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Abstract

Verbal prediction has been shown to be crit-
ical during online comprehension of Subject-
Object-Verb (SOV) languages. In this work
we present three computational models to pre-
dict clause final verbs in Hindi given its prior
arguments. The models differ in their use of
prior context during the prediction process –
the context is either noisy or noise-free. Model
predictions are compared with the sentence
completion data obtained from Hindi native
speakers. Results show that models that as-
sume noisy context outperform the noise-free
model. In particular, a lossy context model
that assumes prior context to be affected by
predictability and recency captures the distri-
bution of the predicted verb class and error
sources best. The success of the predictability-
recency lossy context model is consistent with
the noisy channel hypothesis for sentence com-
prehension and supports the idea that the re-
construction of the context during prediction is
driven by prior linguistic exposure. These re-
sults also shed light on the nature of the noise
that affects the reconstruction process. Overall
the results pose a challenge to the adaptability
hypothesis that assumes use of noise-free pre-
verbal context for robust verbal prediction.

1 Introduction

Research on sentence comprehension has con-
clusively established the widespread role of pre-
diction during online processing (e.g., Marslen-
Wilson, 1973; Altmann and Kamide, 1999; Staub
and Clifton, 2006; Kutas and Hillyard, 1984). It
is known that comprehenders actively anticipate
the upcoming linguistic material prior to receiving
that information during listening or reading (Luke
and Christianson, 2016; Staub, 2015). The role of
active prediction during comprehension has partic-
ularly been emphasized for processing of SOV lan-
guages (e.g., Konieczny, 2000; Yamashita, 1997;
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Friederici and Frisch, 2000). In particular, it has
been argued that preverbal nominal features such as
case-markers are effectively used to make precise
prediction regarding the clause final verb. Indeed,
the ADAPTABILITY HYPOTHESIS states that ow-
ing to the typological properties, the prediction
system in SOV languages is particularly adapted
to make effective use of preverbal linguistic mate-
rial to make robust clause final verbal prediction
(Vasishth et al., 2010; Levy and Keller, 2013). Ev-
idence for the adaptability hypothesis come from
various behavioral experiments that show effective
use of case-markers to make clause final verbal
prediction (e.g., Husain et al., 2014), facilitation
at the verb when the distance between the verb
and its prior dependent increase (e.g., Konieczny,
2000), and lack of structural forgetting in the face
of complex linguistic environment (e.g., Vasishth
et al., 2010). On the other hand, the NOISY CHAN-
NEL HYPOTHESIS assumes that prediction during
comprehension is required to accommodate uncer-
tainty in the input (Gibson et al., 2013; Kurumada
and Jaeger, 2015). In other words, the hypothesis
posits that comprehenders have the knowledge that
speakers make mistakes during production, hence,
comprehenders need to reconstruct the received
input (Ferreira and Patson, 2007).

The two hypotheses stated above make distinct
assumptions regarding the utilization of pre-verbal
context towards making clause final verbal predic-
tions in SOV languages. One way to operationalize
the predictions of the adaptability hypothesis is to
assume that the preverbal linguistic material will be
faithfully used to make verbal prediction, the noisy
channel hypothesis on the other hand, assumes that
the preverbal context is noisy and therefore subject
to reconstruction. One consequence of this would
be that the adaptability hypothesis would predict
that verbal prediction should be robust while the
noisy channel hypothesis would predict that ver-
bal prediction should be susceptible to errors. In
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addition, the two hypotheses would make distinct
prediction regarding the nature of errors that might
occur during clause final verbal prediction.

In order to probe the two hypotheses stated ear-
lier, in this work, we investigate various incremen-
tal models that use local linguistic features to pre-
dict clause final verbal prediction in Hindi (an SOV
language). The distribution of these model predic-
tions is compared with human data. In particular,
we investigate to what extent the models are able to
capture the nature of both grammatical as well as
ungrammatical verbal predictions when compared
to data collected from native speakers of Hindi.
Further, in order to probe the assumptions of the
noisy channel hypothesis more closely, we probe
multiple noise functions to investigate the nature of
preverbal context reconstruction during prediction.

The paper is arranged as follow, in Section 2
we briefly describe the experimental results that
we model. Section 3 provide the necessary details
regarding methodology (data/tools, model evalu-
ation, etc.). In Sections 4 and 5 we respectively
discuss the n-gram surprisal and the lossy-surprisal
models. Section 6 presents the results. Section 7
discusses the current findings and its implications.
We conclude the paper in Section 8.

