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Abstract

The neural hidden Markov model has been
proposed as an alternative to attention mecha-
nism in machine translation with recurrent neu-
ral networks. However, since the introduction
of the transformer models, its performance
has been surpassed. This work proposes to
introduce the concept of the hidden Markov
model to the transformer architecture, which
outperforms the transformer baseline. Inter-
estingly, we find that the zero-order model al-
ready provides promising performance, giving
it an edge compared to a model with first-order
dependency, which performs similarly but is
significantly slower in training and decoding.

1 Introduction

Recently, significant improvements have been
made to neural machine translations (NMT). Re-
gardless of whether a recurrent neural network with
long short-term memory (Hochreiter and Schmid-
huber, 1997) (LSTM-RNN) (Bahdanau et al., 2015)
or a convolutional neural network (CNN) (Gehring
et al., 2017) or a self-attentive transformer network
(Vaswani et al., 2017) is used, the attention mecha-
nism is always one of the key components that all
state-of-the-art NMT systems contain.

Several attempts have been made to explore al-
ternative architectures that do not use an attention
mechanism (Wang et al., 2017, 2018; Bahar et al.,
2018; Press and Smith, 2018). However, either the
performance of those systems is significantly worse
than that of the LSTM-RNN-based approaches, or
the time and memory complexity is much higher.
Since the transformer architecture has upgraded the
state-of-the-art to an even higher standard, fewer
studies are being carried out in this direction.

Despite the promising translation performance
of the transformer architecture, recent studies have
found that the quality of the word alignments pro-
duced by the multi-head cross-attention weights is

quite poor, and various techniques are proposed to
address this problem (Alkhouli et al., 2018; Garg
et al., 2019; Zenkel et al., 2020). While these works
focus on extracting promising alignment informa-
tion from the transformer architecture, we aim to
improve the translation performance of the baseline
model by introducing alignment components while
keeping the system monolithic. To this end, the pos-
sibilities are studied to apply the transformer archi-
tecture to the direct hidden Markov model (HMM),
which is not as straightforward as in the case of
LSTM-RNN due to the cross-attention through all
decoder layers. Experimental results show that the
zero-order direct HMM already outperforms the
baseline transformer model in terms of TER scores
(Snover et al., 2006), while the first-order depen-
dency with higher computational complexity offers
no further improvements.

2 Related Work

The attention component is introduced by Bah-
danau et al. (2015) in NMT to simulate the align-
ment between the source and target sentence, which
leads to significant improvements compared to the
pure sequence-to-sequence model (Sutskever et al.,
2014). Wang et al. (2018) present a LSTM-RNN-
based HMM that does not employ an attention
mechanism. This work aims to build a similar
model with the transformer architecture. While
they perform comparable to the LSTM-RNN-based
attention baseline with a much slower model, our
model outperforms the transformer baseline in
terms of TER scores.

The derivation of neural models for translation
on the basis of the HMM framework is also studied
in Yu et al. (2017) and Alkhouli et al. (2018). In
Yu et al. (2017), alignment-based neural models
are used to model alignment and translation from
the target to the source side (inverse direction), and
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a language model is included in addition. And
Alkhouli et al. (2018) rely on alignments generated
by statistical systems that serve as supervision for
the training of the neural systems. By contrast, the
model proposed in this work does not require any
additional language model or alignment informa-
tion and thus keeps the entire system monolithic.

Several works have been carried out to change
attention models to capture more complex depen-
dencies. Cohn et al. (2016) introduce structural
biases from word-based alignment concepts such
as fertility and Markov conditioning. Arthur et al.
(2016) incorporate lexical probabilities to influence
attention. These changes are based on the LSTM-
RNN-based attention model. Garg et al. (2019) and
Zenkel et al. (2020) try to generate translation and
high-quality alignment jointly using an end-to-end
neural training pipeline. By contrast, our work fo-
cuses more on improving the translation quality
using the alignment information generated by the
self-contained model.

