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Abstract
Creating datasets manually by human anno-
tators is a laborious task that can lead to bi-
ased and inhomogeneous labels. We propose
a flexible, semi-automatic framework for la-
beling data for relation extraction. Further-
more, we provide a dataset of preprocessed
sentences from the requirements engineering
domain, including a set of automatically cre-
ated as well as hand-crafted labels. In our case
study, we compare the human and automatic
labels and show that there is a substantial over-
lap between both annotations.

1 Introduction

While recent advances in Natural Language Pro-
cessing have yielded high-quality language models
such as BERT (Devlin et al., 2019), GPT-3 (Brown
et al., 2020) and ELECTRA (Clark et al., 2020)
which are able to continue sentences, fill in masked
words and correctly parse human language, using
these models for most use-case scenarios still re-
quires them to be trained on a down-stream task
using labeled data. For some tasks, e.g. sentiment
analysis of reviews, creating datasets is relatively
easy as large databases with annotations already ex-
ist (such as the IMDb movie review dataset (Maas
et al., 2011)). However, training a model on niche
tasks often demands hand-crafting new datasets
from spread-out documents. This is usually done
by humans who collect, preprocess, and annotate
sentences which is a laborious task and can result
in biased and/or inhomogeneous labeling, e.g. if an-
notation instructions were not understood correctly

or left room for subjective interpretation. This be-
comes especially apparent if multiple, non-expert
individuals are involved in this process.
In requirements engineering, we usually work with
large documents written in natural language (Mich
et al., 2004; Kassab et al., 2014) which describe
the specifications of a software project, usually
classified as either functional requirements, spec-
ifying what functionality the system should pro-
vide, and non-functional requirements, specifying
in what way the system should implement those
functions. However, these documents are often up-
dated during the life cycle of the project and span
up to multiple hundreds of pages, depending on the
project size. Keeping track of all the changes and
maintaining the software based on the requirement
document can soon become a challenge (Fischbach
et al., 2020) which is why an automatic conversion
to, e.g., UML diagrams can come in handy. To do
so, it is necessary to parse the relations between en-
tities from the written text into a structured format,
thus creating a comparable corpus of requirements
in natural language and the same relation in a for-
mal language.
In this paper, we propose a semi-automatic ap-
proach that, given a clean, grammatically correct
sentence stating a software requirement, outputs a
labeling corresponding to the relation the require-
ment describes based on a small set of pre-defined
rules of word dependency relations. This should
reduce human bias manifesting in labels as the an-
notator does not actively choose the labels for each
word anymore but instead defines abstract rules
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which provide for homogeneous, deterministic la-
beling and reduce the amount of labor for creat-
ing such datasets. This automatically annotated
data can then be used for training a more powerful
model, as shown by Schmitt et al. (2020).
We summarize our main contributions as follows:

• We provide a high-quality, preprocessed
dataset of 2,093 requirement sentences to-
gether with 1,848 automatically created labels
and another 199 manually created labels for a
subset of the automatically labeled sentences
as a resource for further research projects.

• We provide a flexible, semi-automatic frame-
work for data annotation of the relation extrac-
tion domain based on dependency parsing and
pattern matching.

• We conduct a case study on the said frame-
work on requirement document sentences,
showing its annotation results are matching
those of humans to a substantial degree.

2 Related Work

Gamallo et al. (2012) propose a simple Open In-
formation Extraction system based on dependency
parse trees. The algorithm extracts triples with two
arguments and a sentence part relating those. How-
ever, the patterns are not very sophisticated and
put a large part of the sentence into the relation.
Hence, this approach is not suitable for our use
case as we would eventually like to generate object
diagrams from the relations we extracted. Erkan
et al. (2007) use dependency parse trees to extract
relations between proteins from sentences. They
do so by classifying whether a sentence, given a
dependency tree, describes a relation between any
pair of proteins occurring in the sentence using
semi-supervised harmonic functions and support
vector machines. However, their entities (the pro-
tein names) are already annotated which is not the
case if we only have the raw sentences as in our
approach. Mausam et al. (2012) use dependency
trees and a labeled bootstrap dataset to automati-
cally generate patterns for information extraction,
unlike our approach which does not require to an-
notate any data manually but instead to produce pat-
terns. While this approach might be able to extract
simple triples well, one needs either a larger anno-
tated dataset, defeating the purpose of our work, or
the patterns might not generalize well, thus being