2 Background

In spite of the proposed central role of verb pre-
diction during online processing of Hindi (e.g., Va-
sishth and Lewis, 2006; Agrawal et al., 2017; Hu-
sain et al., 2014), there is a surprising lack of any
modeling attempt to understand the processes that
subserve verbal predictions in the language. While
there are computational metrics that model read-
ing time data (e.g., Hale, 2001; Shain et al., 2016;
Futrell et al., 2020), a computational model that
makes precise verbal prediction in SOV languages
has not been investigated thoroughly (but see, Gris-
som II et al., 2016, for an initial attempt). Un-
derstanding the mechanisms that subserve verbal
prediction in SOV languages is critical to under-
standing how these languages are processed (cf.
Konieczny, 2000; Vasishth et al., 2010; Husain
et al., 2014; Levy and Keller, 2013; Kuperberg
and Jaeger, 2016). Our work fills this gap in the
literature. In this section we summarize the key
results of a recent study by Apurva and Husain
(2020) who investigated the nature of verbal pre-
diction in Hindi using a series sentence completion
studies (Staub et al., 2015). Later, in sections 4, 5

we present three computational models to account
for these results.

2.1 Completion Study Results
Apurva and Husain (2020) used the sentence com-
pletion paradigm (Taylor, 1953) to probe the nature
of clause final verbal prediction when differing
the number of preverbal nouns that precede the to-
be-completed target verb. The number of nouns
ranged from 1 to 3 and appeared in different case-
marker order. All preverbal nouns were proper
nouns. Example 1 shows some of the conditions
where 3 preverbal nouns preceded the target verb.
In the example, ne is the Ergative case-marker, ko
is the Accusative case-marker and se is the Ablative
case-marker. In all, there were 6 conditions in this
experiment (ne-ko-se, ne-se-ko, ko-ne-se, ko-se-ne,
se-ko-ne, se-ne-ko). 36 native speakers participated
in the 3-NP condition experiments. Similar to the
3-NP conditions, the 1-NP and 2-NP items had
proper nouns and the nouns occurred in various
case-marker order. 25 native speakers participated
in the 1-NP and 2-NP condition experiments.

(1) a. ne-ko-se
pooja-ne
Pooja-ERG

urmila-ko
Urmila-ACC

suneet-se
Suneet-ABL

. . .

. . .
b. ne-se-ko

pooja-ne
Pooja-ERG

urmila-se
Urmila-ABL

suneet-ko
Suneet-ACC

. . .

. . .

The key result from these completion studies
was that the number of ungrammatical verbal com-
pletions increased as the number of preverbal nom-
inals increased. For the 1-NP conditions the per-
centage ungrammatical completions was 4%, for
the 2-NP conditions this was 8%, while for the
3-NP conditions the ungrammatical completions
increased to 15%.

In addition, the completion data was also ana-
lyzed for the nature of grammatical and ungram-
matical verbal completions. Completions were an-
alyzed based on the verb classes rather than lexical
identity (cf. Luke and Christianson, 2016). The
data contains a distribution over a total of 18 verbs
classes for the 2-NP and 3-NP conditions. In ma-
jority of the grammatical completions, Hindi na-
tive speakers posit simple syntactic structures (in
terms of the number of clausal embeddings and
the number of core argument structure). For the
2-NP conditions, the topmost verb classes were T
(Transitive verb), IN (Intransitive verb), and DT
(Ditransitive verb). For the 3-NP conditions, CAUS
(Causative verb) and T DT (Transitive non-finite
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verb followed by a ditransitive matrix verb) were
consistently the most frequent, covering at least
50% of completions between them for all condi-
tions. Some of the other classes observed were DT,
N T DT, and DT DT. Interestingly, while the 3-NP
conditions can be grammatically completed using a
double embedded structure (e.g., IN DT DT), such
cases were not found in the completion data.

Among the ungrammatical verb completions
across various conditions, N DT, IN DT and CAUS
were consistently the most frequent verb classes
predicted. Similar to the trend in the grammati-
cal completions discussed above, the parser posits
simple structures even when making mistakes. Ad-
ditionally, a closer analysis of the ungrammatical
completions showed the formation of locally coher-
ent parses (Tabor et al., 2004) for the various 3-NP
conditions where the first noun was ignored and
only the 2nd and the 3rd nouns were used to make
the prediction (we call these N2-N3 errors). Other
errors were made when either N2 or N3 were ig-
nored to make the prediction (we call these N1-N3,
N1-N2 errors respectively). The errors also show a
subject primacy effect (Häussler and Bader, 2015;
Knoedler et al., 1999) where the presence of an
Ergative case marker on N1 is not forgotten. This
leads to lack of passive predictions in such cases.2

To sum up, the key results of the completion
studies were, (a) verb prediction was good in 1-NP
and 2-NP conditions, (b) predictions deteriorated
in 3-NP conditions, (c) grammatical verbal comple-
tions are syntactically simple rather than complex
(e.g., clausal embeddings are avoided), (d) error
types for the 3-NP conditions show use of two pre-
verbal NPs to make predictions, as well as being
sensitive to subject primacy.