3 Direct HMM

The goal of machine translation is to find the target
language sentence eI1 = e1, e2, · · · , eI that is the
translation of a particular source language sentence
fJ1 = f1, f2, · · · , fJ with the maximum likelihood
(argmaxI,eI1

{
Pr(eI1|fJ1 )

}
). In the direct HMM,

an alignment from target to source (i→ j = bi) is
introduced into the translation probability:

Pr(eI1|fJ1 ) =
∑
bI1

Pr(eI1, b
I
1|fJ1 ) (1)

=
∑
bI1

I∏
i=1

Pr(bi, ei|bi−10 , ei−10 , fJ1 ) (2)

=
∑
bI1

I∏
i=1

Pr(ei|bi0, ei−10 , fJ1 )︸ ︷︷ ︸
lexicon probability

·Pr(bi|bi−10 , ei−10 , fJ1 )︸ ︷︷ ︸
alignment probability

(3)

The term “direct” refers to the modeling of p(e|f)
instead of p(f |e) as in the conventional HMM
(Vogel et al., 1996). In Wang et al. (2018), two
LSTM-RNN based neural networks are used to
model the lexicon and the alignment probability
separately. In this work they are modeled with a
single transformer-based network.

4 Direct HMM in Transformer

This section describes in detail how we modify the
transformer model so that both the alignment and

the lexicon probability can be generated. While the
lexicon model in the direct HMM has a zero-order
dependency on the current alignment position bi:

Pr(ei|bi0, ei−10 , fJ1 ) := p(ei|bi, ei−10 , fJ1 ) (4)

we implement zero- and first-order dependencies
for the alignment model.

4.1 Zero-order Architecture
In the zero-order architecture, the alignment model
is defined as follows:

Pr(bi|bi−10 , ei−10 , fJ1 ) := p(bi|ei−10 , fJ1 ) (5)

To obtain the alignment probability we change the
order of the weighted sum and the activation func-
tion at each decoder layer in the transformer:

c
(l+1)
i

=

J∑
j=1

α(l+1)(j|i) W1max
(
0,W2hj +W3s

(l)
i

)
(6)

l: index of the decoder layer ∈ {1, 2. · · · , L}
ci: context vector, input to the next layer
hj : source hidden state (key and value)
si: target hidden state (query)

Wn: weight matrices
α(j|i): softmax(A[si, hj ]) cross-attention weights

The arrow indicates that the weighted sum with
the cross-attention is moved outside of the ReLU
activation function. Before the ReLU function is
employed, the target hidden state si−1 is projected
and added to the projected source hidden state hj in
order to include information from the target side to
the context vector, which can also be considered as
a substitution for the residual layer in the standard
transformer architecture. As the outputs of the last
decoder layer (and the entire network) we have a
lexicon probability:

p(ei|j, ei−10 , fJ1 )

= softmax
(
W4 ·max

(
0,W5 · hj +W6 · s(L)i

))
(7)

and an alignment probability:

p(j|ei−10 , fJ1 ) = α(L)(j|i) (8)

The output probability for the current word is:

p(ei|ei−10 , fJ1 )

=
J∑
j=1

p(j|ei−10 , fJ1 ) · p(ei|j, ei−10 , fJ1 ) (9)
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Figure 1: Visualized comparison between the direct HMM and the standard transformer architecture.

And the sentence probability is then:

p(eI1|fJ1 ) =
I∏
i=1

p(ei|ei−10 , fJ1 ) (10)

Due to the redefinition of the context vector, layer
normalization, residual connection and linear pro-
jection are also modified accordingly. Detailed
changes to the architecture are shown in Figure 1.
Note that all modifications are made to decoder
layers while encoder layers remain unchanged.

4.2 First-order Architecture
In the first-order architecture, the alignment model
is defined as follows:

Pr(bi|bi−10 , ei−10 , fJ1 ) := p(bi|bi−1, ei−10 , fJ1 )
(11)

The lexicon probability remains the same as in
the zero-order model (Equation 4). To consider
the dependency on the previous source position
(j′ = bi−1), we change the cross-attention weights:

α(L)(j|i, j′)

= softmax
(
A
[
s
(L−1)
i ,W · [h(L)j , h

(L)
j′ ]
])

