
Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 11–25
April 20, 2021 ©2021 Association for Computational Linguistics

11

Text Simplification by Tagging

Kostiantyn Omelianchuk∗ Vipul Raheja∗
Grammarly

firstname.lastname@grammarly.com

Oleksandr Skurzhanskyi∗

Abstract

Edit-based approaches have recently shown
promising results on multiple monolingual se-
quence transduction tasks. In contrast to
conventional sequence-to-sequence (Seq2Seq)
models, which learn to generate text from
scratch as they are trained on parallel corpora,
these methods have proven to be much more
effective since they are able to learn to make
fast and accurate transformations while lever-
aging powerful pre-trained language models.
Inspired by these ideas, we present TST, a
simple and efficient Text Simplification sys-
tem based on sequence Tagging, leveraging
pre-trained Transformer-based encoders. Our
system makes simplistic data augmentations
and tweaks in training and inference on a pre-
existing system, which makes it less reliant on
large amounts of parallel training data, pro-
vides more control over the outputs and en-
ables faster inference speeds. Our best model
achieves near state-of-the-art performance on
benchmark test datasets for the task. Since it
is fully non-autoregressive, it achieves faster
inference speeds by over 11 times than the cur-
rent state-of-the-art text simplification system.

1 Introduction

Text Simplification is the task of rewriting text into
a form that is easier to read and understand while
preserving its underlying meaning and information.
It has been shown to be valuable in providing assis-
tance in terms of readability and understandability
to children (Belder and Moens, 2010; Kajiwara
et al., 2013), people with language disabilities like
aphasia (Carroll et al., 1998, 1999; Devlin and Un-
thank, 2006), dyslexia (Rello et al., 2013a,b), or
autism (Evans et al., 2014); non-native English
speakers (Petersen and Ostendorf, 2007; Paetzold,
2015; Paetzold and Specia, 2016a,b; Pellow and
Eskenazi, 2014), and people with low literacy skills

∗Authors contributed equally to this work; names are
given in alphabetical order.

or reading ages (Max, 2006; Aluı́sio et al., 2008;
Gasperin et al., 2009; Watanabe et al., 2009). More-
over, it has also been successfully leveraged as a
pre-processing step to improve the performance of
various NLP tasks such as parsing (Chandrasekar
et al., 1996), summarization (Beigman Klebanov
et al., 2004; Silveira and Branco, 2012), semantic
role labeling (Vickrey and Koller, 2008; Woodsend
and Lapata, 2017) and machine translation (Gerber
and Hovy, 1998; Štajner and Popovic, 2016; Hasler
et al., 2017).

Evolving from the approaches ranging from
building hand-crafted rules (Chandrasekar et al.,
1996; Siddharthan, 2006) to syntactic and lexical
simplification via synonyms and paraphrases (Sid-
dharthan, 2014; Kaji et al., 2002; Horn et al., 2014;
Glavaš and Štajner, 2015), the task has gained
popularity as a monolingual Machine Translation
(MT) problem, where the system learns to “trans-
late” a given complex sentence to its simplified
form. Initially, Statistical phrase-based (SMT)
and Syntactic-based Machine Translation (SBMT)
techniques (Zhu et al., 2010; Specia, 2010; Coster
and Kauchak, 2011; Wubben et al., 2012; Narayan
and Gardent, 2014; Štajner et al., 2015; Xu et al.,
2016a) were successfully applied as a way to learn
simplification rewrites implicitly from complex-
simple sentence pairs, often in combination with
hand-crafted rules or features. More recently, sev-
eral Neural Machine Translation-based (NMT) sys-
tems have been developed with promising results
(Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2015), and their successful application to text
simplification, either in combination with SMT or
other data-driven approaches (Zhang et al., 2017;
Zhao et al., 2018b); or strictly as neural models
(Wang et al., 2016; Nisioi et al., 2017; Zhang and
Lapata, 2017; Štajner and Nisioi, 2018; Guo et al.,
2018; Vu et al., 2018; Li et al., 2018; Kriz et al.,
2019; Surya et al., 2019; Zhao et al., 2020a), has
emerged as the state-of-the-art.

12

Human editors perform several rewriting trans-
formations in order to simplify a sentence, such as
lexical paraphrasing, changing the syntactic struc-
ture, or removing superfluous information from the
sentence (Petersen and Ostendorf, 2007; Aluı́sio
et al., 2008; Mallinson et al., 2020). Therefore,
even though NMT-based sequence-to-sequence
(Seq2Seq) approaches offer a generic framework
for modeling almost any kind of sequence transduc-
tion, target texts in these approaches are typically
generated from scratch - a process which can be
unnecessary for monolingual editing tasks such as
text simplification, owing to these aforementioned
transformations. Moreover, these approaches have
a few shortcomings that make them inconvenient
for real-world deployment. First, they give lim-
ited insight into the simplification operations and
provide little control or adaptability to different as-
pects of simplification (e.g., lexical vs. syntactical
simplification). This inhibits interpretability and ex-
plainability, which is crucial for real-world settings.
Second, they are not sample-efficient and require a
large number of complex-simple aligned sentence
pairs for training, which requires considerable hu-
man effort to obtain. Third, these models typically
employ an autoregressive decoder, i.e., output texts
are generated in a sequential, non-parallel fashion,
and hence, are generally characterized by slow in-
ference speeds.

Based on the aforementioned observations and
issues, text-editing approaches have recently re-
gained significant interest (Gu et al., 2019; Dong
et al., 2019; Awasthi et al., 2019; Malmi et al.,
2019; Omelianchuk et al., 2020; Mallinson et al.,
2020). Typically, the set of edit operations in such
tasks is fixed and predefined ahead of time, which
on one hand limits the flexibility of the model to
reconstruct arbitrary output texts from their inputs,
but on the other, leads to higher sample-efficiency
as the limited set of allowed operations significantly
reduces the search space (Mallinson et al., 2020).
This pattern is especially true for monolingual set-
tings where input and output texts have relatively
high degrees of overlap. In such cases, a natural
approach is to cast the task of conditional text gen-
eration into a text-editing task, where the model
learns to reconstruct target texts by applying a set
of edit operations to the inputs. We leverage this
insight in our work, and simplify the task from
sequence generation or editing, going a step fur-
ther, to formulate it as a sequence tagging task. In

addition to being sample efficient, thanks to the
separation of various edit operations in the form
of tags, the system has better interpretability and
explainability. Finally, since for sequence tagging
we don’t need to predict tokens one-by-one as in
autoregressive decoders, the inference is naturally
parallelizable and therefore runs many times faster.

Following from the success of the aforemen-
tioned monolingual edit-tag based systems, we pro-
pose to leverage the current state-of-the-art model
for Grammatical Error Correction by Omelianchuk
et al. (2020) (GECToR) and adapt it to the task
of Text Simplification. In summary, we make the
following contributions:

• We develop a Text Simplification system by
adapting the GECToR model to Text Sim-
plification, leveraging Transformer-based en-
coders trained on large amounts of human-
annotated and synthetic data.1 Empirical re-
sults demonstrate that our system achieves
near state-of-the-art performance on bench-
mark test datasets in terms of readability and
simplification metrics.

• We propose crucial data augmentations and
tweaks in training and inference and show
their significant impact on the task: enabling
the model to learn to edit the sentences more
effectively, rather than relying heavily on
copying the source sentences, leading to a
higher quality of simplifications.

• Since our model is a non-autoregressive se-
quence tagging model, it achieves over 11
times speedup in inference time, compared
to the state-of-the-art for Text Simplification.