Table 1 provides the details on the number of
grammatical and ungrammatical completions over
all conditions. Also see Table 3 for verb class
numbers for the 2-NP conditions. Table 2 shows
examples of various error types in the 3-NP condi-
tions.

3 Methodology

3.1 Data and Tools

We use the monolingual Hindi corpus developed
by IIT Bombay (Kunchukuttan et al., 2017). It is a

2See Sections 1 and 2 of the supplementary material for ad-
ditional details regarding the word order in Hindi, experimen-
tal conditions, predicted verb classes predicted and examples
of various errors during the completion study.

collection of raw sentences of Hindi taken from var-
ious sources (HindMonoCorp (Bojar et al., 2014),
BBC, Wikipedia etc.). For training our models, we
use the first 5 million sentences of this data. For
the sentence simplification step (described in the
Section 3.2), we use the ISC dependency parser
for Hindi.3 Moreover, as the sentence completion
experiment included only animate nouns in vari-
ous items (see Section 2), we use an additional
animacy annotation (Jena et al., 2013) to label the
nouns accordingly.

3.2 Sentence Simplification

A key aim of the behavioral experiments discussed
in Section 2 was to investigate the role of preverbal
arguments on clause final verbal prediction. Conse-
quently, our models had to be trained on sentences
with various features (e.g., case-marker, animacy)
of the preverbal arguments . Since the raw data may
contain other intervening material (nominal modi-
fiers, verbal adjuncts, etc.),4 the task necessitated
removal of such material from the training corpus
to render it more tractable to the appropriate com-
putational model. Thus, we simplify each sentence
in the training data by removing these intervening
materials while ensuring that the grammaticality
of the sentence remains intact.5 This, of course,
implies that the model only uses the local argument
structure to make the necessary verbal prediction.

The sentence simplification process preserves
verbal and nominal arguments, such as di-
rect/oblique objects, case-markers, and auxiliaries,
but removes adjective phrases, relative clauses, and
adjuncts. It treats conjunct structures as separate
components. It identifies intra-sentential noun el-
lipsis and truncates a sequence that displays such
a structure, while processing its other verbs. For
example:

police-ne
Police-ERG

giraftari
arrest

warrant
warrant

milne-ke
get-INF-ACC-GEN

baad
after

somwar
Monday

raat-ko
night

Ratan-ke
Ratan-GEN-ACC

vakeel-se
lawyer-ABL

3https://bitbucket.org/account/user/
iscnlp/projects/ISCNLP. It is an implementation of
the incremental transition-based arc-eager parsing algorithm
(Nivre, 2008). The parser is trained on the Hyderabad
Dependency Treebank (Bhatt et al., 2009) and is reported to
have a UAS of 93.52% and an LAS of 87.77% (Bhat, 2017)

4Refer to Section 3 of the supplementary material for statis-
tics on the same.

5Additional details regarding procedure and testing have
been provided in Section 4 of the supplementary material.

https://bitbucket.org/account/user/iscnlp/projects/ISCNLP
https://bitbucket.org/account/user/iscnlp/projects/ISCNLP
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Verb Class Grammatical completions Ungrammatical completions

T+DT 170 6
CAUS 140 9
N+DT+DT 51 1
DT+DT 24 0
T+T 21 0
N+CAUS 19 0
N+T+DT 17 5
DT 10 1
CAUS+T 5 0
CAUS+DT 4 0
IN+DT 2 8
T 2 5
N+DT 2 15
N+T 1 2
DT+IN 0 1
DT+T 0 1
IN 0 1
IN+DT 0 2
Other 7 4

Table 1: Grammatical and ungrammatical completions across all 2-NP and 3-NP conditions. v1+v2 signifies an
embedded structure with v1 as the embedded non-finite verb and v2 as the matrix verb. In the case of n+v1+v2, n
is part of the v1 non-finite clause and v2 is the matrix verb. IN: Intransitive, CAUS: Causative, T: Transitive, DT:
Ditransitive, N: Noun.

