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Abstract

Deployed real-world machine learning appli-
cations are often subject to uncontrolled and
even potentially malicious inputs. Those out-
of-domain inputs can lead to unpredictable
outputs and sometimes catastrophic safety is-
sues. Prior studies on out-of-domain detec-
tion require in-domain task labels and are lim-
ited to supervised classification scenarios. Our
work tackles the problem of detecting out-of-
domain samples with only unsupervised in-
domain data. We utilize the latent represen-
tations of pre-trained transformers and pro-
pose a simple yet effective method to trans-
form features across all layers to construct out-
of-domain detectors efficiently. Two domain-
specific fine-tuning approaches are further pro-
posed to boost detection accuracy. Our em-
pirical evaluations of related methods on two
datasets validate that our method greatly im-
proves out-of-domain detection ability in a
more general scenario.!

1 Introduction

Deep neural networks, despite achieving good per-
formance on many challenging tasks, can make
overconfident predictions for completely irrelevant
and out-of-domain (OOD) inputs, leading to sig-
nificant Al safety issues (Hendrycks and Gimpel,
2017). Detecting out-of-domain inputs is a funda-
mental task for trustworthy Al applications in real-
world use cases, because those applications are of-
ten subject to ill-defined queries or even potentially
malicious inputs. Prior work on out-of-domain de-
tection (e.g., Hendrycks and Gimpel, 2017; Lee
et al., 2018; Liang et al., 2018; Hendrycks et al.,
2019, 2020; Xu et al., 2020) mostly requires in-
domain task labels, limiting its usage to super-
vised classification. However, deployed applica-
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tions rarely receive controlled inputs and are sus-
ceptible to an ever-evolving set of user inputs that
are scarcely labeled. For example, for many non-
classification tasks, such as summarization or topic
modeling, there are no available classifiers or task
labels, which limits the practical usage of recently
proposed out-of-domain detection methods. There-
fore, it is natural to ask the following question:

Can we detect out-of-domain samples using only
unsupervised data without any in-domain labels?

We regard the out-of-domain detection problem
as checking whether the given test samples are
drawn from the same distribution that generates
the in-domain samples, which requires a weaker
assumption than prior work (e.g., Lee et al., 2018;
Hendrycks et al., 2020). We suppose that there are
only in-domain samples, which allows us to under-
stand the properties of data itself regardless of tasks.
Therefore, methods developed for this problem are
more applicable than task-specific ones and can be
further adapted to tasks where no classification la-
bels are present, such as active learning or transfer
learning.

To solve the problem, we utilize the latent em-
beddings of pre-trained transformers (e.g., Vaswani
et al., 2017; Devlin et al., 2019; Liu et al., 2019) to
represent the input data, which allow us to apply
classical OOD detection methods such as one-class
support vector machines (Scholkopf et al., 2001)
or support vector data description (Tax and Duin,
2004) on them.

However, the best practice on how to extract
features from BERT is usually task-specific. For
supervised classification, we can represent the text
sequence using the hidden state of [CLS] token
from the top layer. Meanwhile BERT’s interme-
diate layers also capture rich linguistic informa-
tion that may outperform the top layer for specific
NLP tasks. By performing probing tasks on each
layer, Jawahar et al. (2019) suggest bottom layers
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of BERT capture more surface features, middle lay-
ers focus more on syntax and semantic features are
well represented by top ones.

As no prior knowledge about OOD samples is
usually provided in practice, deciding which layer
of features is the most effective for OOD detec-
tion is itself non-trivial. Some OOD samples may
just contain a few out-of-vocabulary words; while
others are OOD due to their syntax or semantics.

Based on the observations above, this paper stud-
ies how to leverage all-layer features from a pre-
trained transformer for OOD detection in an unsu-
pervised manner. Our contributions are three-fold:

e By analyzing all layers of (Ro)BERT(a) mod-
els, we empirically validate that it is hard to extract
features from a certain layer that work well for any
OOD datasets.

e We propose a computationally efficient way to
transform all-layer features of a pre-trained trans-
former into a low-dimension one. We empirically
validate that the proposed method outperforms
baselines that use one-layer features or by simple
aggregations of all layers.

e We propose two different techniques for fine-
tuning a pre-trained transformer to further improve
its capability of detecting OOD data.