2 Related Work

Recent text editing works have shown promising
results of reformulating multiple monolingual se-
quence transduction tasks into sequence tagging
tasks compared to the conventional Seq2Seq se-
quence generation formulation. This observation
is especially true for tasks where input and out-
put sequences have a large overlap. Generally,
these works try to simplify monolingual sequence
transduction by explicitly modeling edit operations
such as KEEP, ADD/INSERT and DELETE. Alva-
Manchego et al. (2017) proposed the first such
formulation, employing a BiLSTM to predict edit

1Available at https://github.com/grammarly/
gector#text-simplification

https://github.com/grammarly/gector#text-simplification
https://github.com/grammarly/gector#text-simplification

13

Encoder
RoBERTa-BASE

Edit-Detection
Feed-Forward Layer

Edit-Classification
Feed-Forward Layer

Text Simplification by Tagging (TST)

Softmax

Softmax

Edit
Tags

Input
Sentence

Post-Process

Output
Sentence

Repeat t times

Figure 1: Text Simplification by Tagging (TST): A
given sentence undergoes multiple iterations of tag-
and-edit transformations, where, in each iteration, it is
tagged using custom token-level edit-tags, and the se-
quence of tags is converted back to text by applying
those edits, iteratively making simplifying edits.

labels sequentially. Our model for sentence sim-
plification does not rely on external simplification
rules nor alignment tools. Ribeiro et al. (2018)
proposed an approach applied only to character
deletion and insertion and was based on simple pat-
terns. LaserTagger (Malmi et al., 2019) combines a
BERT encoder with an autoregressive Transformer
decoder to similarly predict the aforementioned
three main edit operations for several text edit-
ing tasks. In contrast, in our system, the decoder
is a softmax layer. Similarly, EditNTS (Dong
et al., 2019) and PIE (Awasthi et al., 2019) predict
edit labels, developed specifically for text simpli-
fication and GEC, respectively. While EditNTS
employs an autoregressive encoder-decoder based
neural programmer-interpreter model, PIE differs
from our work because of our custom edit transfor-
mations and incorporation of a pre-trained Trans-
former encoder for sequence tagging. Levenshtein
Transformer (Gu et al., 2019), an autoregressive
model that performs text editing by executing a
sequence of deletion and insertion actions, is an-
other recent work along similar lines. More re-
cently, Mallinson et al. (2020) proposed Felix - a
text-editing-based system for multiple generation
tasks, splitting the text-editing task into two sub-
tasks: tagging and insertion. Their tagging model
employs a Pointer mechanism, while the insertion
model is based on a Masked Language Model.

3 System Description

Following recent works such as Malmi et al. (2019);
Awasthi et al. (2019); Omelianchuk et al. (2020),
who leveraged similar frameworks for different text
editing problems such as GEC, Sentence Fusion,
and Abstractive Summarization, we formulate the

task of Text Simplification as a tagging problem.
Specifically, our system is based on GECToR

(Omelianchuk et al., 2020), an iterative sequence-
tagging system that works by predicting token-level
edit operations, originally developed for Grammati-
cal Error Correction (GEC). We adapt the GECToR
framework for the task of Text Simplification, with
minimal modifications to the original architecture.
Our system consists of three main parts: (a) defin-
ing the custom transformations (token-level edit-
tags), (b) performing iterative sequence tagging
to convert target sequences to tag sequences, (c)
fine-tuning of pre-trained Transformers to predict
the tag sequences. Each of these components are
described below.

3.1 Edit Transformations

In order to formulate the task as a tagging problem,
building on the aforementioned edit-tagging-based
approaches, we use custom token-level edit oper-
ations (also referred to as edit-tags or transfor-
mations) to perform text simplification. Formally,
given a sentence x: [x1, x2, . . . , xN], and its simpli-
fied form y: [y1, y2, . . . , yM] as the target sentence,
we aim to predict an edit tag ti ∈ τ (τ denoting the
edit-tag vocabulary) for each token xi in x, gener-
ating a sequence of edit-tags of the same length N
as the input sequence x, such that ti(xi): applying
the edit operation represented by the edit-tag ti to
the input token xi at each position i, reconstructs
the target sequence y, even though M ≤ N .

We reuse the edit transformations in GECToR,
which were developed for GEC. We chose to do
so because we found a significantly high overlap
of 92.64% in the tag distributions between the
GEC and Text Simplification domains. This was
done by building the edit-tag vocabularies inde-
pendently on both (GEC and Text Simplification)
datasets and comparing the tag distributions rep-
resented by the two vocabularies. This was not
surprising since these edit-tags have been obtained
from huge amounts of synthetic GEC data, they
are expected to have good coverage with many
standard monolingual text editing problems. Ad-
ditionally, using the same edit-tags is a necessary
pre-requisite to leverage GEC initialization in the
model (Section 4.3), which we later show to be
quite impactful for our text simplification system
(Section 6.1). Consequently, the edit space τ is of
size 5000, out of which 4971 are basic edit-tags and
29 are token-independent GEC-specific edit-tags

14

(such as $TRANSFORM_VERB_VB_VBZ, which
converts a verb in its base form to its third per-
son singular present tense form). Further, the
aforementioned 4971 basic edit-tags are made
up of token-independent KEEP and DELETE tags
(which simply keep or delete the given word(s)
on which they are applied), 1167 token-dependent
APPEND tags (such as $APPEND_just, which
appends the word “just” to the given word) and
3802 token-dependent REPLACE tags (such as
$REPLACE_really, which replaces the given
word with the word “really”).

3.2 Iterative Sequence Tagging

As described in Section 3.1, we predict the edit-tags
ti for each input token xi in the source sequence
x. These predicted tag-encoded transformations
are then applied to the source sentence to get the
simplified sentence. Since some simplification op-
erations in a sentence may depend on others, ap-
plying the sequence tagger only once may not be
enough to fully generate the simplified form of a
given sentence. Accordingly, we use the iterative
correction approach from Awasthi et al. (2019) and
Omelianchuk et al. (2020), and use the sequence
tagger to tag the now modified sequence, and ap-
ply the corresponding transformations on the new
edit-tags, which changes the sentence further. We
repeat this process for a fixed number of iterations,
which can be adjusted to trade off qualitative per-
formance for improved speed. In our framework,
we experimented between 1-5 iterations.

3.3 Tagging Model

We use the GECToR sequence tagging model
with a pre-trained RoBERTaBASE Transformer (Liu
et al., 2019) as the encoder, stacked with two con-
current feed-forward layers, followed by corre-
sponding Softmax layers. Owing to our choice of
encoder, we use Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016) as our tokenization technique.

As shown in Fig. 1, these feed-forward layers are
responsible for detecting and classifying edits, re-
spectively. For every position in the input sequence,
the edit-detection layer predicts the probability an
edit exists, whereas the edit-classification layer pre-
dicts the type of edit-tag. The edit-tag sequence
generated as the output of the edit-classification
layer is gated by the output of the edit-detection
layer. i.e. if the output of the edit-detection layer
is below the minimum edit probability threshold

(described in Section 4.6) at any position in the
predicted sequence, we do not make any edits.

4 Experimental Setup

4.1 Data Sources
We use WikiSmall and WikiLarge, two bench-
mark datasets for the text simplification task2, for
our experiments. These datasets were constructed
from automatically-aligned complex-simple sen-
tence pairs from English Wikipedia (EW) and Sim-
ple English Wikipedia (SEW). WikiSmall (Zhu
et al., 2010) contains one reference simplification
per sentence. We use the standardized split of this
dataset released by Zhang and Lapata (2017), with
88k instances for training, 205 for validation and
the same original 100 instances for testing. Wik-
iLarge is a larger set of similarly automatically-
aligned complex-simple sentence pairs, compiled
from previous extractions of EW-SEW and Wik-
iSmall (Zhu et al., 2010; Woodsend and Lapata,
2011; Kauchak, 2013). Similar to WikiSmall, we
use the training set for this dataset provided by
Zhang and Lapata (2017) consisting of 296k sen-
tence pairs. For simplicity, we refer to this training
data (WikiSmall + WikiLarge) as WikiAll.

