse classifiers, with 5 and 1024 classifiers, re-
spectively, (5) BERT-Drop, a BERT model that
was fine-tuned with a 30% dropout rate on the
CLS embedding vector and which provides a
baseline with additional regularization, (6) BERT-
Ensemble, a BERT model with 1024 heads (similar
to MV-1024 without the multiverse loss).

As can be seen in the table, compared to BERT,
MML yields better results by a sizeable margin on
the test set of five out of eight datasets. The largest

gains were reported in the relatively smaller-sized
dataests, such as RTE, MRPC and STS-B, for
whom MML yields an absolute improvement of
4.1%, 1.3%, 1.6%, respectively. This can be at-
tributed to the ability of MML to encourage a
more robust learning. On the rest of the datasets,
MML yields similar performance on the test. On
the development set, MML outperforms BERT on
all datasets, sometimes by a large margin. Specif-
ically, for RTE, MML yields an improvement of
almost 10%.

The ablation models MV-5 and MV-1024, uti-
lize a fixed number of multiverse heads during
the entire training. We have found that this hyper
parameter can be crucial for the model’s conver-
gence, and when not initialized properly, may
significantly reduce performance for the given
task in hand. Specifically, for the CoLA dataset,
MV-1024 and MV-5 yield a relative performance
gap of more than 11%, in favor of MV-5, while
in RTE, there is a gap of 6.2% in favor of MV-
1024. When comparing both MV-5 and MV-1024
to MML, MML produces better or similar per-
formance on the development set of all datasets.
More specifically, on RTE and MRPC, MML yields
similar performance as in MV-1024, and outper-
forms it on all the other six datasets. Compared to
MV-5, MML yields better performance, by a size-
able margin, on four datasets out of eight, and
produces similar performance on the rest.
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Figure 2: The number of active multiverse classifiers, per training step, for the MML model trained on QNLI.
The MeanShift algorithm detects multiple clusters, for three times during training. The two upper plots present
the selection of the top-performing heads (green stars), and the elimination of the heads showing lower-
performance (red stars). The Y values are the moving average calculated on the multiverse heads’ loss function.
Our MML-QNLI model reaches local minima at step 85K, for which 23 heads were activated. The bottom right
plot shows the moving average values of the activated 23 multiverse heads, by the same training step.

The BERT-Drop model is a BERT baseline
trained with a dropout rate of 30% (instead of 10%
as used in a regular BERT). Compared to BERT,
BERT-Drop provides similar results on the test
set, while showing some improvement on the de-
velopment set. When comparing BERT-Drop to
MML, MML results with a higher average perfor-
mance on both the test set and development set,
where in some dataests, such as RTE, MML yields
an improvement of +3.6% on the development
set. On the test set, MML surpasses BERT-Drop
on seven out of eight datasets. Specifically, in
some datasets, such as MRPC and CoLA, MML
outperforms BERT-Drop in 1.4 and 2.5 accuracy
points, respectively.

The BERT-Ensemble employs BERT with an en-
semble of 1024 parallel classifiers. It optimizes all
classifiers during training and infers predictions
by calculating the mean over all classifiers’ log-
its. As shown in the table, BERT-Ensemble yields

similar performance to BERT.

Fig. 2 presents the amount of active mul-
tiverse heads, when applying MML on QNLI
dataset. During the training of the MML-QNLI
model, the MeanShift algorithm detected multi-
ple clusters at three times1, through the entire
training. Each time, the model eliminated the
lower-performance subsets, and kept the top-
performing multiverse classifiers as the active set
of classifiers. The model achieved best perfor-
mance on the development set at training step
85K. At this step, the MML-QNLI model utilized
23 active multiverse heads. The plots in the figure
present the cumulative loss of each multiverse
head, sorted through the X axis according to the
indices of the active heads. The red stars are asso-

1 The elimination is being invoked every time the Mean-
Shift algorithm detects multiple clusters. Specifically, for
MML-QNLI experiment, multiple clusters appeared three
times during the training process.
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ciated with the classifiers heads that were elimi-
nated, and the green stars are the heads that were
selected as the top-performing subset.

4.2 Cross dataset evaluations

In the cross-task evaluations, we use the fine-
tuned MML models from Sec. 4.1. For each model
trained on a dataset from the two first categories
above (NLI and similarity/paraphrasing), we eval-
uate the model on all datasets from the same cate-
gory. Train and development set performance are
reported to give a clear view on the cross-task gen-
eralization ability, and also to exhibit the level of
overfitting, when evaluating on the same dataset
that the model was trained on.