unsuitable for constructing a qualitative annotated
corpus. Reddy et al. (2016) propose an algorithm to
automatically extract logical expressions from de-
pendency parse trees for question answering. These
were then converted into a graph indicating the rela-
tions between the named entities in the sentence by
applying semantic parsing. However, this approach
always converts the entire sentence into a graph
and may include information that is irrelevant for a
dataset that is to be generated. Inago et al. (2019)
use a rule-based approach on dependency trees to
process natural language car parking instructions
with decision trees for automated driving systems.
Unlike our data (or most datasets in general), sen-
tences of the application domain are very short and
similar in structure. While our approach could be
effectively converted into a decision tree, it is easier
to construct rules with our pattern engine for more
complex data.

3 Corpus Creation

3.1 Dataset
For our dataset, we use 19 publicly available re-
quirement documents in the English language from
the PURE dataset (Ferrari et al., 2017), with a large
topical variety, including governmental institution
software in military and scientific fields, inventory
management systems and video games. All doc-
uments are provided in .PDF, .HTML or .DOC
format. From these, we manually extracted 2,104
requirement sentences (1,639 functional, 465 non-
functional requirements).

3.2 Preprocessing
As we want to automatically dependency parse
our sentences, we have to ensure that all input to
the model is grammatically and orthographically
sound. We also have to ensure that any unnecessary
information is removed to not confuse the parser.
Therefore, we manually applied the following for-
matting operations to each sentence during data
extraction:

• Splitting of enumerations into multiple sen-
tences, adjusting words if necessary to make
the sentence sound (e.g., nounification of
verbs); e.g., ”The system has to include a)
[...] b) [...] c) [...]” becomes 3 sentences, each
including exactly one of the requirements

• Removal of extra inter-punctuation (additional
spaces, dots, commas, etc.)
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• Removal of references to sections, tables, fig-
ures, or other requirements of the document as
they are not relevant for extracting the relation
of the sentence itself

• Removal of abbreviations after written-out ex-
pressions (e.g., in ”automated teller machine
(ATM)”, the ”(ATM)” is dropped)

• Removal of requirement reference numbers

• Correction of spelling mistakes where obvious

• Adding of dots at the end of each sentence if
missing

• Changing the first letter of a sentence to upper
case if it is not yet

• Removal of quotation marks around pseudo-
correct terms (e.g., ’the ”processor” will [...]’
becomes ’the processor will [...]’)

• Removal of explicit explanations of what is
included in some term (e.g., ”errors of either
kind, i.e. hardware and software, [...]”)

• Lower-casing of words if they are not abbre-
viations (e.g., ”NOT” becomes ”not”)

• Remove brackets around additional plural ’s’
(e.g., ”socket(s)” becomes ”sockets”)

• Exchanging ”/” with ”and” or ”or” where ap-
plicable and possible given the context (e.g.
”The system should support adding/deleting
files” becomes ”The system should support
adding and deleting files”)

• Unification of the possessive ’s’ preceding
symbols (”‘” and ”´” are changed to ”’”)

• Removal of duplicate sentences (11 in total)

After these preprocessing steps, the average sen-
tence length is 19.87 words, the maximum is 69
words and the minimum 4 words.

3.3 Labeling
These final 2,093 sentences (1,628 functional, 465
non-functional requirements) are parsed to ex-
tract dependencies using the Neural Adobe-UCSD
Parser (Mrini et al., 2020) which achieved state-of-
the-art performance on the Penn Treebank dataset
(Marcus et al., 1993). Based on these dependencies,
we handcraft a total of 102 patterns to label 91.03%

of the functional and 78.71% of the non-functional
sentences without any further human interaction.
Each pattern is a sequence of triples (l, dp, c) where
l is a label, dp a sequence of dependency labels
forming a path downwards a dependency tree and
c a Boolean value indicating whether all children
(direct and indirect) should be left out from label-
ing or not. Each sequence applies all or a subset of
the following entity tags to the sentences:

• ent1: The main entity of the requirement.
Either the acting component or the component
on which a constraint is applied (if there is no
second entity)

• rel: The relation/action of the requirement.