Error type Example
N1 N2 N1-ne N2-ko N3-se peeta tha

‘hit PAST’
N1 N3 N1-ne N2-ko N3-se kuchaa mangaa

‘something asked’
N2 N3 N1-se N2-ne N3-ko introduce kiya

‘introduce do’

Table 2: Sample completions for various error types
in some 3-NP conditions. Completions are underlined.
Note: the completions are grammatical if we ignore
the striked-out phrase; else they are ungrammatical.
ne=Ergative case-marker, ko=Accusative case-marker,
se=Ablative case-marker.

sampark-kiya-tha
communicate-P.Perf y
police-ne
Police-ERG

vakeel-se
lawyer-ABL

sampark-kiya-tha
communicate-P.Perf

We also flatten all the nouns in the data to “noun
tokens” by merging the noun and its corresponding
case-marker. Since we are interested in capturing
the variations of the completions for different or-
der of case-markers in the prompt, we can abstract
away from the lexicality of the nouns. Thus, we re-
place the nominal lexical item with its correspond-
ing label depending on whether it is animate (A)
or not (N). Such an abstraction is well motivated
considering that humans are known to be sensi-
tive to both syntactic part-of-speech tags as well as
lexical semantics during sentence processing (e.g.,
Demberg and Keller, 2008; Trueswell et al., 1994).

3.3 Experiment Design
Given the abstract nominals and their case-marker,
a model’s task is to complete the input string with
an appropriate verb phrase. For example, if the
model is given 3 noun tokens (each with a unique
case-marker) with the lexical item replaced with a
label A denoting animate, the task is to predict a
verb phrase from this context. End of prediction is
signalled as a punctuation.

We note that, given a context, the model makes
the prediction in an incremental fashion, rather than
producing a one-shot phrase. This means that once
a word is predicted, the model considers it as part
of the context for the prediction of the next word.
For example, given “A-ne A-ko A-se”, the model
completes the sentence with w1w2w3 in the follow-
ing manner:
A-ne A-ko A-se⇒ w1

A-ne A-ko A-se w1 ⇒ w2

A-ne A-ko A-se w1 w2 ⇒ w3

All implemented models discussed in Section 4
and Section 5, use the 1/2/3 preverbal arguments
as context. The rationale for use of local context is
driven by the goal to model the role of argument
structure in verbal prediction (see Section 2). In-
terestingly, the automatically parsed Hindi corpus
(Bojar et al., 2014) shows that arguments (when
compared to adjuncts) tend to be closer to the verb6

suggesting that the critical information needed to
6Arguments are at an average distance of 3.8 from the verb

while adjuncts have mean dependency distance of 4.5.
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Cond M Vc Total VC count Cond M Vc Total VC count Cond M Vc Total VC count

n1c1n2c1 COP 1 3 n1c2n2c4 DT 8 23 n1c3n2c4 T 71 84
n1c1n2c1 T 2 3 n1c2n2c4 T 14 23 n1c4n2c1 IN 10 23
n1c1n2c3 DT 3 22 n1c3n2c1 DT 3 22 n1c4n2c1 T 13 23
n1c1n2c3 T 19 22 n1c3n2c1 T 19 22 n1c4n2c2 CAUS 8 82
n1c1n2c4 COP 4 23 n1c3n2c2 DT 30 89 n1c4n2c2 DT 32 82
n1c1n2c4 EXP 2 23 n1c3n2c2 T 59 89 n1c4n2c2 IN 2 82
n1c1n2c4 IN 3 23 n1c3n2c3 DT 2 6 n1c4n2c2 T 40 82
n1c1n2c4 T 14 23 n1c3n2c3 T 4 6 n1c4n2c3 CAUS 2 77
n1c2n2c1 DT 4 21 n1c3n2c4 CAUS 1 84 n1c4n2c3 DT 5 77
n1c2n2c1 T 17 21 n1c3n2c4 COP 1 84 n1c4n2c3 T 70 77
n1c2n2c3 DT 6 24 n1c3n2c4 DT 1 84 n1c4n2c4 T 1 1
n1c2n2c3 T 18 24 n1c3n2c4 EXP 5 84
n1c2n2c4 CAUS 1 23 n1c3n2c4 IN 5 84

Table 3: 2-NP Predictions: c1=Nom, c2=Erg, c3=Acc, c4=Abl; IN: Intransitive, CAUS: Causative, T: Transitive,
DT: Ditransitive, N: Noun. ‘Total’ refers to the number of instances of the condition, ‘VC count’ refers to the
number of instances of the corresponding verb class.

predict the verb should be accessible locally. In
addition, we place an upper limit on the no. of
predicted words – 2 words for 2-NP conditions and
3 for 3-NP.7 Given the cognitive validity of limited
beam-size (e.g., Boston et al., 2011), we only pick
the top 50 predictions for further analyses.