In order to conduct a clean comparison, we
finetune BERT, MML, and all other methods with
the same hyperparmeters, employing 10/30/100
epochs for the relative large/medium/small
datasets, a batch size of 32, and a learning rate
of 2e-5 (BERT obtains in all cases performance
that at least matches the one published in (De-
vlin et al., 2018)). Our code can be found at
https://github.com/ItzikMalkiel/MML.

In cross evaluation experiments, there is no
training on the target training set, so both the tar-
get training set and validation sets can be used
for evaluation. Overall, there are 36 cross-task
experiments. In the first category, there are four
datasets, so three cross-task experiments for each.
Taking into account the two splits, this amounts
to 24 experiments. Similarly, in the second cat-
egory, where there are three datasets, there are
12 experiments. Fig. 3 is a Dolan Moré plot com-
paring the performance of BERT to the five fine-
tuning variants explored (MML, MV-5, MV-1024,
BERT-Drop, Bert-Ensable) for all 36 experiments.
These plots show for each method the ratio of ex-
periments for which it has a performance level
that is at least as high a constant times the best
result. As can be seen, regularization helps cross-
task generality. However, none of the baseline
methods is as effective as MML. In the supple-
mentary appendix we provide the full data, and,
for brevity, below we focus on comparing MML
with BERT.
Inference tasks Since MNLI and SNLI are mul-
ticlass classification tasks with 3 classes, we col-
lapse the labels “neutral” and “contradication”
into one label (“non entailment”). This modifi-
cation, applied only during inference, allows us
to evaluate MNLI and SNLI models on RTE and

Figure 3: A Dolan-Moré profile, based on the results
obtained across all cross-task experiments. The x-
axis is the threshold τ. The y-axis depicts, for a given
fine-tuning method, the ratio of datasets in which the
obtained error is less than the threshold τ times the
minimal error obtained by any of the six methods.

QNLI, and vice versa.
The results are reported in Tab. 2. As can

be seen, MML exhibits a significantly improved
transferability compared to BERT. Each row in the
table represents an MML or BERT model trained
on a single dataset associated by its name. All
models are evaluated on all four datasets. In
the last column, we report the relative average
improvement obtained by MML, calculated by
the performance ratio between MML and BERT
across all three holdout datasets. For example,
for RTE, our MML-RTE model yields 9.9% relative
average performance on the train set of MNLI,
QNLI and SNLI, and a 9.5% average improvement
on the development set of these datasets.
Similarity and paraphrasing Since STS-B is a
regression task benchmark, while MRPC and QQP
address a binary classification task, to support
cross dataset evaluations, we adapt STS-B to form
a binary classification task. The adaptation is be-
ing done by collapsing the labels in the range 1-2
(4-5) to the value of 0 (1) and omitting all samples
associated with label values between 2 and 4. The
binary STS-B version has ∼3.5K samples.

As can be seen in Tab. 3, MML yields better
performance on the cross evaluations for the sim-
ilarity and paraphrase datasets. Similar to Tab. 2,
each row represent a single model trained on a
single dataset. We evaluate all models on all three

https://github.com/ItzikMalkiel/MML
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Model RTE MNLI QNLI SNLI MML Improvement

BERT-RTE 96.06/70.39 69.42/69.17 52.46/52.84 68.02/69.87 -
MML-RTE 99.39/80.14 79.24/78.42 50.86/51.30 80.85/82.53 +9.98%/+9.51%
BERT-MNLI 79.15/76.89 99.59/86.58 49.88/51.05 81.65/83.65 -
MML-MNLI 79.35/78.70 99.74/87.18 49.64/50.22 82.37/83.94 +0.21% /+0.35%
BERT-QNLI 53.37/48.73 59.76/59.89 99.99/94.01 59.33/60.03 -
MML-QNLI 53.41/53.79 64.93/63.85 95.75/92.86 62.13/63.58 +4.48%/+7.63%
BERT-SNLI 71.28/70.03 75.82/75.79 49.62/50.72 99.74/91.08 -
MML-SNLI 71.88/69.31 75.79/76.37 49.32/50.32 99.30/91.38 +0.07%/-0.36%

Table 2: Cross dataset evaluation for Language Inference tasks. Train/development accuracy are reported sep-
arately for each dataset. Each model (a row in the table) was trained on a single dataset denoted by its name,
and was evaluated on the train/development sets of all four datasets. The last columns indicates the relative
average improvement obtained by MML compared to BERT, and averaged across the three hold-out datasets
(i.e. excluding the diagonal). SNLI is the only dataset for which MML does not improve cross dataset per-
formance on average, perhaps since it is largest dataset with 570k samples. See supplementary appendix for
farther comparison with MV-5, MV-1024 and BERT-Drop.