• ent2: The passive entity of the requirement.
Either the component on which an action is
performed or which is involved in the action
passively

• cond: Any modifier of the requirement. Can
further specify the requirement or put condi-
tions on it how or when it will be applied.

An excerpt of automatic annotations can be found
in Table 1. Each pattern is applied using tree traver-
sal: for each label that is to be applied, a sequence
of dependency labels (optionally with modifiers) is
given, starting at the root. The algorithm checks
whether the current nodes have any direct children
connected to them with the current dependency la-
bel of the sequence. If so, we check whether these
children have children connected to them with the
next label in the sequence. If not, the pattern fit-
ting is stopped and no labeling is applied to the
sentence. If we reach the end of the sequence, the
final node is labeled with the given label and, de-
pending on a parameter, all of its children, too. A
simple example can be found in Table 2, row 1.
Dependency labels can include modifiers to allow
for more complex patterns:

• Starting with !, the pattern matching will re-
move any node that has one or more children
with the given dependency label. Thus, no
step downwards the tree is taken

• Followed by =[placeholder] where
[placeholder] is any word, only those
nodes are considered where the label is the
given label and the actual word of the node is
specified by [placeholder]
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Sentence

While flying two MAE AVs Beyond Line Of Sight
cond

, the TCS ent1 shall provide
rel

full control functionality
ent2

of each AV cond.
NPAC SMS ent1 shall default rel the EDR Indicator ent2 to False cond.

A bulk entry
ent1

can be used to add rel many assets
ent2

.
The HATS-GUI ent1 shall interact with the Host OS to compare

rel
time stamps

ent2
for files cond.

The BE ent1 shall be able to apply
rel

corrections ent2 based on state count and/or quantizer power measurement data
cond

.

Table 1: Examples of Labeling

• .. lets us traverse back to the parent of the
current node. This allows us to check nodes
for their existence without including them in
the actual labeling

A selection of patterns used can be found in Table 2.
In our setting, one sentence usually holds one rela-
tion, however, this is not the case for conjunctions
of multiple main clauses or instructions. Due to
current limitations of our engine (see Section 6),
the relation of the first main clause is always cho-
sen, however, this depends on the pattern design.
Even though we only use requirements written in
English, a large portion of the rules could be ap-
plied to data in different languages as the Universal
Dependencies (Schuster and Manning, 2016) rely
on the concept of primacy of content, allowing for
very similar dependency trees. However, patterns
explicitly using keywords may not generalize well
for other languages. The code for the labeling task
as well as the labeled data can be found on GitHub1.

4 Evaluation

Given our automatically labeled data, we evaluate
the quality of the labels by comparing its output
to human annotations. To do so, we randomly
sample 199 sentences (10.77%) from the 1848 sen-
tences which were automatically labeled. Two of
the authors then annotated these sentences manu-
ally. The annotators were given the descriptions
of each label type, but had no access to the actual
labeling from the algorithm. Annotators collabo-
ratively labeled the data, discussing the labeling
for each sentence and agreeing upon a single valid
labeling. We then calculate inter-rater reliability
with the Cohen’s κ between the human annotators
and the automatic annotator, once over all labels
and once as average inter-reliability per sentence
(i.e., we calculate one Cohen’s κ score per sentence

1https://github.com/JeremiasBohn/
RequirementRelationExtractor

and average over all sentences –this considers each
sentence equally while the overall score puts more
weight on longer sentences). The results can be
found in Table 3. While the overall score puts more
weight on long sentences, the sentence average
provides us an approximation of the reliability of
our automatic annotator for any sentence. Accord-
ing to the taxonomy of Landis and Koch (Landis
and Koch, 1977), the per sentence average κ value
indicates a substantial inter-annotator agreement,
the overall κ a moderate agreement. While the
main acting entity is extracted very well with al-
most perfect agreement according to Landis and
Koch, extracting relational modifiers proofs to be
the hardest with only moderate agreement between
our automatic approach and the human annotators.
This is mostly due to the nature of the label itself,
spanning a large variety of modifiers from condi-
tions to entities not involved in the relation itself.
While one could split the cond label into multiple
different labels, this would increase the number of
patterns required a lot. Alternatively, one might
reduce the coverage of the labeling in general but
we focused on including as much information as
possible. The relatively low score for ent2 mainly
arises from sentences containing multiple relations
where many words describe a passive entity for
other relations than the one of the main sentence.
Our approach currently is not able to effectively
extract multiple relations from a single sentence
yet. This is also the reason why the score rel is
lower than the one for ent1.