Both human and model completions are man-
ually annotated with verb classes based on the
valency of the predicted verb. In addition, any
nominal argument prediction was also annotated.
Verb classes were labeled as IN (intransitive), T
(transitive), DT (ditransitive), CAUS (causative), or
combinations of the above in case a combination
of non-finite and matrix verbs is predicted.

For example, the following phrase contains a
transitive verb preceded by its object noun:

(2) khaana
food

khaaya
eat-PT

−→ N T

Verb classes are used for comparing model out-
put with human data as predictions are known to
be graded rather than all-or-nothing lexical predic-
tion (Luke and Christianson, 2016; Staub, 2015).
Additionally, we don’t predict the verb classes di-
rectly to keep the model output consistent with the
human data. These completions are then labelled
for grammaticality automatically; given the prompt
condition and the verb class of the completion, we
can infer the grammaticality of the sentence.8

7No significant change in the set of predictions was ob-
served on increasing these numbers any further.

8We use information from our human-annotated comple-
tion data as well as native speaker knowledge to construct
an exhaustive list of valid completions per condition for this
purpose.

3.4 Model Evaluation

All the models are evaluated by comparing the
model output with the sentence completion data ob-
tained from the native speakers; specifically, model
output is evaluated in terms of the nature of the
predicted verb class. We let VC denote the set of
all verb-classes, h(x) denotes the probability distri-
bution of verb-class predictions made by humans,
and m(x) denotes the corresponding distribution
of the model. We measure KL-divergence between
these two distributions, replacing zero probabilities
with a fixed value9 (= 10−5); this is shown in (1)

KLp(h||m) = KL(h||m′) (1)

where KL denotes the KL-divergence and m′ is a
distribution such that m′(x) = max (m(x), 10−5)
for each x ∈ VC.

Apart from this primary measure, we use two
other metrics F and D to quantify the span and
quality of model predictions with respect to the pre-
dicted verb classes, respectively, in order to better
understand these characteristics of each model (see
Section 6.1).

Further, to ascertain a qualitative understanding
of the model performance, we also evaluate each
model on the basis of the following characteristics
that are displayed in the completion data discussed
in Section 2:

• Deterioration in the number of grammatical
completions on the 3-NP conditions compared
to the 2-NP conditions

9It is equal to the minimum probability that we allowed in
our model predictions
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• Within the grammatical completions, a pref-
erence for simpler structures as opposed to
complex or embedded constructions

• Exhibition of similar types of errors as hu-
mans; for example, in 3-NP conditions, N1-
N2 errors, as well as a sensitivity to subject
primacy with the Ergative case.

For the 3-NP conditions, we classify errors into
types based on their compatibility with a 2-NP
sub-context (N1-N2, N1-N3, N2-N3). For exam-
ple, an error type of N1-N2 would mean that the
corresponding ungrammatical prediction is com-
patible only with first two NPs and not the full
3-NP context. This scheme follows the error types
found in the completion data discussed in Section 2.
Additionally, see Section 2 of the supplementary
material for examples of various errors.

4 N -gram Based Surprisal Model

In order to evaluate the adaptability hypothesis
where the prediction of upcoming verb is driven
by local nominal arguments, we implement an n-
gram language model using the data discussed in
Section 3.2. Such models are typically used to com-
pute the surprisal metric (Hale, 2001; Levy, 2008)
given local context (e.g., Levy et al., 2012). Recall
that we have at most 3 NPs as the preverbal con-
text, and therefore, we use a 4-gram model so that
the model has access to the complete context in a
given condition to make a verbal prediction. Unlike
the models discussed in Section 5, the preverbal
context in this model is free of noise.

5 Lossy-context Surprisal Models

In this section, we discuss two models to test the
noisy channel hypothesis. As stated in Section 1,
the underlying assumption is that human commu-
nication is noisy (Gibson et al., 2013; Kurumada
and Jaeger, 2015) and the comprehender has to
reinterpret the input to make prediction about up-
coming linguistic material. In order to evaluate this
hypothesis, we implement different versions of the
lossy-context surprisal metric (Futrell et al., 2020).
Lossy-context surprisal holds that processing diffi-
culty at a word in a context is proportional to the
surprisal of a word given a lossy memory represen-
tation of the context. The two models discussed
in sections 5.1 and 5.2 differ in their noise func-
tions that affect the interpretation of the preverbal
context.

For the current investigation, lossy-context
surprisal is extended to model the sentence-
completion task. The word with the highest prob-
ability in a given context is assumed to be most
likely to complete the sentence (cf. Staub et al.,
2015; Levy, 2008; Smith and Levy, 2013).