Model QQP MRPC STS-B* MML Improvement

BERT-QQP 99.73/91.57 66.90/68.85 88.34/90.12 -
MML-QQP 99.74/91.68 67.77/68.87 89.11/90.55 +1.08%/+0.25%
BERT-MRPC 65.28/65.18 99.37/87.25 82.53/88.58 -
MML-MRPC 68.37/68.15 99.23/88.97 86.12/91.32 +4.54%/+3.82%
BERT-STS-B* 73.13/73.11 75.59/75.49 100.0/95.49 -
MML-STS-B* 74.13/74.40 75.51/77.94 99.85/96.70 +0.63%/+2.50%

Table 3: Cross dataset evaluation for similarity and paraphrasing tasks. STS-B* is the modified version of STS-B
that forms a binary classification dataset (instead of regression). STS-B* models were trained as binary classi-
fiers on STS-B data. Accuracy scores are reported through all evaluations. The last column presents the relative
cross dataset improvement obtained by MML, compared to BERT.

datasets, and report the average relative improve-
ment obtained by MML calculated on the two
holdout datasets. We have found MML to pro-
duce improved performance for all models, for
example, MML-MRPC yields a ∼+3.5% average
improvement calculated on both train and devel-
opment sets across STS-B and QQP.

5 Discussion

The results in both Tab. 2 and 3, reveal a signif-
icant gap in performance for all models when
evaluated on holdout datasets, although the
holdout datasets share the same or similar task
each model was trained for. For example, both
MML-MRPC and BERT-MRPC models yield a
∼20% degradation in absolute accuracy on the
QQP dataset. However, compared to BERT, our
MML method produces significantly better per-
formance on the cross evaluations. Specifically,

when evaluated on QQP, MML-MRPC outper-
forms BERT-MRPC by a relative improvement of
∼4.6%, for both development and train set.

We do not observe a direct link between the
improvement obtained on the same dataset eval-
uation to that obtained in the cross dataset one.
For example, our MML-QNLI model was able to
outperform BERT-QNLI in the cross dataset eval-
uation, although, compared to our BERT-QNLI
reproduction, MML-QNLI exhibits a somewhat
degraded performance on QNLI’s development
set (see the third section in Tab.2) and test set (as
published in (Devlin et al., 2018)). We attribute
this to the ability of MML to encourage the model
to produce more transferable coding vectors.

Computational overhead During training, the
MML multiverse heads imply a maximal addition
of 1024 operations of matrix multiplications and
gradient derivations, each in the size of 1024× c.
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During the backward steps, the multiple gradi-
ents are averaged almost immediately, right be-
fore propagating them back through the last en-
coder layer of BERT. Interestingly, in many cases,
the number of active heads shrinks in the early
stages of the training. During inference, the ad-
ditional calculations are solely the matrix multi-
plications, for which the average number of ac-
tive heads, across our experiments, is 381. This
average number of active heads translates to
an increase of ∼0.2% to the parameter count of
BERT_Large.

6 Summary

We introduce the MML method for fine-tuning
language models. MML utilizes a large set of par-
allel multiverse heads and eliminates the rela-
tively weaker heads during training. We demon-
strate the effectiveness of MML on nine com-
mon NLP datasets, by applying inter- and intra-
datasets evaluation, where it is shown to outper-
form the originally introduced BERT fine-tuning
procedure. The results shade light on the role
of regularization in improving cross task gener-
alization, and show the advantage of MML over
alternative regularization methods.
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Supplementary Appendices2

A The datasets (more details)

We adopt eight datasets from the GLUE bench-
mark (Wang et al., 2018), and one extra dataset
supporting the task of Natural Language Infer-
ence (NLI). The datasets can be arranged by cate-
gories as follows.
Inference tasks This category contains three
datasets from the GLUE benchmark (Wang et al.,
2018), along with an external dataset named SNLI
(Bowman et al., 2015) that shares the same task.
RTE The Recognizing Textual Entailment dataset
(Bentivogli et al., 2009) is composed of sentence
pairs associated with a binary classification task
for entailment/non entailment relation between
the sentences. MNLI Multi-Genre Natural Lan-
guage Inference Corpus (Williams et al., 2017) is
also an entailment dataset comprised of sentence
pairs. The task is multiclass classification for pre-
dicting contradiction, neutral or entailment rela-
tion between the sentence pairs. SNLI The Stan-
ford Natural Language Inference dataset (Bow-
man et al., 2015) is similar to MNLI, but contains
data gathered from different sources. QNLI The
Question-answering Natural Language Inference
dataset (Rajpurkar et al., 2016) contains question-
sentence pairs associated with the binary classi-
fication task for the entailment/non entailment
relation between the question-answer pairs.