5 Limitations

While our approach works well for requirements
documents - after all, relations between software
entities and modifications of these relations can be
extracted well by syntactically parsing the sentence
structure - this does not apply to word labels which
require a semantic understanding of the input. For
example, if we were to create labels for Named
Entity Recognition, our algorithm would fail as

https://github.com/JeremiasBohn/RequirementRelationExtractor
https://github.com/JeremiasBohn/RequirementRelationExtractor


44

Pattern Description

(’rel’, [’root’], True)
(’ent1’, [’root’, ’nsubj’], False)
(’ent2’, [’root’, ’dobj’], False)

(’cond’, [’root’, ’advcl’], False)

Simple pattern, sets the root of the sentence as
the relation (only this single word), the entire nominal subject

as the acting entity, the entire direct object as
the passive entity. An adverbial clause is treated as a

relation modifier.
(’rel’, [’root=capable’, ’prep=of’, ’pcomp’], True)

(’ent1’, [’root’, ’nsubj’], False)
(’ent2’, [’root’, ’prep=of’, ’pcomp’, ’prep=in’, ’pobj’], False)

(’cond’, [’root’, ’advcl’], False)

Catches phrases like ”The system should be capable of [...]”
and searches for the passive entity in the prepositional object of

the prepositional clause starting with ”in”.

(’rel’, [’root’, ’!dobj’], True)
(’ent1’, [’root’, ’nsubjpass’], False)

(’cond’, [’root’, ’prep=in’, ’pobj=case’, ’..’], False)
(’cond’, [’root’, ’advmod’], False)

Pattern is only applied if the sentence has
no direct object (which could serve as the passive entity).

Prepositional sentences starting with ”in case” are
labeled as requirement modifier (we have to traverse
the tree upwards again to include the ’in’ as well).

Table 2: Examples of Patterns

Labels considered Sentence Avg. Overall
All labels 0.632 0.576
rel only 0.790 0.720
ent1 only 0.855 0.822
ent2 only 0.619 0.561
cond only 0.532 0.543

Table 3: Cohen’s Kappa Results

it is not possible to find syntactic rules to distin-
guish between, e.g., an organization and a person.
Also, the algorithm fails in some cases if either
rules are not specific enough or the dependency
parser mistakenly adds dependencies between sen-
tence parts where there is no dependency between
them. The latter may especially occur frequently if
the sentences were not preprocessed well which is
why our algorithm is not suitable as a classifier in
general (if we, on the other hand, use our data as
training input for a Transformer model (Vaswani
et al., 2017), it may overcome these strict syntactic
requirements and generalize better on real-world
data).

6 Conclusion & Outlook

In this paper, we present a novel approach for data
labeling which allows users to annotate sentences
for relation extraction within a shorter time period
compared to manual annotation while at the same
time having a consistent labeling scheme for the
entire dataset. Our approach exploits syntactic fea-
tures which are the integral foundation of most
relation extraction tasks.
For the future, it would be helpful to implement an
automatic extraction of requirement sentences by,
e.g., training a classifier to identify relevant sen-

tences in plain text or .PDF documents as well as
a semi-automatic approach with human validation
for preprocessing sentences into grammatically and
orthographically sound ones. We plan on extend-
ing the pattern engine our algorithm relies on, e.g.,
allowing for recursive patterns to parse nested sen-
tences and to extract multiple relations from one
sentence as well as optional pattern parts to reduce
redundancy (e.g., a sentence where the active entity
is the nominal subject, the relation the dependency
tree root and the passive entity the direct object may
have a relation modifier in an adverbial clause. As
of the current state, this requires two patterns (ex-
ponentially increasing with the number of optional
dependencies) while with a pattern where this ad-
verbial clause is considered optional, we only need
a single pattern).
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