As noted by Futrell et al. (2020), the lossy sur-
prisal model is not representation-agnostic. Its pre-
dictions are dependent on a noise distribution (M).
One can then obtain:

p(w|r) ∝
∑
c

pM (r|c)p(c)pL(w|c), (2)

where w is the predicted word and r is the result of
adding noise to the context c. Here, we consider L
to be a 4-gram model, same as the one discussed
in Section 4. Moreover, for c = w1w2 · · ·wn we
calculate p(c) also using L

p(c) =

n∏
i=1

pL(wi|wi−3wi−2wi−1)

In addition, if |c| = n ≤ 2, we don’t add
any noise to the context and simply use the n-
gram model L for prediction. In other words, if
c = w1w2 or c = w1, then we consider p(w|r) =
pL(w|c). Since we only consider erasure-based
noise distributions, this is done to ensure that the
whole context is not lost during prediction. In order
to get an average behavior of the model, we run the
model 10 times and then take the top 50 predictions
based on the total probability of each prediction.
In other words, suppose a phrase s is predicted to
follow a given preverbal arguments in a condition.
Then, the total probability of s to be predicted in
the given condition by the average model is equal
to 1

10

∑10
i=1 pi(s), where pi(s) denotes the proba-

bility of prediction s in the ith run. Note that if s
is not predicted in the ith run, then pi(s) = 0. In
the next subsections, we present two models with
different noise distribution.

5.1 Predictability Bias Noise (LC-Surp
Pred-Bias)

We first consider a noise distribution such that the
context is reconstructed based on the predictability
of a sub-context. This is driven by the idea that
reconstruction of context given a noisy input will
be influenced by prior linguistic exposure (Futrell
et al., 2020). When the input is less frequent, its
reconstruction will be influenced by frequent lin-
guistic patterns in the language. Note, however,
that a single word is obviously more frequent than
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two. Hence, we needed to control for the reduc-
tion in the size of the context that may arise due
to this predictability bias. We do this by selecting
sub-contexts based on their size with a preference
to a larger size. Starting from the complete context,
we thus iteratively reduce the size by 1 with a high
probability (d = 0.8).10 Thus, a sub-context of size
m is considered with a probability dn−m where m
is the size of the corresponding context. Hence,

pM (r|c) ∝ dn−mpL(r) (3)

5.2 Predictability Recency Noise (LC-Surp
Pred-Rec)

We next consider a noise distribution which ex-
ploits both predictability bias as well as recency. It
is well attested that recent input is easier to retrieve
from memory compared to non-recent input (e.g.,
Lewis and Vasishth, 2005). The function there-
fore is motivated by the fact that while previous
linguistic exposure should influence context recon-
struction (Futrell et al., 2020), this reconstruction
should bias recent linguistic material. In a way, this
model combines the properties of the Predictability
bias noise model and the n-gram surprisal model.

The conditional probability p(r|c), here, thus
can be seen as the multiplication of two parts -
(a) predictability of r, pL(r); and (b) decaying
erasure factor, prec(r|c). Let c = w1w2 · · ·wn,
r = wi1wi2 · · ·wik for some n, k, then

pM (r|c) ∝
n−k∏
j=1

fn−ijpL(r), (4)

where f is a constant fixed at 0.8.11

Thus, a context which is both predictable and
can be formed from a recent subcontext is favored.
The further a word is from the last uttered word, the
lesser its likelihood of being a part of the reduced
context r.

6 Results

Table 4 compares the verb class results for the three
models discussed above. The key finding is that the
values of KLp for the LC-Surp Pred-Rec model is
lower than the other models for most of the condi-
tions. This suggests that the model performs better
in capturing the verb class distribution found in the
human data.

10We also evaluated the model with d = 0.9 but the model
with d = 0.8 gave better results.

11Following the value fixed for d in Section 5.1.

Condition 4-gram
LC-Surp
Pred-Bias

LC-Surp
Pred-Rec

ne-ko-se 6.05 5.97 3.93
ne-se-ko 7.00 9.14 5.32
ko-ne-se 9.40 9.39 9.40
ko-se-ne 8.25 8.53 8.24
se-ko-ne 5.38 7.87 5.35
se-ne-ko 8.57 8.52 8.37

Average 7.44 8.24 6.77

Table 4: Comparison of the considered models for
each condition based on the KLp metric (Equation 1)
rounded to 2 places. Smaller (bold) means better.