2Put here for the reader’s convenience.

Similarity and paraphrasing Tasks This cate-
gory contains three datasets. MRPC Microsoft
Research Paraphrase Corpus (Dolan and Brock-
ett, 2005) is a dataset of sentence pairs. The task
is to determine whether a pair of sentences are
semantically equivalent (binary classification).
QQP Quora Question Pairs (Chen et al., 2018) is
a dataset of question pairs taken from the Quora
website. The goal is to determine whether a pair
of questions are semantically equivalent (binary
classification). STS-B Semantic Textual Similarity
Benchmark (Cer et al., 2017) is a dataset com-
posed of sentence pairs, each annotated with a
score between 1 and 5, indicating the semantic
similarity level of both sentences. The task is to
predict these scores (regression).

Misc. datasets The two datasets in this cate-
gory are not used for the cross dataset evalua-
tion, due to the lack of commonality between
their tasks. CoLA The Corpus of Linguistic Ac-
ceptability dataset (Warstadt et al., 2018) consists
of examples of expert English sentence accept-
ability judgments. Each sample is annotated by
whether it is a grammatically sentence of English
(binary classification). SST-2 The Stanford Senti-
ment Treebank (Socher et al., 2013) is a dataset
composed of sentences assigned with a human
annotations of their sentiment. The task is to de-
termine whether the sentiment of each sentence
is positive or negative (binary classification).

B Cross-task generalization results for all
baselines

For the sake of completeness, we report cross
dataset evaluations, for all six models described
in the main text. Specifically, we compare MML,
BERT, MV-5, MV-1024, BERT-Drop and BERT-
Ensemble on cross dataset evaluations for in-
ference datasets, and similarity and paraphrase
datasets.

Tab. 4 presents the performance of the above
six models evaluated on the cross dataset evalu-
ation for the NLI category. Each row represents
a different model, trained on a single dataset as-
sociated by its name. Each column corresponds
to an evaluation on four datasets in this category.
The last column presents the improvement ob-
tained by each model, compared to BERT, and
calculated across the three hold-out datasets. Ac-
curacy is reported for all datasets on both the
train and development sets, in the format train

http://arxiv.org/abs/1409.4842
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accuracy/development accuracy. Note that no
training is done on the training set in the case of
cross-task evaluation. Therefore, the training set
can be seen as an additional dataset to evaluate
on.

As can be seen in Tab. 4, MML-RTE outper-
forms BERT-RTE on all datasets, and results with
similar performance compared to MV-5-RTE, MV-
1024-RTE and BERT-Drop-RTE. For the models
trained with MNLI dataset, we found that the
four models MML-MNLI, MV-5-MNLI, MV-1024-
MNLI and BERT-Drop-MNLI, yield similar results,
where all produce a slight improvement com-
pared to BERT. For QNLI, MML yields a significant
improvement compared to all models. Specif-
ically, MML-QNLI yields +4.48%/7.63% relative
improvement compared to BERT, averaged on the
train and development set of the three hold-out
dataests. BERT-Drop-QNLI yields significantly de-
creased performance of -1.93%/-2.89% compared
to BERT, MV-5 yields improved performance of
+1.0%/+2.73%, and MV-1024 results with a signif-
icantly decreased performance of -2.64% on the
train sets, and somehow similar performance to
BERT on the development set.

For SNLI, MML and BERT-Drop yield similar
performance compared to BERT on the train-
ing sets, where MML shows slightly better per-
formance. On the development set, both MML
and Bert-Drop present slightly decreased perfor-
mance. Mv-5 and Mv-1024 exhibit significantly
decreased performance on both train and devel-
opment sets.