For validation and test sets, we use the Turkcor-
pus (Xu et al., 2016a) and ASSET (Alva-Manchego
et al., 2020) datasets, which were both created from
WikiLarge using the same 2000 validation and 359
test source sentences, where each complex sen-
tence consists of multiple crowd-sourced reference
simplifications. Specifically, Turkcorpus contains
8 reference simplifications, and ASSET contains
10 references per source sentence.

Table 1 provides other statistics on these
datasets.

4.2 Data pre-processing
WikiAll data contains special tokens to represent
parentheses (symbolized by -LRB- and -RRB-)
from prior tokenizations. We heuristically decide
to remove these tokens (and any tokens between
them) from both source and target sentences. Do-
ing this led to consistent improvements in all our
experiments, described further in Section 6.2. Addi-
tionally, for tokenization, we use the HuggingFace
Tokenizers3 Python library to tokenize the whole

2Another widely-used dataset for the task, the Newsela
Corpus (Xu et al., 2015), could not be used due to its extremely
rigid legal and licensing requirements.

3https://github.com/huggingface/
tokenizers

https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers

15

Split Dataset Sentences Tokens

Train
WikiAll WikiSmall 88k 3.9M

WikiLarge 296k 11.7M

WikiBT WikiLarge (En-De) 293k 11.2M
WikiLarge (En-Fr) 293k 11.5M

Dev
WikiSmall 205 9.5k

WikiLarge TurkCorpus 2000 75k
ASSET 2000 72k

Test
WikiSmall 100 5k

WikiLarge TurkCorpus 359 15.8k
ASSET 359 14.1k

Table 1: Dataset splits and sizes.

sentence (as opposed to the approach in GECToR
which tokenized each word in the sentence sepa-
rately). This change led faster and more accurate to-
kenization as the one originally used in RoBERTa.

4.3 Pre-Training
For our experiments, we use two versions of the tag-
ging model described in Section 3.3. The first ver-
sion is a pre-trained RoBERTaBASE encoder with
randomly initialized feed-forward layers. We refer
to this model as TST-BASE (Text Simplification
by Tagging - Baseline). The second version of
the model is a TST-BASE model fine-tuned on the
Grammatical Error Correction (GEC) task: hence-
forth denoted as TST-GEC.4

4.4 Data Augmentation
We hypothesize that our text simplification models
can benefit from an increase of the training data,
and experimentally confirm this by training and
evaluating our models with additional training data.
We generate synthetic training data from the source
sentences of WikiAll. We used two approaches to
do so: back-translation and ensemble distillation,
described below.

4.4.1 Back-Translation
We use the Transformer-based NMT models
trained by Tiedemann and Thottingal (2020) to
generate the back-translated versions of the target
side of the parallel WikiAll data. These models
were trained on OPUS data5 using Marian-NMT6

and released as part of the HuggingFace Trans-
formers Library (Wolf et al., 2019). All models
are Transformer encoder-decoders with 6 layers in

4We refer the reader to Omelianchuk et al. (2020) for
details on training the model for GEC.

5http://opus.nlpl.eu/
6 https://marian-nmt.github.io/

each component. Specifically, we used the bilin-
gual EN-FR, FR-EN, EN-DE and DE-EN models7 to
translate WikiAll data from (a) English to French,
and back to English, and (b) English to German and
back to English. Doing so tripled the amount of
WikiAll data available for training (Table 1). The
backtranslated WikiAll data is henceforth collec-
tively referred to as WikiBT.

4.4.2 Ensemble Distillation
We leverage knowledge distillation on ensemble
teacher models (Freitag et al., 2017) to augment our
training data. We first create an ensemble teacher
model by training models on WikiAll and WikiBT
data. Specifically, for building the teacher ensem-
ble, we first train the following constituent TST
models:

1. TST: Trained on WikiAll

2. TST-GEC: Trained on WikiAll

3. TST: Trained on WikiAll + WikiBT

The predictions of the ensemble are computed
by taking the argmax of the averaged class-wise
probabilities of the constituent models at every to-
ken. We get the predictions from this ensemble
consisting of the aforementioned three constituent
models on WikiAll data. In this way, we produce
new references for the training data which can be
used by our final model (referred to as the student
network) to simulate the teacher network ensemble.
We then combine this ensemble-generated training
data (hereby referred to as WikiEns) together with
the original WikiAll data, doubling the amount of
training data. Our final model (the student network,
denoted henceforth as TST-FINAL) is then trained
on this combined WikiEns + WikiAll dataset. It is
worth noting that the student and the constituent
teacher models have exactly the same architecture.

4.5 Training
We train our models with AllenNLP and Transform-
ers. Our baseline (TST-BASE) mostly follows the
settings in Omelianchuk et al. (2020). We train the
model for 50 epochs, where we freeze the encoder
weights during the first two epochs of training. We
use Adam optimizer (Kingma and Ba, 2015), where
the learning rate starts from 1e-5 and reduces by a
factor of 0.1 when the validation loss has stopped

7https://huggingface.co/Helsinki-NLP/
opus-mt-<L1>-<L2>

http://opus.nlpl.eu/
https://marian-nmt.github.io/
https://huggingface.co/Helsinki-NLP/opus-mt-<L1>-<L2>
https://huggingface.co/Helsinki-NLP/opus-mt-<L1>-<L2>

16

improving for 10 epochs. We perform early stop-
ping after 3 epochs, based on the performance on
the validation set. Other training hyper-parameters
are listed in Appendix A.

4.6 Inference Tweaks
One of the advantages of edit-tag-based approaches
is that they provide greater control over the system
output. Building on Omelianchuk et al. (2020), we
use confidence biases and minimum edit probability
as additional inference hyper-parameters that we
tune to push the model to perform more precise
edits.

Specifically, we add confidence biases to the
probabilities of KEEP and DELETE edit-tags: re-
sponsible for not changing the source token and
deleting the source token, respectively. We cre-
ate these additional hyper-parameters for just these
edit-tags because they are the most frequently used
edit-tags for the Text Simplification task. More-
over, since they are token-independent, it provides
the framework with additional robustness on the
task without introducing too many additional hyper-
parameters. In this way, we were able to drive the
model to keep/delete more tokens if the correspond-
ing confidence bias was positive and to keep/delete
fewer tokens if it was negative. We also add a
sentence-level minimum edit probability thresh-
old (ε) for the output of the edit detection layer.
This hyper-parameter enabled the model to predict
only the most confident edits. Thus, we were able
to increase precision by trading off the recall and
achieve better performance.

These hyper-parameters were tuned using a com-
bination of random search and Bayesian search
(Nogueira, 2014) on the respective validation sets.
Section 6 further describes the impact of the afore-
mentioned tweaks on the system. Final values of
these hyper-parameters are listed in Appendix A.

4.7 Evaluation Metrics
We report the results using two widely used metrics
in Text Simplification literature: FKGL (Kincaid
et al., 1975), and SARI (Xu et al., 2016b). Prior
work has also used BLEU (Papineni et al., 2002)
as a metric, but recent work has found that it is not
a suitable metric for evaluating text simplification,
because it was found to be negatively correlated
with simplicity, essentially penalizing simpler sen-
tences (Sulem et al., 2018).