2 Problem Setup

Assume that we have a collection of text inputs
Dy, := {zx;}_,, we want to construct an out-of-
domain detector that takes an unseen new input w
and determines whether © comes from the same
distribution that generates D,,. We adopt a more
practical setting where we have no prior knowl-
edge of what out-of-domain inputs look like. In
this case, training a domain classifier directly is
not feasible. The out-of-domain detector can be
described mathematically as:

_ JTrue if Z(u) <k,

glu€) = False if Z(u) > e,

where Z () denotes the anomaly score function, and
€ is a chosen threshold to ensure that the true posi-
tive rate is at a certain level (e.g., 95%) (Hendrycks
and Gimpel, 2017; Liang et al., 2018; Lee et al.,
2018). The OOD detection problem boils down to
designing Z(-) such that it assigns in-domain inputs
lower scores than out-of-domain inputs.

There are two different scenarios, considering
if we have any in-domain labels for data z; € D,,.
Here we define in-domain labels as any specific
supervised task labels, such as sentiments, intents
or topics of the text.

With in-domain labels Suppose that we have
multi-class label y; € [K] and D,, = {(2;, y:)}I ;.
Given a classifier h trained with D,,, we can use
maximum calibrated softmax probability with tem-
perature scaling as the anomaly score (Liang et al.,
2018; Hinton et al., 2015):

i exp (hi(x)/T)
() = — max Soic exp (hy(@)/T)

where h;(x) is the output logits of the multi-class
classifier, and 7' is the temperature that is selected
such that the true positive rate is at a given rate
(e.g., 95% in Liang et al. (2018)). This method is
known as Maximum Softmax Probability (MSP),
which requires multi-class labels to train a classifier
and thus limits its application in practice. We argue
that requiring in-domain labels is a less practical
scenario for OOD detection and will not be further
discussed it in this paper.

Without in-domain labels The setting of no in-
domain labels is our major focus. Under this as-
sumptin, the models we can obtain in hand are usu-
ally not classifiers, but feature extractors instead.
Then it is natural to resort to classic outlier detec-
tion methods like one-class support vector machine
(Scholkopf et al., 2001), support vector data de-
scription (Tax and Duin, 2004) or kernel density
estimation (KDE) for estimating the support or the
density of the in-domain data distribution.

When applying such methods to text data, the
major focus of prior work is to design a good
network structure or learning objectives (Ruff
et al., 2018). Instead, in this paper we mainly fo-
cus on how to obtain good representations from
pre-trained transformers and design new anomaly
scores without modifying its structure, while still
obtaining good OOD detection performance.

3 Model and Feature Learning

BERT and its variants such as RoOBERTa (e.g., De-
vlin et al., 2019; Liu et al., 2019) are pre-trained
on large-scale public data (denoted as Dp,y,) us-
ing self-supervised tasks, such as language model
and next sentence prediction. These models show
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Figure 1: An overview of using Mahalanobis distance features (MDF) extracted from a pre-trained transformer f
to detect out-of-domain data. We estimate mean ¢; and covariance matrix 3; for each layer of f by samples from
an unsupervised training set D,,; and then extract MDF of D,, to optimize a OC-SVM. Given an unseen test sample,
its feature M is extracted using ¢; and 33, and then fed into OC-SVM for an anomaly score. Two domain-specific

fine-tuning methods, IMLM and BCAD, can be further applied to BERT to boost detection accuracy.

promising results when transferred to tasks in other
domains. We aim to leverage features obtained
from pre-trained transformers to construct OOD
detectors in lieu of in-domain labels in D,,.

3.1 BERT features for OOD detection

After pretraining, we can obtain a BERT/RoBERTa
model f with L layers. We denote f;(x) € R? as
the d-dimensional feature embeddings correspond-
ing to the (-th layer for input @, and f(z) is the
overall representation using all layers of f. We
explore the following methods to extract BERT
features to construct OOD detectors.

Features from the /-th layer f; Options to ex-
tract f(z) include using the hidden states of [CLS]
token or averaging all contextualized token embed-
dings at the ¢-layer. Then we can directly construct
an OOD detector based on features from f; of each
input z in D,, using existing pure sample based
methods, such as one-class support vector machine
(OC-SVM).2

Features from all layers Using BERT features
from only one layer might not be sufficient, as
prior work (Jawahar et al., 2019) has explored that
different layers of BERT capture distinct linguis-
tic properties, e.g., lower-level features capturing
lexical properties, middle layers representing syn-
tactic properties, and semantic properties surfacing
in higher layers. The effects of BERT features
from different layers on detecting OOD data are

™t is also possible to use other related one-class classifica-
tion methods, such as Isolation Forest. However, in practice
we find OC-SVM works the best and we use it in our empirical
evaluations.

yet to be investigated. One straightforward way that
leverages all L layers is to concatenate all layer-
wise features fy(2), which has no information loss.
However, this solution is computationally expen-
sive and thus hard to optimize OC-SVM or kernel
based methods. Another solution is to perform ag-
gregation likes max- or mean-pooling along the fea-
ture dimension across all layers, sacrificing some
information in exchange for efficiency.