In order to test if the improvement seen in the
LC-Surp Pred-Rec model is indeed significant, we
also performed the chi-square test to see if the cate-
gories of verb class predicted in the LC-Surp Pred-
Rec model were significantly different from other
models. Results showed that this was indeed true
– categories of verb classes in the LC-Surp Pred-
Rec model were significantly different (p < 0.05)
from both 4-gram model and the LC-Surp Pred-
bias model.12

KLp provides a measure to quantify the diver-
gence between the human and model prediction
distributions. However, the nature of this diver-
gence is still unclear. In order to understand the
output of the models better, we evaluate them on
some additional metrics. Finally, we report a quali-
tative analysis of the model output.

6.1 Span and Quality of the Models

In this section we assess the span and quality of the
predictions made by the models when compared to
the human data.

The span of verb prediction made by the model
can be computed by the proportion of human dis-
tribution that the model misses on. Formally,

F (h||m) ∝
∑
x∈VC
m(x)=0

h(x) (5)

Since the model will not be able to predict all
verb classes that humans produce, we formulate a
metric to evaluate the quality of the predictions
that the model makes. For this, we restrict the verb
classes to only those that are predicted by the model
and find the KL-divergence (Kullback and Leibler,

12See Section 5 of the Supplementary material for details.
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Condition
4-gram

LC-Surp
Pred-Bias

LC-Surp
Pred-Rec

F D F D F D

ne-ko-se 0.58 2.42 0.58 2.30 0.31 2.15
ne-se-ko 0.68 2.12 0.94 0.50 0.31 4.06
ko-ne-se 0.96 0.33 0.96 0.35 0.96 0.25
ko-se-ne 0.87 0.32 0.90 0.37 0.87 0.23
se-ko-ne 0.51 2.05 0.83 0.96 0.43 2.87
se-ne-ko 0.90 0.23 0.90 0.35 0.88 0.15

Average 0.75 1.99 0.85 1.63 0.63 2.91

Table 5: Comparison of the considered models for each
condition based on the metrics F , D as defined in Equa-
tions 5, 6. Smaller means better (bold represents the
best in that row for each metric).

1951) on those verb classes between the model and
the human; this is shown in (6)

D(h||m) =
∑
x∈VC
m(x)6=0

h′(x) log
h′(x)

m(x)
(6)

where h′(x) is normalized from h(x) after re-
moving x where m(x) = 0.

Note that higher the F , lower is the model’s
span; and similarly, higher the D, lower is its qual-
ity of predictions (as compared to humans). Table 5
shows that for both F and D, the LC-Surp Pred-
Rec model consistently outperforms the LC-Surp
Pred-Bias and the 4-gram surprisal model. This
suggests that when compared to the human data,
the LC-Surp Pred-Rec is better in predicting the
valid verb class both in terms of span and the qual-
ity of the predictions.

6.2 Qualitative Analysis
In order to interpret the metrics mentioned in Ta-
ble 5, we did a detailed analysis of the model output
in terms of the nature of verb class and the type of
prediction errors. This is summarized in Table 6.
One can note that

• Grammaticality in all models drops in 3-NP
conditions as compared to 2-NP conditions,
in line with the human data (cf. Section 2) 13.

• The models prefer simple outcomes, and
largely predict DT , CAUS (grammatical)
and T , N DT (ungrammatical).

Investigating the reason for the better span of the
Pred-Rec model, we find that it is primarily due
to the important T DT verb class. This embedded

13See Section 5 of the supplement for actual percentages.

structure is often used by humans, and neither of
the 4-gram or the Pred-Bias model managed to pre-
dict it; thus, we can link the better span numbers of
the Pred-Rec model to an observable improvement
in the nature of verbal predictions.

We also study the error types made by the models
and compare them to human errors. The 4-gram
model by its nature is only capable of making the
locally coherent N2-N3 errors, whereas both the
Pred-Bias and Pred-Rec models produce N1-N3
and N1-N2 errors as well. However, while the
human data was sensitive to the subject primacy
effect – presence of Ergative case-marker never
lead to passive verb completion; none of the models
is able to fully replicate this pattern. However,
the 4-gram model produces the least percentage
of passives, followed by the Pred-Rec model. See
Section 6 of the supplementary material for more
details about error types.

7 Discussion

Results show that the Lossy context surprisal model
with Predictability Recency Bias noise performs
best in terms of the distribution of predicted verbs
and the error types vis-à-vis the completion data.
This provides support for the noisy channel hy-
pothesis and poses a challenge to the adaptability
hypothesis. In addition, the comparison of the two
lossy surprisal models sheds light on the nature of
the noise during the reconstruction process.