FKGL (Flesch-Kincaid Grade Level) is used
to measure the readability of the generated sen-

tence, where a lower score indicates simpler output.
FKGL doesn’t use source sentences or references
for computing the score. It is a linear combina-
tion of the number of words per sentence (sys-
tem output) and the number of syllables per word.
On the other hand, SARI (System output Against
References and against the Input sentence) eval-
uates the quality of the output by comparing the
generated sentence to a set of reference sentences
in terms of correctly inserted, kept and deleted n-
grams (n ∈ 1, 2, 3, 4). We report the overall SARI
metric, and scores on the three rewrite operations
used in SARI: the F1-scores of add (ADD), delete
(DELETE) and keep (KEEP) operations. FKGL and
SARI are both measured at corpus-level. We com-
puted all the evaluation metrics using the EASSE8

Python package (Alva-Manchego et al., 2019).

5 Results

5.1 Text Simplification and Readability
Table 2 summarizes the results of our evaluations
on TurkCorpus, ASSET and WikiSmall test sets.
To ensure robustness of results, we report average
scores of 4 runs with different random seeds. We
compare the results of our baseline model (TST-
BASE) and our final model (TST-FINAL) against
recent state-of-the-art Neural Text Simplification
models. Additionally, we compare against a ref-
erence baseline similar to Martin et al. (2020b),
where we compute the scores in a leave-one-out
scenario where each reference is evaluated against
all the others and then scores are averaged over all
references. TST-FINAL consists of all the enhance-
ments mentioned in Section 4 added on top of TST-
BASE: data pre-processing, GEC-initialization,
data augmentation, and inference tweaks. In terms
of the FKGL score, our system achieves better re-
sults than the reference baselines on TurkCorpus,
and comes within 0.5 points on ASSET and Wik-
iSmall. Compared to the state-of-the-art (Martin
et al., 2020b), it improves by 0.23 FKGL points on
average, indicating that the simplifying edits made
by TST are easier to understand.

In terms of SARI metrics, TST-BASE achieves
a competitive score of 39.17 on TurkCorpus, and a
state-of-the-art SARI score of 43.11 on WikiSmall,
outperforming the previous state-of-the-art result
by a huge margin of 6.19 SARI points. This shows
that simply using our baseline architecture to train a
Text Simplification model on WikiAll can achieve

8https://github.com/feralvam/easse

https://github.com/feralvam/easse

17

SARI↑ ADD↑ DELETE↑ KEEP↑ FKGL↓

Recent Works

Xu et al. (2016b) 39.96 5.96 41.42 72.52 7.29
Nisioi et al. (2017) 35.66 2.99 28.96 75.02 8.42
Zhang and Lapata (2017) 37.27 - - - 6.62
Alva-Manchego et al. (2017)‡ 37.08 2.94 43.20 65.10 5.35
Vu et al. (2018) 36.88 - - - -
Zhao et al. (2018a) 40.42 5.72 42.23 73.41 7.79
Guo et al. (2018) 37.45 - - - 7.41
Qiang (2018) 37.21 - - - 6.56
Surya et al. (2019) 34.96 - - - -
Dong et al. (2019) 38.22 3.36 39.15 72.13 7.3
Zhao et al. (2020b) 37.25 2.87 40.06 68.82 -
Mallinson et al. (2020) 38.13 3.55 40.45 70.39 8.98
Martin et al. (2020a) 41.38 - - - 7.29
Martin et al. (2020b) 42.53±0.36 - - - 7.60±1.06

Reference Baseline 40.02±0.72 6.21±0.60 70.15±1.35 43.69±1.46 8.77±0.19

Our System

TST-BASE 39.17±0.77 3.62±0.41 41.61±3.14 72.29±1.45 8.08±0.31
TST-FINAL 41.46±0.32 6.96±0.44 47.87±0.75 69.56±1.19 7.87±0.19
‡ Quoted from the re-implementation by Dong et al. (2019).

(a) TurkCorpus

SARI↑ ADD↑ DELETE↑ KEEP↑ FKGL↓

Recent Works

Martin et al. (2020a) 40.13 - - - 7.29
Martin et al. (2020b) 44.15±0.6 - - - 7.60±1.06

Reference Baseline 44.89±0.90 10.17±1.20 58.76±2.24 65.73±2.03 6.49±0.42

Our System

TST-BASE 37.4±1.62 3.62±0.59 47.22±4.5 61.37±0.52 8.08±0.31
TST-FINAL 43.21±0.3 8.04±0.29 64.25±1.22 57.35±1.68 6.87±0.27

(b) ASSET

SARI↑ ADD↑ DELETE↑ KEEP↑ FKGL↓

Recent Works

Zhang and Lapata (2017) 27.24 - - - 7.55
Alva-Manchego et al. (2017)‡ 30.50 2.72 76.31 12.46 9.38
Vu et al. (2018) 29.75 - - - -
Guo et al. (2018) 28.24 - - - 6.93
Qiang (2018) 26.49 - - - 10.75
Dong et al. (2019) 32.35 2.24 81.30 13.54 5.47
Zhao et al. (2020b) 36.92 2.04 72.79 35.93 -

Reference Baseline - - - - 8.74

Our System

TST-BASE 43.11±1.87 4.66±1.31 61.13±4.73 63.54±2.75 8.41±1.01
TST-FINAL 44.67±1.26 8.12±0.92 64.87±2.09 61.01±1.76 9.29±0.9
‡ Quoted from the re-implementation by Dong et al. (2019).

(c) WikiSmall

Table 2: Comparison of our system against recent state-
of-the-art Neural Text Simplification models on Turk-
Corpus, ASSET and WikiSmall test sets.

competitive performance on the task. On the other
hand, the TST-FINAL makes significant improve-
ments over TST-BASE. On TurkCorpus and AS-
SET, it comes within 1 SARI point of the current
state-of-the-art (Martin et al., 2020b), outperform-
ing all other prior text simplification models in
literature. On WikiSmall, it further improves its
state-of-the-art performance from TST-BASE to
achieve a SARI score of 44.67.

It can be seen that compared to prior works, the
most significant improvements in both the TST
models come from ADD and DELETE operations. It
is noteworthy that TST-FINAL is able to achieve

the highest F1 scores on ADD (6.96) and DELETE

(47.87) SARI operations reported in literature on
TurkCorpus. On the ASSET dataset, the F1 scores
on ADD and DELETE operations improve further
to 8.04 and 64.25 respectively, improving by large
margins over TST-BASE. Similarly, it outperforms
the state-of-the-art on ADD operations on Wik-
iSmall. This shows that models proposed in prior
works learned a safe, but inefficient strategy of sim-
plification - leaning heavily on copying the sources
sentences directly, owing to their high KEEP scores.
By contrast, our model learns to edit the sentences
better, as shown by the lower rates of keeping the
source sentences unchanged. This is further veri-
fied by the fact that outputs of prior works9 have
much longer output sentence lengths (avg. 19.26
words) compared to ours (avg. 16.7 words), leading
to more effective simplifications.

5.2 Inference Time
We also compare our system’s inference times
against the current state-of-the-art text simplifica-
tion systems. Specifically, we compare against
ACCESS (trained on WikiLarge data) (Martin
et al., 2020a) and BART+ACCESS (Martin et al.,
2020b) (trained on WikiLarge + MINED data)
systems. We used the publicly available model
checkpoint for ACCESS to compare against Mar-
tin et al. (2020a). Direct comparison against
BART+ACCESS was not possible because of the
lack of publicly available code. Therefore, we used
BART (Lewis et al., 2020) for text summarization
as a proxy for Martin et al. (2020b). We ran all
systems with batch size 128 on the TurkCorpus test
set 100 times, using NVIDIA Tesla V100. Within
a single run, the results were averaged across all
batches. We took into account only the actual infer-
ence time and omitted any initialization times.