(12)

where [h(L)j , h
(L)
j′ ] denotes the concatenation of the

source hidden states at positions j and j′.
Changing the architecture from the zero-order

model to the first-order model is straightforward,

but the main challenge is in the training process.
Due to the first-order dependency, the complexity
of the brute-force search (forward path) becomes
exponential (confirm Equation 3). To address this
problem, we apply a dynamic programming algo-
rithm to find the probability of the entire sentence:

Q(i, j) =
∑
j′

p(ei, j|j′, fJ1 , ei−10 ) ·Q(i− 1, j′)

(13)
p(eI1|fJ1 ) = Q(I) =

∑
j

Q(I, j) (14)

where Q denotes the recursive function. For given
sentence pairs (Fr, Er), the training criterion is
then the maximization of the log-likelihood func-
tion argmaxθ

∑
r log p(Er|Fr, θ).

In previous work on the neural HMM, the
forward-backward algorithm is implemented to cal-
culate the posterior probability as the golden truth
to guide the training of the lexicon and the align-
ment models (referred to as “manual differentia-
tion”). But actually it is not necessary. As long
as the forward path is implemented according to
a recursive function of dynamic programming, as
shown in Equation 13, the frameworks can han-
dle the backward path automatically (referred to
as “automatic differentiation”). Intuitively, the re-
cursive equation is nothing more than a sum of
products that should be easy to work with the au-
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tomatic differentiation toolkit. Theoretically, the
mathematical proof for this is presented in Eisner
(2016). And practically, our experimental results of
the automatic differentiation and the manual differ-
entiation are the same as long as label smoothing
(Szegedy et al., 2016) is not applied.

Without an explicitly implemented forward-
backward algorithm, applying label smoothing is
not straightforward as it should be applied to the
words while the automatic differentiation is per-
formed after the forward path has been done for
the entire sentence. To solve this problem, we
apply label smoothing to the lexicon probability
p(ei|j, ei−10 , fJ1 ) at each step of the forward path.
Although in this case the type of label smoothing is
different for the automatic and manual differentia-
tion, experimental results are quite similar (< 0.1%
differences). The automatic differentiation has an
advantage in terms of memory and time complex-
ity and is therefore used for all subsequent experi-
ments.

5 Experiments

5.1 Translation Performance
In order to test the performance of the direct
HMM, we carry out experiments on the WMT
20191 German→English (de-en), WMT 2019
Chinese→English (zh-en) and WMT 20182

English→Turkish (en-tr) tasks. These three
tasks represent different amounts of training data,
from hundreds of thousands to tens of millions.
Detailed data statistics are shown in Appendix A.

The proposed approaches are completely imple-
mented in fairseq (Ott et al., 2019). The standard
transformer base model (Vaswani et al., 2017) im-
plemented in the fairseq framework is used as our
baseline and we follow the standard setup for hyper-
parameters. Translation performance is measured
by case-insensitive BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) scores with SACRE-
BLEU toolkit (Post, 2018). The results are shown
in Table 1.

The results show that the direct HMMs achieve
comparable performance to the transformer base-
lines in terms of BLEU scores and outperform the
baseline systems in terms of TER scores. The TER

metric is known to favor shorter hypotheses, but
from the length ratio results we can conclude that
the improvements are not due to it. In addition, it

1http://www.statmt.org/wmt19/
2http://www.statmt.org/wmt18/

BLEU [%] de-en zh-en en-tr
transformer base 38.7 31.5 17.4
zero-order HMM 38.5 31.5 17.6
first-order HMM 38.7 31.3 17.7
TER [%] de-en zh-en en-tr
transformer base 48.2 56.6 71.9
zero-order HMM 47.7 55.7 71.4
first-order HMM 47.9 55.4 71.2
length ratio [%] de-en zh-en en-tr
transformer base 97.3 94.1 99.7
zero-order HMM 97.7 94.0 99.7
first-order HMM 98.0 93.9 99.5

Table 1: Experimental results on the WMT news trans-
lation tasks.

can be seen that the first-order dependency could
not provide further improvements over the zero-
order model. To find the possible reasons for this,
we try to extract alignment heat maps with regard
to the dependencies between the current position j
and the predecessor position j′.

Figure 2: Alignment heat map for p(j|j′, ei−10 , fJ1 )
with fixed target position i. The heat map is extracted
when the training is almost converging.