In Tab.5, we present the performance of all six
fine-tune variants, evaluated on the cross simi-
larity and paraphrasing datasets. For QQP-based
models, MML and MV-5 were able to improve the
cross evaluation performance compared to BERT,
measured on the two hold-out datasets. Both
MML-QQP and MV-5-QQP yield more than one
percentage of relative improvement on the train
sets, and less than one percentage of improve-
ment on the developments sets, where MV-5-
QQP presents slightly better results. On the other
hand, BERT-Drop-QQP and MV-1024-QQP yield
significantly decreased performance compared
to BERT, each results with 1.76%-3.22% of de-
creased performance on the train/development
sets.

For MRPC, MML outperforms all models, show-
ing a significantly improvement of +4.54%/3.82%

on the train/development sets, when compared
to BERT. The other models where able to improve
BERT in +2.69% up to +3.89% on the train and
+1.66% up to +2.95% on the development sets,
which are significantly inferior to MML-MRPC.
For STS-B, we see that MML, MV-5 and BERT-
Drop were able to yield similar improvement
compared to BERT, where MV-1024 yields de-
creased performance on the train sets, and simi-
lar performance on the development set.

All in all, MML gained the highest improve-
ment, accumulated across all evaluations. Specifi-
cally, when averaging the cross evaluation results
over the train sets, MML shows an average im-
provement of +3.0%, BERT-Drop shows average
improvement of +1.64%, MV-5 yields +2.27% and
MV-1024 yields +0.46%.
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Model RTE MNLI QNLI SNLI
Improvement

compared
to BERT

BERT-RTE 96.06/70.39 69.42/69.17 52.46/52.84 68.02/69.87 -
MML-RTE 99.39/80.14 79.24/78.42 50.86/51.30 80.85/82.53 +9.98%/+9.51%
MV-1024-RTE 99.39/80.14 79.24/78.42 50.86/51.30 80.85/82.53 +9.98%/+9.51%
MV-5-RTE 100.0/75.45 74.50/73.73 58.22/58.72 75.48/77.15 +9.75% /+9.36%
BERT-D-RTE 100.0/76.53 79.31/78.29 52.55/52.80 79.53/81.10 +10.4% /+9.71%
BERT-Ensemble-RTE 96.06/70.39 70.31/70.02 51.25/51.89 69.54/69.97 -1.20%/+0.34%
BERT-MNLI 79.15/76.89 99.59/86.58 49.88/51.05 81.65/83.65 -
MML-MNLI 79.35/78.70 99.74/87.18 49.64/50.22 82.37/83.94 +0.21% /+0.35%
MV-1024-MNLI 78.91/78.70 98.71/86.24 49.93/50.48 82.33/83.60 +0.20% /+0.39%
MV-5-MNLI 78.83/77.61 98.11/87.00 49.91/50.46 82.51/83.95 +0.23% /+0.04%
BERT-D-MNLI 79.40/78.70 99.90/87.04 49.75/50.22 82.32/83.71 +0.29% /+0.26%
BERT-Ensemble-MNLI 78.68/75.58 99.59/86.58 50.21/52.21 82.51/82.35 +1.54%/+0.54%
BERT-QNLI 53.37/48.73 59.76/59.89 99.99/94.01 59.33/60.03 -
MML-QNLI 53.41/53.79 64.93/63.85 95.75/92.86 62.13/63.58 +4.48%/+7.63%
MV-1024-QNLI 51.04/51.26 60.28/58.6 99.49/92.24 58.68/58.78 -2.64%/+0.31%
MV-5-QNLI 51.12/50.90 61.58/60.36 97.95/92.18 61.81/61.86 +1.00%/+2.73%
BERT-D-QNLI 49.91/45.84 60.48/59.33 99.99/93.17 59.22/59.14 -1.93%/-2.89%
BERT-Ensemble-QNLI 54.52/49.84 58.84/59.25 98.95/93.01 60.35/61.87 -1.75%/-1.02%
BERT-SNLI 71.28/70.03 75.82/75.79 49.62/50.72 99.74/91.08 -
MML-SNLI 71.88/69.31 75.79/76.37 49.32/50.32 99.30/91.38 +0.07%/-0.26%
MV-1024-SNLI 68.87/64.98 73.41/74.09 48.89/49.33 94.54/91.16 -2.67% /-4.06%
MV-5-SNLI 71.24/67.87 75.38/75.00 49.42/50.35 95.63/91.18 -0.35% /-1.62%
BERT-D-SNLI 71.36/70.84 76.16/76.38 49.32/49.35 95.65/91.45 -1.35% /-1.24%
BERT-Ensemble-SNLI 72.52/71.89 74.75/74.85 50.54/51.02 99.57/91.2 -1.23%/-1.10%
MML impr. +0.38%/+3.90% +7.58%/+6.91% -1.37%/-1.77% +8.15%/+8.12%
MV-1024 impr. -2.68%/+0.11% +3.94%/+2.99% -1.47%/-2.25% +6.19%/+5.32%
MV-5 impr. -1.55%/+0.76% +3.26%/+2.11% +3.54%/3.08% +5.40%/-0.94%
BERT-D impr. -2.01%/-0.80% +5.29%/+4.34% -0.23%/-1.46% +5.85%/+4.88%
BERT-Ensemble impr. -1.62%/-1.40% +1.64%/+0.51% -0.52%/-0.54% -1.66%/-0.55%