The results in Table 3 show that the inference
speeds10 of TST are at least 6 times faster than
ACCESS and 11.75 times faster than pure BART
which is the crucial component of the current state-
of-the-art (Martin et al., 2020b). The impact of
a non-autoregressive model architecture can be
clearly seen here since TST is a sequence tag-
ging system and does not need to predict edits
one-by-one as done by auto-regressive transformer
decoders (like the one used in ACCESS). There-

9Measured on TurkCorpus. This information was not
available for ASSET and WikiSmall

10We compared ACCESS and BART with beam size 8 and
TST with 2 iterations, as reported on TurkCorpus

18

System Inference time (sec)
BART, beam size = 8 2.82
BART, beam size = 2 1.95
ACCESS, beam size = 8 1.43
ACCESS, beam size = 1 1.14

TST, 5 iterations 0.43
TST, 4 iterations 0.39
TST, 3 iterations 0.33
TST, 2 iterations 0.24
TST, 1 iteration 0.13

Table 3: Average inference time per batch. In the con-
text of TST, iterations refers to the number of iterations
mentioned in Section 3.2

fore, the inference is naturally parallelizable and
therefore runs many times faster.

6 Ablation Study

In this section, we present ablation experiments for
each of the enhancements described in Section 4,
and applied to TST-BASE to obtain TST-FINAL.
The results of these experiments (Table 4) are re-
ported on SARI and FKGL scores, averaged be-
tween ASSET and TurkCorpus test datasets. Each
result is reported using an average of 4 runs for
each experiment. Overall, the enhancements im-
prove the SARI score by 4.0 points and FKGL by
0.21 points, while reducing variance in both cases.

6.1 GEC Initialization
We improve our strong baseline model TST-BASE

by pre-training it on the GEC task.11 Even though
we find that using TST-GEC leads to modest im-
mediate improvements (+0.1 SARI point) com-
pared to TST-BASE, we found that adding other
enhancements without the GEC-pre-training were
not as effective, with the final model (TST-BASE

+ Filtering + WikiEns + InfTweaks) achieving an
average SARI score of 40.01 - significantly lower
than the one with GEC-pre-training (42.3).

These results show that pre-training TST-BASE

on GEC is an effective way to initialize the model
for Text Simplification, since it equips the model
to make additions and deletions, which are then
further improved during training on the text simpli-
fication data. This was also not unexpected because
the edit-tags were obtained from huge amounts of
GEC data, and are expected to have good coverage
with regards to many standard monolingual text

11We refer the reader to Omelianchuk et al. (2020) for
details on training the model for GEC.

System SARI ↑ FKGL ↓
TST 38.3 ± 1.36 8.08 ± 0.31

+ GEC 38.4 ± 0.83 8.32 ± 0.26
+ Filtering 39.1 ± 0.48 7.66 ± 0.25
+ WikiBT 39.5 ± 0.01 7.5 ± 0.06
+ WikiEns (- WikiBT) 40.3 ± 0.15 7.48 ± 0.2
+ InfTweaks 42.3 ± 0.25 7.87 ± 0.19

Table 4: Average SARI and FKGL scores (ASSET and
TurkCorpus test sets)

editing problems - as also observed by a high over-
lap in the tag distributions between the GEC and
Text Simplification domains (Section 3.1).

6.2 Data Pre-processing
As mentioned in Section 4.2, we removed special
tokens found in Wikipedia data such as -LRB- and
-RRB-, along with the text enclosed by these to-
kens, in both source and target sentences. We find
that using GEC initialization together with filtering
brackets was beneficial to the system (+0.8 SARI
points), and also decreased the variance in the re-
sults. The benefit of this step is towards improving
text simplification quality is also seconded by a
significantly reduced FKGL score (-0.66 points).

6.3 Data Augmentation
We explored two strategies of data augmentation:
enriching training data with (i) back-translated data
(WikiBT), (ii) ensemble-generated data (WikiEns).
Augmenting the training data using WikiEns leads
to a bigger boost compared to just adding WikiBT
(+1.2 vs +0.4). We also experimented with adding
both synthetic datasets (WikiEnd + WikiBT) to
the WikiAll training data, but the performance was
worse compared to using only WikiEns.

6.4 Inference Tweaks
Finally, we describe the effect of tuning the infer-
ence hyper-parameters for our model obtained so
far. Using these tweaks (Section 4.6) is one of the
most crucial components of our system. Overall,
it is not just able to affect the sequence generation,
but also gives us the biggest boost (+2.0 points).
Our final model with inference tweaks comfort-
ably outperforms its predecessor on all datasets,
demonstrating their effectiveness on the task.

7 Conclusion

This paper introduces TST, a novel approach to
text simplification, by reformulating the task into

19

a much simpler one of sequence tagging. We
build TST by adapting the GECToR framework
for GEC. We show that most of its performance
gains are owed to simplistic data augmentations
and tweaks in training and inference. These modi-
fications allow us to derive maximal benefit from
the already existing pre-trained Transformer-based
encoders on large amounts of human-annotated
and synthetic data, making TST a simple, power-
ful, easily reusable method for monolingual editing
tasks. Since TST is able to progressively make
simplifying edits via explicit edit-tag operations,
the transformations resulting from TST are better
explainable and interpretable than any other NMT-
based Seq2Seq approaches. Finally, TST is fully
non-autoregressive, enabling it to perform faster in-
ference than any other state-of-the-art text simplifi-
cation methods. Our empirical results demonstrate
that it achieves near state-of-the-art performance
on benchmark test datasets for text simplification.

A major motivation in this work was to minimize
changes to the original model to keep the system
simple, fast, and reproducible. Hence, we restricted
our system to only use WikiAll data and its deriva-
tives (vs. any external data like the state-of-the-art
system by Martin et al. (2020b)). While we did not
fully beat the state-of-the-art on the task, we believe
that using larger models (eg. RoBERTaLARGE), en-
sembles, or external data will likely lead to better
SARI scores at the cost of speed and system com-
plexity: ideas we plan to explore in future work.

References

Sandra M. Aluı́sio, Lucia Specia, T. A. S. Pardo,
E. Maziero, Helena de Medeiros Caseli, and R. P. M.
Fortes. 2008. A corpus analysis of simple account
texts and the proposal of simplification strategies:
first steps towards text simplification systems. In
SIGDOC ’08.

Sandra M. Aluı́sio, Lucia Specia, Thiago A. S. Pardo,
Erick G. Maziero, Helena M. Caseli, and Renata
P. M. Fortes. 2008. A corpus analysis of sim-
ple account texts and the proposal of simplification
strategies: First steps towards text simplification sys-
tems. In Proceedings of the 26th Annual ACM Inter-
national Conference on Design of Communication,
SIGDOC ’08, page 15–22, New York, NY, USA. As-
sociation for Computing Machinery.

Fernando Alva-Manchego, Joachim Bingel, Gustavo
Paetzold, Carolina Scarton, and Lucia Specia. 2017.
Learning how to simplify from explicit labeling of
complex-simplified text pairs. In Proceedings of

the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 295–305, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Fernando Alva-Manchego, Louis Martin, Antoine Bor-
des, Carolina Scarton, Benoı̂t Sagot, and Lucia Spe-
cia. 2020. ASSET: A dataset for tuning and evalu-
ation of sentence simplification models with multi-
ple rewriting transformations. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4668–4679, Online. As-
sociation for Computational Linguistics.