As shown in Figure 2, the target position j with
the maximum probability is often the same for dif-
ferent predecessor positions j′, which indicates that
the training of the model tends to “forget” the ex-
plicit first-order dependency. We checked a lot of
heat maps and this happens quite often, in fact, for
short sentences it almost always happens. This es-
sentially explains why the first-order model fails to
make improvements. To benefit from the first-order
dependency, constraints or other techniques might
be used during training.

Here the results of the RNN-based direct HMM
are not included as one of the baselines, as the
performance of the RNN-based approaches is sig-
nificantly surpassed by the transformer-based ap-

http://www.statmt.org/wmt19/
http://www.statmt.org/wmt18/
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proaches. We believe this work will outperform the
system proposed in (Wang et al., 2018), but that is
mainly due to the transformer architecture rather
than refinements we made.

Compared to the baseline transformer model,
the direct HMM only has about 2% more free pa-
rameters. While the first-order model has a clear
disadvantage in terms of training and decoding
speed compared to the baseline system due to the
inevitable loop over the target position i, the decod-
ing speed of the zero-order model is only slightly
slower than that of the transformer baseline. De-
tails of time usage are given in Appendix B.

5.2 Alignment Quality

In addition to improvements in the TER scores, we
believe that the direct HMM also provides better
alignment quality than the standard cross-attention.
To verify this assumption, we compute the align-
ment error rate (AER) (Och and Ney, 2000) on
the RWTH German-English Golden Alignments
corpus (Vilar et al., 2006), which provides 505
manually word-aligned sentence pairs extracted
from the Europarl corpus. We take the argmax
of the alignment probability output of our model
as an estimated alignment. In addition, as with
the conventional HMM, the argmax of the poste-
rior probability can also be used as an estimated
alignment, which explicitly includes the lexicon
information and should lead to a better quality. As
baselines, we take the argmax of the average of
the attention heads in the fifth and sixth decoder
layers, since Garg et al. (2019) claim that the cross-
attention weights in the fifth layer produce more
accurate alignment information than the last layer.
All models are trained in both directions to get
bidirectional alignments. These bidirectional align-
ments are then merged using the grow diagonal
heuristic (Koehn et al., 2005).

model alignment from AER

transformer fifth layer 39.1
sixth layer 55.7

direct HMM alignment prob. 31.8
posterior prob. 27.4

Table 2: Experimental results on the German-English
alignment task in AER [%].

From the results shown in Table 2, we can ob-
serve that the alignment generated by the direct
HMM has a significantly better quality than that

extracted directly from the transformer attention
weights. The posterior probability that contains the
lexicon information indeed provides better align-
ments, which can be seen as a further advantage
of the direct HMM, since it cannot be calculated
in the standard transformer architecture without an
explicit alignment probability. In terms of AER

performance, our model stands behind GIZA++
(Och and Ney, 2003) as well as the approaches pro-
posed in Garg et al. (2019) and Zenkel et al. (2020).
Note, however, that our zero-order model does not
include the future target word information in esti-
mating alignments, and we do not use additional
loss for alignment training, since the original goal
of this work is to improve translation quality by
applying HMM factorization.

In addition to the AER results, Appendix C
shows heat maps extracted for the alignment prob-
ability from direct HMM compared to those ex-
tracted for cross-attention weights from the stan-
dard transformer model.

6 Conclusion

This work exhibits the use of the transformer archi-
tecture in a direct HMM for machine translation,
which significantly improves TER scores. In ad-
dition, we show that the proposed system tends
to “refuse” to learn first-order dependency during
training. The zero-order model achieves a good
compromise between performance and decoding
speed, which is much faster than previous work on
the direct HMM. In order to benefit from the pre-
decessor alignment information, further techniques
should be carried out. Another future work would
be to combine the attention mechanism with the
alignment information to further improve perfor-
mance.
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A Data Statistics