Table 4: Cross dataset evaluation for Language Inference tasks for all ablation models presented in the main
text (BERT-D stands for BERT-Drop). Train/development accuracy are reported separately for each dataset.
Each model (a row in the table) was trained on a single dataset denoted by its name, and was evaluated on
the train/development sets of all four datasets. The last column indicates the relative average improvement
obtained by each model compared to BERT, and averaged across the three hold-out datasets. The last four
rows present the average column-wise improvement each technique yields, which is aggregated from the three
models of the same technique. BERT models were reproduced with the same hyperparamters used for MML
(all BERT reproductions result with similar or better performance compared to the one published in (Devlin
et al., 2018)).
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Model QQP MRPC STS-B*
Improvement

compared to BERT

BERT-QQP 99.73/91.57 66.90/68.85 88.34/90.12 -
MML-QQP 99.74/91.68 67.77/68.87 89.11/90.55 +1.08%/+0.25%
MV-1024-QQP 98.78/91.42 65.59/67.40 88.20/90.01 -2.16%/-3.22%
MV-5-QQP 99.40/91.45 68.19/68.60 89.00/91.09 +1.58%/+0.63%
BERT-Drop-QQP 99.57/91.64 64.50/65.68 88.40/89.24 -1.76% /-2.80%
BERT-Ensemble-QQP 99.73/91.42 67.45/69.85 89.41/90.45 -1.51%/-1.18%
BERT-MRPC 65.28/65.18 99.37/87.25 82.53/88.58 -
MML-MRPC 68.37/68.15 99.23/88.97 86.12/91.32 +4.54%/+3.82%
MV-1024-MRPC 67.33/67.44 99.91/89.70 85.19/90.55 +3.18%/+2.76%
MV-5-MRPC 66.69/66.46 99.94/87.99 85.20/89.79 +2.69%/+1.66%
BERT-Drop-MRPC 67.65/67.66 99.97/87.5 85.97/90.45 +3.89% /+2.95%
BERT-Ensemble-MRPC 64.48/64.88 99.56/87.25 81.23/87.98 +1.58%/+1.27%
BERT-STS-B* 73.13/73.11 75.59/75.49 100.0/95.49 -
MML-STS-B* 74.13/74.40 75.51/77.94 99.85/96.70 +0.63%/+2.50%
MV-1024-STS-B* 73.96/74.25 75.59/77.20 99.85/96.48 -2.64%/+0.31%
MV-5-STS-B* 74.93/75.15 75.21/75.98 100.0/97.03 +0.97%/+1.71%
BERT-Drop-STS-B* 74.29/75.45 75.40/76.22 100.0/96.70 +0.66% /+2.08%
BERT-Ensemble-STS-B* 74.45/74.21 76.01/76.45 100.0/96.15 -1.27%/-1.08%
MML impr. +3.05%/+3.16% +0.59%/+1.63% +2.61%/+1.78%
MV-1024 impr. +2.13%/+2.51% +0.97%/+0.07% +1.53%/+1.05%
MV-5 impr. +2.31%/+2.37% +0.71%/+0.14% +1.99%/+1.22%
BERT-Drop impr. +2.60%/+3.50 -1.91%/-1.81% +2.11%/+0.56%
BERT-Ensemble impr. -0.31%/-1.02% -1.42%/-1.28% +0.21%/+0.19%

Table 5: Cross dataset evaluation for similarity and paraphrase tasks. STS-B* is the modified version of STS-B
that forms a binary classification dataset (instead of regression). STS-B* models were trained as binary classi-
fiers on STS-B data. Accuracy scores are reported through all evaluations. The last column presents the relative
cross dataset improvement obtained by each model compared to BERT, and averaged across the two hold-out
datasets. The last four rows present the average column-wise improvement each technique yields, which is
computed from the two models of the same technique.