Fernando Alva-Manchego, Louis Martin, Carolina
Scarton, and Lucia Specia. 2019. Easse: Easier
automatic sentence simplification evaluation. arXiv
preprint arXiv:1908.04567.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4260–
4270, Hong Kong, China. Association for Computa-
tional Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Beata Beigman Klebanov, Kevin Knight, and Daniel
Marcu. 2004. Text simplification for information-
seeking applications. In On the Move to Meaningful
Internet Systems 2004: CoopIS, DOA, and ODBASE,
pages 735–747, Berlin, Heidelberg. Springer Berlin
Heidelberg.

J. D. Belder and Marie-Francine Moens. 2010. Text
simplification for children. In SIGIR 2010.

John Carroll, Guido Minnen, Yvonne Canning, Siob-
han Devlin, and John Tait. 1998. Practical simpli-
fication of english newspaper text to assist aphasic
readers. In Proceedings of the AAAI-98 Workshop
on Integrating Artificial Intelligence and Assistive
Technology, pages 7–10.

John Carroll, Guido Minnen, Darren Pearce, Yvonne
Canning, Siobhan Devlin, and John Tait. 1999. Sim-
plifying text for language-impaired readers. In
Ninth Conference of the European Chapter of the
Association for Computational Linguistics, Bergen,
Norway. Association for Computational Linguistics.

R. Chandrasekar, Christine Doran, and B. Srinivas.
1996. Motivations and methods for text simplifica-
tion. In COLING 1996 Volume 2: The 16th Interna-
tional Conference on Computational Linguistics.

https://doi.org/10.1145/1456536.1456540
https://doi.org/10.1145/1456536.1456540
https://doi.org/10.1145/1456536.1456540
https://doi.org/10.1145/1456536.1456540
https://www.aclweb.org/anthology/I17-1030
https://www.aclweb.org/anthology/I17-1030
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/E99-1042
https://www.aclweb.org/anthology/E99-1042
https://www.aclweb.org/anthology/C96-2183
https://www.aclweb.org/anthology/C96-2183

20

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Will Coster and David Kauchak. 2011. Learning to
simplify sentences using Wikipedia. In Proceedings
of the Workshop on Monolingual Text-To-Text Gener-
ation, pages 1–9, Portland, Oregon. Association for
Computational Linguistics.

Siobhan Devlin and Gary Unthank. 2006. Helping
aphasic people process online information. In Pro-
ceedings of the 8th International ACM SIGACCESS
Conference on Computers and Accessibility, Assets
’06, page 225–226, New York, NY, USA. Associa-
tion for Computing Machinery.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. EditNTS: An neural
programmer-interpreter model for sentence simplifi-
cation through explicit editing. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3393–3402, Florence,
Italy. Association for Computational Linguistics.

Richard Evans, Constantin Orăsan, and Iustin Dor-
nescu. 2014. An evaluation of syntactic simplifica-
tion rules for people with autism. In Proceedings of
the 3rd Workshop on Predicting and Improving Text
Readability for Target Reader Populations (PITR),
pages 131–140, Gothenburg, Sweden. Association
for Computational Linguistics.

Markus Freitag, Yaser Al-Onaizan, and B. Sankaran.
2017. Ensemble distillation for neural machine
translation. ArXiv, abs/1702.01802.

Caroline Gasperin, Erick Galani Maziero, Lucia Spe-
cia, Thiago A. S. Pardo, and Sandra M. Aluı́sio.
2009. Natural language processing for social inclu-
sion : a text simplification architecture for different
literacy levels.

Laurie Gerber and Eduard Hovy. 1998. Improving
translation quality by manipulating sentence length.
In Machine Translation and the Information Soup,
pages 448–460, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Goran Glavaš and Sanja Štajner. 2015. Simplifying
lexical simplification: Do we need simplified cor-
pora? In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 63–68, Beijing, China. Association for Com-
putational Linguistics.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural
Information Processing Systems 32, pages 11181–
11191. Curran Associates, Inc.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2018. Dynamic multi-level multi-task learning for
sentence simplification. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 462–476, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Eva Hasler, Adrià de Gispert, Felix Stahlberg, Aurelien
Waite, and Bill Byrne. 2017. Source sentence sim-
plification for statistical machine translation. Com-
puter Speech & Language, 45:221 – 235.

Colby Horn, Cathryn Manduca, and David Kauchak.
2014. Learning a lexical simplifier using Wikipedia.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 458–463, Baltimore, Mary-
land. Association for Computational Linguistics.

Nobuhiro Kaji, Daisuke Kawahara, Sadao Kurohashi,
and Satoshi Sato. 2002. Verb paraphrase based
on case frame alignment. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 215–222, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Tomoyuki Kajiwara, Hiroshi Matsumoto, and
Kazuhide Yamamoto. 2013. Selecting proper
lexical paraphrase for children. In Proceedings of
the 25th Conference on Computational Linguistics
and Speech Processing (ROCLING 2013), pages
59–73, Kaohsiung, Taiwan. The Association for
Computational Linguistics and Chinese Language
Processing (ACLCLP).

David Kauchak. 2013. Improving text simplification
language modeling using unsimplified text data. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1537–1546, Sofia, Bulgaria.
Association for Computational Linguistics.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Reno Kriz, João Sedoc, Marianna Apidianaki, Car-
olina Zheng, Gaurav Kumar, Eleni Miltsakaki, and
Chris Callison-Burch. 2019. Complexity-weighted
loss and diverse reranking for sentence simplifica-
tion. In Proceedings of the 2019 Conference of

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/W11-1601
https://www.aclweb.org/anthology/W11-1601
https://doi.org/10.1145/1168987.1169027
https://doi.org/10.1145/1168987.1169027
https://doi.org/10.18653/v1/P19-1331
https://doi.org/10.18653/v1/P19-1331
https://doi.org/10.18653/v1/P19-1331
https://doi.org/10.3115/v1/W14-1215
https://doi.org/10.3115/v1/W14-1215
https://doi.org/10.3115/v1/P15-2011
https://doi.org/10.3115/v1/P15-2011
https://doi.org/10.3115/v1/P15-2011
http://papers.nips.cc/paper/9297-levenshtein-transformer.pdf
https://www.aclweb.org/anthology/C18-1039
https://www.aclweb.org/anthology/C18-1039
https://doi.org/https://doi.org/10.1016/j.csl.2016.12.001
https://doi.org/https://doi.org/10.1016/j.csl.2016.12.001
https://doi.org/10.3115/v1/P14-2075
https://doi.org/10.3115/1073083.1073120
https://doi.org/10.3115/1073083.1073120
https://www.aclweb.org/anthology/O13-1007
https://www.aclweb.org/anthology/O13-1007
https://www.aclweb.org/anthology/P13-1151
https://www.aclweb.org/anthology/P13-1151
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/N19-1317
https://doi.org/10.18653/v1/N19-1317
https://doi.org/10.18653/v1/N19-1317

21

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3137–3147, Minneapolis, Minnesota. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Tianyu Li, Yun Li, Jipeng Qiang, and Yun-Hao Yuan.
2018. Text simplification with self-attention-based
pointer-generator networks. In Neural Information
Processing, pages 537–545, Cham. Springer Inter-
national Publishing.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and
Guillermo Garrido. 2020. Felix: Flexible text edit-
ing through tagging and insertion. arXiv preprint
arXiv:2003.10687.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5054–5065, Hong
Kong, China. Association for Computational Lin-
guistics.