WMT 2019 train valid test
German→English source target source target source target
# sentence pairs 5.9M 2169 2000
# original vocabulary 2.1M 932k 12.2k 10.7k 10.8k 9.5k
# vocabulary after BPE 45.1k 33.2k 10.5k 8.2k 9.3k 7.3k
# running words 137M 144M 38.2k 40.8k 31.1k 34.4k
# running BPE sub-words 160M 157M 54.8k 53.1k 44.7k 43.4k
WMT 2019 train valid test
Chinese→English source target source target source target
# sentence pairs 26.0M 2002 2000
# vocabulary 1.3M 651k 9.2k 8.7k 9.5k 8.5k
# vocabulary after BPE 47.0k 32.2k 9.2k 9.2k 9.3k 8.8k
# running words 555M 606M 53.7k 59.8k 62.7k 82.2k
# running BPE sub-words 588M 658M 58.7k 65.1k 69.2k 87.2k
WMT 2018 train valid test
English→Turkish source target source target source target
# sentence pairs 208k 3007 3000
# vocabulary 70.6k 160k 8.7k 15.1k 9.4k 16.4k
# vocabulary after BPE 7280 7324 4944 5437 5093 5592
# running words 5.16M 4.61M 68.3k 55.0k 70.5k 56.8k
# running BPE sub-words 6.72M 7.45M 98.0k 101k 101k 107k

For the German→English task, joint byte
pair encoding (BPE) (Sennrich et al., 2016)
with 32k merge operations is used. The
newstest2015 dataset is used as the validation
set and newstest2019 as the test set.

The Chinese data are segmented using the
pkuseg toolkit3 (Luo et al., 2019). The vocabu-
lary size and number of running words are calcu-
lated after segmentation. Separate BPE with 32k
merge operations is used for Chinese and English
data. The newsdev2017 dataset is used as the
validation set and newstest2019 as the test set.

For the English→Turkish task, separate BPE
with 8k merge operations is used. The
newstest2017 dataset is used as the validation
set and newstest2018 as the test set.

3https://github.com/lancopku/
pkuseg-python

https://github.com/lancopku/pkuseg-python
https://github.com/lancopku/pkuseg-python
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B Training and Decoding Speed

Training and decoding are performed on one
NVIDIA GeForce RTX 1080 Ti with 11 GB of
GPU memory. Table 3 shows the training and de-
coding speed on the WMT 2019 German→English
dataset. Compared to the baseline system, the dis-
advantages of the zero-order HMM on training
speed are mainly due to the limited GPU memory.
Since the largest tensor of the proposed model has
a dimension of batch size × length of the source
sentence × length of the target sentence × vocabu-
lary size (in the standard transformer the dimension
of “length of the source sentence” is not required),
the batch size must be reduced to fit in the GPU
memory. Although gradient accumulation can be
used to guarantee performance, the reduced batch
size still linearly slows the training speed. The in-
fluence on the decoding speed is rather small. By
introducing the first-order dependency, however, a
for loop over every target position is inevitable,
so that the training and decoding speeds are greatly
slowed down. This is also reported by the previous
work.

model # parameters training decoding
tokens/sec time tokens/sec time

transformer baseline 84.2M 10.2k 5d 108.2 6.9min
zero-order HMM 86.1M 2.2k 20d 84.0 8.9min
first-order HMM 88.0M 0.4k 54d 31.7 23.5min

Table 3: Comparison of training and decoding speed.
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C Heat Maps of Attention Weights and
Alignments

Figure 3 demonstrates the heat maps of some sen-
tence pairs that are randomly selected from the
German→English training data after the training
has almost converged. Note that here the x and y
axes indicate the source and target positions (j and
i), which differs from Figure 2, where they indicate
the current and previous source positions (j and j′).
We can observe that the alignment paths are much
more focused than the attention weights. Since
our main goal is to propose an alternative tech-
nique to improve translation performance rather
than alignment quality, alignment error rates are
not calculated in this work.

Figure 3: Heat maps of attention weights and align-
ments. The source sentence goes from left to right and
the target sentence goes from top to bottom. The first
column shows the attention weight heat maps (average
of the multi-head cross-attention) for the 4th decoder
layer. The second column shows the attention weight
heat maps (average of the multi-head cross-attention)
for the 6th (last) decoder layer. The third column shows
the alignment heat maps taken from the proposed direct
HMM.