Results show that qualitatively all the models
capture the completion data to a certain extent
(see, Section 6.2). At the same time, overall the
noisy context models performed better than the n-
gram model in two clear ways. First, the models
were able to capture the differential nature of case-
marker combination in a limited context. This leads
to better coverage of error sources (both in terms
of errors made and not made). Second, the models
were therefore also better at making better verb
predictions compared to the n-gram model. In par-
ticular, the overall success of the Pred-Rec model
showed that reconstruction of the noisy context in
influenced by both past exposure of preverbal sub-
context and the recency of the context (cf. Futrell
et al., 2020). Put differently, the reconstruction of
the context is driven by sub-strings that are more
frequent (e.g., ne-ko) and that are closer to the verb.
Critically, this shows that the reconstruction pro-
cess is not random.14

14In addition to the two noise functions reported in Sec-
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Characteristic 4-gram LC-Surp Pred Bias LC-Surp Pred-Rec

Gm% (2-NP) > Gm% (3-NP) Yes Yes Yes
Grammatical classes DT, CAUS DT, CAUS DT, CAUS, T DT

Embeddings predicted No No Yes
% of passives 2.5% 4.2% 3.1%
Errors made Only N2 N3 errors All error types All error types

Table 6: Qualitative analysis of the models’ predictions. The best/desired outcomes appear in bold font. Gm%
denotes the proportion of grammatical completions predicted. High % of passives signifies insensitivity to subject
primacy.

While the performance of the predictability re-
cency model is good, it suffers from three issues
(a) it overestimates the number of errors made by
humans, (b) its overall coverage for various verb
class is low, and (c) it is insensitive to subject pri-
macy. The model is able to successfully predict
verb phrase involving no clausal embedding, and
to a limited extent, those with embeddings. While
certain complex structures such as N DT DT, pre-
dicted rarely by humans, are dropped entirely by
the model, its prediction for the T DT structure
which is frequent in the completion data is not that
high. An investigation into the data also shows a
scarcity of training examples that exhibit an ani-
mate 3-NP context followed by such T DT contin-
uations.15 One reason for this could be the size
of the training data, currently 5 million sentences;
future work can train on a larger data set. Another
possibility is that certain patterns in the human data
are not captured in the written corpus used for train-
ing and requires a dialogue corpus. Unfortunately,
such a corpus currently does not exist for Hindi
and attempts to modeling using such a data will
have to wait its availability. Relatedly, Staub et al.
(2015) argue that prediction based on corpus fre-
quency of syntactic information may not be able to
fully capture the notion of preactivation during the
completion task. Hence, future work will need to
incorporate other sources of information. Finally,
the results show that the 4-gram model is more
sensitive to subject primacy. This is because, the
4-gram model (unlike noisy context models) has ac-
cess to the N1 features when making predictions. It
can thus correctly use the N1 case feature to avoid
predicting passive verbs. This suggests that a noise
function relying only on local information will be
limited in accounting for the current data.

tion 5, we also investigated a purely random noise function.
Due to space constraint, details of this model have been men-
tioned as supplementary material (Section 7).

15See Section 3 of the supplementary material for more
details on training data.

The current work provided the first set of de-
tailed results towards modeling clause final verb
prediction in an SOV language. The work demon-
strated the effectiveness of lossy surprisal models
and probed the nature of the noise function dur-
ing the reconstruction process. In addition to the
quantitative analyses demonstrating the success of
the Predictability Recency lossy surprisal model, a
key contribution of the work was that it highlighted
the nature of model’s closeness to the human data,
both in terms of verb class prediction and the er-
ror type. Overall, the results support the proposals
that highlight the detrimental effect of increased
complexity of the preverbal linguistic material in
SOV languages (e.g., Gibson et al., 2013; Ueno
and Polinsky, 2009; Ros et al., 2015; Yadav et al.,
2020). Future models need to explore other noise
functions to investigate the interaction of context
predictability with recency as well as primacy of
non-local information (e.g., subject). Further, these
models need to be tested to investigate the effect of
distance (e.g., Vasishth and Lewis, 2006) and struc-
tural complexity (Vasishth et al., 2010) on verbal
prediction in SOV languages.

8 Conclusion

We implemented three models to predict clause fi-
nal verbs in Hindi. Model outputs were compared
with verb predictions of native speakers of Hindi
using quantitative measures as well as qualitatively.
Results show that the model that uses limited pre-
verbal context with a predictability recency bias
noise function captures the distribution of human
data best. The success of this model is consistent
with the idea that the reconstruction of the noisy
context during prediction is influenced by prior lin-
guistic exposure and that this process interacts with
recency of input. These results support the noisy
channel hypothesis to language comprehension.
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