Louis Martin, Éric de la Clergerie, Benoı̂t Sagot, and
Antoine Bordes. 2020a. Controllable sentence sim-
plification. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 4689–
4698, Marseille, France. European Language Re-
sources Association.

Louis Martin, Angela Fan, Éric de la Clergerie, An-
toine Bordes, and Benoı̂t Sagot. 2020b. Multilin-
gual unsupervised sentence simplification. arXiv
preprint arXiv:2005.00352.

Aurélien Max. 2006. Writing for language-impaired
readers. In Computational Linguistics and Intelli-
gent Text Processing, pages 567–570, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Shashi Narayan and Claire Gardent. 2014. Hybrid sim-
plification using deep semantics and machine trans-
lation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 435–445, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P. Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 85–91,
Vancouver, Canada. Association for Computational
Linguistics.

Fernando Nogueira. 2014. Bayesian Optimization:
Open source constrained global optimization tool for
Python.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA â†’
Online. Association for Computational Linguistics.

Gustavo Paetzold. 2015. Reliable lexical simplification
for non-native speakers. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 9–16, Denver, Colorado.
Association for Computational Linguistics.

Gustavo Paetzold and Lucia Specia. 2016a. Under-
standing the lexical simplification needs of non-
native speakers of English. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
717–727, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Gustavo H. Paetzold and Lucia Specia. 2016b. Unsu-
pervised lexical simplification for non-native speak-
ers. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAI’16, page
3761–3767. AAAI Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

David Pellow and Maxine Eskenazi. 2014. An open
corpus of everyday documents for simplification
tasks. In Proceedings of the 3rd Workshop on Pre-
dicting and Improving Text Readability for Target
Reader Populations (PITR), pages 84–93, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Sarah E. Petersen and Mari Ostendorf. 2007. Text sim-
plification for language learners: A corpus analysis.
In In Proceedings of Workshop on Speech and Lan-
guage Technology for Education.

Jipeng Qiang. 2018. Improving neural text simplifica-
tion model with simplified corpora. arXiv preprint
arXiv:1810.04428.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510
https://www.aclweb.org/anthology/2020.lrec-1.577
https://www.aclweb.org/anthology/2020.lrec-1.577
https://doi.org/10.3115/v1/P14-1041
https://doi.org/10.3115/v1/P14-1041
https://doi.org/10.3115/v1/P14-1041
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.18653/v1/P17-2014
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.3115/v1/N15-2002
https://doi.org/10.3115/v1/N15-2002
https://www.aclweb.org/anthology/C16-1069
https://www.aclweb.org/anthology/C16-1069
https://www.aclweb.org/anthology/C16-1069
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/W14-1210
https://doi.org/10.3115/v1/W14-1210
https://doi.org/10.3115/v1/W14-1210

22

Luz Rello, Ricardo Baeza-Yates, Stefan Bott, and Ho-
racio Saggion. 2013a. Simplify or help? text
simplification strategies for people with dyslexia.
In Proceedings of the 10th International Cross-
Disciplinary Conference on Web Accessibility, W4A
’13, New York, NY, USA. Association for Comput-
ing Machinery.

Luz Rello, Ricardo Baeza-Yates, and Horacio Sag-
gion. 2013b. The impact of lexical simplification
by verbal paraphrases for people with and without
dyslexia. In Computational Linguistics and Intelli-
gent Text Processing, pages 501–512, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Joana Ribeiro, Shashi Narayan, Shay B. Cohen, and
Xavier Carreras. 2018. Local string transduction as
sequence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1360–1371, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Advaith Siddharthan. 2006. Syntactic Simplification
and Text Cohesion. Research on Language and
Computation, 4(1):77–109.

Advaith Siddharthan. 2014. A survey of research on
text simplification. International Journal of Applied
Linguistics, 165(2):259–298.

Sara Botelho Silveira and António Branco. 2012. En-
hancing multi-document summaries with sentence
simplification. In In ICAI 2012: International Con-
ference on Artificial Intelligence, Las Vegas.

Lucia Specia. 2010. Translating from complex to sim-
plified sentences. In Proceedings of the 9th In-
ternational Conference on Computational Process-
ing of the Portuguese Language, PROPOR’10, page
30–39, Berlin, Heidelberg. Springer-Verlag.

Sanja Štajner, Hannah Béchara, and Horacio Saggion.
2015. A deeper exploration of the standard PB-SMT
approach to text simplification and its evaluation. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 823–
828, Beijing, China. Association for Computational
Linguistics.

Sanja Štajner and Sergiu Nisioi. 2018. A detailed
evaluation of neural sequence-to-sequence models
for in-domain and cross-domain text simplifica-
tion. In Proceedings of the Eleventh International
Conference on Language Resources and Evalua-
tion (LREC-2018), Miyazaki, Japan. European Lan-
guages Resources Association (ELRA).

Sanja Štajner and Maja Popovic. 2016. Can text simpli-
fication help machine translation? In Proceedings of
the 19th Annual Conference of the European Associ-
ation for Machine Translation, pages 230–242.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018.
BLEU is not suitable for the evaluation of text sim-
plification. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 738–744, Brussels, Belgium. Association
for Computational Linguistics.

Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain,
and Karthik Sankaranarayanan. 2019. Unsupervised
neural text simplification. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2058–2068, Florence,
Italy. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

David Vickrey and Daphne Koller. 2008. Sentence sim-
plification for semantic role labeling. In Proceed-
ings of ACL-08: HLT, pages 344–352, Columbus,
Ohio. Association for Computational Linguistics.

Tu Vu, Baotian Hu, Tsendsuren Munkhdalai, and Hong
Yu. 2018. Sentence simplification with memory-
augmented neural networks. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 79–85, New Orleans, Louisiana. Asso-
ciation for Computational Linguistics.

Tong Wang, Ping Chen, John Rochford, and Jipeng
Qiang. 2016. Text simplification using neural ma-
chine translation.

Willian Massami Watanabe, Arnaldo Candido Junior,
Vinı́cius Rodriguez Uzêda, Renata Pontin de Mat-
tos Fortes, Thiago Alexandre Salgueiro Pardo, and
Sandra Maria Aluı́sio. 2009. Facilita: Reading as-
sistance for low-literacy readers. In Proceedings of
the 27th ACM International Conference on Design
of Communication, SIGDOC ’09, page 29–36, New
York, NY, USA. Association for Computing Machin-
ery.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

https://doi.org/10.1145/2461121.2461126
https://doi.org/10.1145/2461121.2461126
https://www.aclweb.org/anthology/C18-1115
https://www.aclweb.org/anthology/C18-1115
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1007/s11168-006-9011-1
https://doi.org/10.1007/s11168-006-9011-1
http://oro.open.ac.uk/58886/
http://oro.open.ac.uk/58886/
https://doi.org/10.1007/978-3-642-12320-7_5
https://doi.org/10.1007/978-3-642-12320-7_5
https://doi.org/10.3115/v1/P15-2135
https://doi.org/10.3115/v1/P15-2135
https://www.aclweb.org/anthology/L18-1479
https://www.aclweb.org/anthology/L18-1479
https://www.aclweb.org/anthology/L18-1479
https://www.aclweb.org/anthology/L18-1479
https://www.aclweb.org/anthology/W16-3411
https://www.aclweb.org/anthology/W16-3411
https://doi.org/10.18653/v1/D18-1081
https://doi.org/10.18653/v1/D18-1081
https://doi.org/10.18653/v1/P19-1198
https://doi.org/10.18653/v1/P19-1198
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://www.aclweb.org/anthology/P08-1040
https://www.aclweb.org/anthology/P08-1040
https://doi.org/10.18653/v1/N18-2013
https://doi.org/10.18653/v1/N18-2013
https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11944
https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11944
https://doi.org/10.1145/1621995.1622002
https://doi.org/10.1145/1621995.1622002

23

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Kristian Woodsend and Mirella Lapata. 2011. Learn-
ing to simplify sentences with quasi-synchronous
grammar and integer programming. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 409–420, Edin-
burgh, Scotland, UK. Association for Computational
Linguistics.

Kristian Woodsend and Mirella Lapata. 2017. Text
rewriting improves semantic role labeling. In
Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, IJCAI’17, page
5095–5099. AAAI Press.

Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1015–
1024, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the Asso-
ciation for Computational Linguistics, 3:283–297.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016a. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016b. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
584–594, Copenhagen, Denmark. Association for
Computational Linguistics.

Yaoyuan Zhang, Zhenxu Ye, Yansong Feng, Dongyan
Zhao, and Rui Yan. 2017. A constrained sequence-
to-sequence neural model for sentence simplifica-
tion. ArXiv, abs/1704.02312.

Sanqiang Zhao, Rui Meng, Daqing He, Saptono Andi,
and Parmanto Bambang. 2018a. Integrating trans-
former and paraphrase rules for sentence simplifica-
tion. arXiv preprint arXiv:1810.11193.

Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono,
and Bambang Parmanto. 2018b. Integrating trans-
former and paraphrase rules for sentence simplifi-
cation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

pages 3164–3173, Brussels, Belgium. Association
for Computational Linguistics.

Yanbin Zhao, Lu Chen, Zhi Chen, and Kai Yu.
2020a. Semi-supervised text simplification with
back-translation and asymmetric denoising autoen-
coders. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 9668–9675. AAAI Press.

Yanbin Zhao, Lu Chen, Zhi Chen, and Kai Yu.
2020b. Semi-supervised text simplification with
back-translation and asymmetric denoising autoen-
coders. In AAAI, pages 9668–9675.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of the
23rd International Conference on Computational
Linguistics (Coling 2010), pages 1353–1361, Bei-
jing, China. Coling 2010 Organizing Committee.

https://www.aclweb.org/anthology/D11-1038
https://www.aclweb.org/anthology/D11-1038
https://www.aclweb.org/anthology/D11-1038
https://www.aclweb.org/anthology/P12-1107
https://www.aclweb.org/anthology/P12-1107
https://doi.org/10.1162/tacl_a_00139
https://doi.org/10.1162/tacl_a_00139
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.18653/v1/D17-1062
https://doi.org/10.18653/v1/D17-1062
https://doi.org/10.18653/v1/D18-1355
https://doi.org/10.18653/v1/D18-1355
https://doi.org/10.18653/v1/D18-1355
https://aaai.org/ojs/index.php/AAAI/article/view/6515
https://aaai.org/ojs/index.php/AAAI/article/view/6515
https://aaai.org/ojs/index.php/AAAI/article/view/6515
https://www.aclweb.org/anthology/C10-1152
https://www.aclweb.org/anthology/C10-1152

24

A Model Configurations

Table 5 describes the list of hyper-parameters used
for TST-FINAL model. In Table 6, we list the infer-
ence tweaks hyper-parameters found by Bayesian
Search on TurkCorpus and ASSET datasets.

Hyperparameter name Value
learning rate 1e-5
transformer model roberta-base
accumulation size 2
batch size 128
cold steps count 2
n epoch 50
patience 3
vocab size 5000
max len 50
min len 3
pieces per token 5
filter brackets 0/1
seed 1/2/3/11
normalize 1

Table 5: The list of hyper-parameters used during train-
ing

B Simplification Examples

Various examples from our system are shown in
Table 7. Examining the simplifications, we see re-
duced sentence length, sentence splitting of a com-
plex sentence into multiple shorter sentences, and
the use of simpler vocabulary. Manual comparison
between TST-BASE and TST-FINAL shows that
the first system tends to delete some complex words
from the text. For example, “theoretically possible”
gets shortened to just “possible,” and “adminis-
trative district” to “district”. TST-FINAL model
tends to be more creative and changes phrases to
simpler versions like “is theoretically possible” to
“might be” or “an administrative district” to “a part
of.” However, this aggressive and creative strategy
sometimes also generates ungrammatical output
like in the last example in Table 7. While it rarely
happens, but the model might also change the mean-
ing of the original sentence. For example, replacing
“the five” to “the three.” It is worth noticing that the
same problem of meaning change is present in the
reference sentences as well: where “the five” got
replaced with “one of four”.

Model description Tuned dataset Seed Del conf Keep conf Iterations Min error probability
TST w/o InfTweaks - - 0 0 5 0
TST with InfTweaks Turk 1 -0.84 -0.66 2 0.04
TST with InfTweaks Turk 2 -0.93 -0.51 3 0.02
TST with InfTweaks Turk 3 -0.86 -0.68 2 0.03
TST with InfTweaks Turk 11 -0.88 -0.61 2 0.03
TST with InfTweaks ASSET 1 -0.66 -0.9 3 0.02
TST with InfTweaks ASSET 2 -0.72 -0.88 3 0.02
TST with InfTweaks ASSET 3 -0.52 -0.89 3 0.04
TST with InfTweaks ASSET 11 -0.72 -0.91 3 0.02

Table 6: Inference hyper-parameters found by the Bayesian Search on TurkCorpus and ASSET development sets

25

Original he also completed two collections of short stories entitled the ribbajack & other curious yarns and seven strange and
ghostly tales .

Reference he also wrote two books of short stories called , the ribbajack & other curious yarns and seven strange and ghostly
tales .

TST-BASE he also wrote two collections of short stories called the ribbajack & other curious yarns and seven strange and ghostly
tales .

TST-FINAL he also wrote a series of short stories called the ribbajack & other curious yarns and seven strange and ghostly tales .

Original it is theoretically possible that the other editors who may have reported you , and the administrator who blocked you
, are part of a conspiracy against someone half a world away they ’ve never met in person .

Reference it is theoretically possible that the other editors who may have written about you, and the officer who blocked you,
are part of a bad plan against someone miles away, they ’ve never met face to face .

TST-BASE it is possible that the other editors who may have reported you , and the administrator who blocked you , are part of a
conspiracy against someone half a world away they ’ ve never met in person .

TST-FINAL it might be that the other editors who may have sent you , and the administrator who blocked you , are part of a
conspiracy against someone half a world away where they ’ve never met in person .

Original as a result , although many mosques will not enforce violations , both men and women when attending a mosque must
adhere to these guidelines .

Reference as a result , both men and women must follow this rule when they attend a mosque , even though many mosques do not
enforce these rules

TST-BASE both men and women when going a mosque must follow these rules .
TST-FINAL both men , and women that attend mosque , must follow the law .

Original hinterrhein is an administrative district in the canton of graubünden , switzerland .
Reference hinterrhein is a district of the canton of graubünden , switzerland .
TST-BASE hinterrhein is a district of the canton of graubünden , switzerland .
TST-FINAL hinterrhein is a part of the canton of graubünden in the switzerland .

Original a majority of south indians speak one of the five dravidian languages — kannada , malayalam , tamil , telugu and tulu .
Reference many of the south indians are dravidians and they speak one of four dravidian languages — kannada , malayalam ,

tamil or telugu .
TST-BASE most of south indians speak one of the five dravidian languages — kannada , malayalam , tamil , telugu and tulu .
TST-FINAL most of the people speak speakers from the three dravidian languages spoken are , kannada , malayalam , tamil ,

telugu , and tulu .

Table 7: Examples of simplifications by TST