In this paper, we propose a simple yet effective
method (described below) to use latent representa-
tions from all layers of a pre-trained transformer
and can automatically decide features from which
layers are important. Besides, this method is com-
putationally efficient, only requiring us to solve a
low-dimensional constrained convex optimization.

Mahalanobis distance as features (MDF) for
all layers Support Vector Data Description
(SVDD) (Tax and Duin, 2004) is a technique re-
lated to OC-SVM where a hypersphere is used to
separate the data instead of a hyperplane. However,
the features provided by deep models may not be
separable by hyperspheres. We focus on a general-
ization of the hypersphere called hyper-ellipsoid to
account for such surface shapes.

Suppose that we use the concatenated features
from all layers ®(z) = [fi(z),..., fr(x)]" €
R*L and consider the following optimization
problem to find the hyper-ellipsoid, which is
similar to the optimization formula of SVDD:

1 1
Z|1=2 2 7§ &
R3¢ ZH IF: + (R + vn < 51) ’

min

st ®(zi) — el S RP+&, &>0,Vi, (1)
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where ® is the feature map, c is the center
of the hyper-ellipsoid, and ¥ is a symmetric
positive definite matrix that reflects the shape
of the ellipsoid. And R reflects the volume of
the hyper-ellipsoid.> Here we also introduce
a regularization term 3||%||Z to constrain the
complexity of 3. If 32 = I, then the optimization
problem is identical to one-class SVDD.

Solving Eq (1) exactly can be difficult, since it in-
volves finding the optimal X of shape D x D, where
D = d - L is the dimension of the features. For the
concatenated features ®(x), D can be tens of thou-
sands or even hundreds of thousands, which makes
the exact solution computationally intractable. To
tackle the problem, we consider a simple and com-
putationally efficient approximation of the solu-
tion, which can be useful in practice.

First, we decompose the feature space into sev-
eral subspaces, based on the features from different
layers, i.e., assume 3 is a block diagonal matrix,
and 32, reflects the shape of feature distribution at
layer /. By a straightforward calculation, we have:

L
[@(x) — ez =Y I ful@) — el
/=1

where we decompose the center ¢ to be the
center of each layer ¢ = [c1,...,cr]". Still,
optimizing ¢, and X, can be difficult since
the dimension of f;(x) can be high. Based on
the intuition that ¢, and X, should not deviate
from the empirical mean and covariance estima-
tion ¢, and f)g from the training data, we can
replace ¢ and X, with the following approximation:

n

co ~Cp = = > [fel=)]

=1

Bart = (n_—ll)w > () @) fule:) ~ 20
where wy is a layer-dependent constant. Now
we only need to find proper {wy}l | as well
as the corresponding R and {¢;}! ;, which is a
low-dimension optimization problem that only
scales linearly with the number of layer L. We
further define:

Mo(a:) = (fo(z:) — €))7 (fola:) — &),

3We can further assume || X|| = 1, where the norm can
be the operator norm or Frobenius norm, which can give the
definition of the hyper-ellipsoid with unique 32 and R.

where the square root of Mj(z;) is also referred to
as the Mahalanobis distance of the features of data
x; from layer £. Assume w = [wy,...,w]" €
R and M(x) = [My(x),...,Mp(z)]"T € RE,
then we have:

1@ () - el = (w, M(x)).

As |Z|E = 25:1 % is not convex w.r.t w,
we instead minimize —%[|w/|3, which has a similar
regularization effect on X (as we don’t want ||w||2
to be small, which can make ||X||g very large). So
the final optimization problem to solve is:

min = flwll; + B+ Z&

st. (w,M(x;)) <R*+&,6>0,Yi, (2

which in fact is a one-class SVM with a linear
kernel, with Mahalanobis distance of each layers
as features (MDF), and it can be simply solved with
the standard convex optimization. We illustrate our
proposed algorithm in Figure 1.

Remark Note that the optimization in Eq (2) is
not identical as that in Eq (1), since we are using
empirical sample mean {¢;}}_, and covariance
{ )5 Jwe} | to replace the original parameters ¢
and X in Eq (1), which are hard to optimize when
the dimension of the concatenated features ®(x)
is high. Also, our approximation from Eq (1) to
Eq (2) is different from the known result that when
®(x) is the infinite-dimensional feature map of the
widely used Gaussian RBF kernels, OC-SVM and
SVDD are equivalent and asymptotically consis-
tent density estimators (Tsybakov et al., 1997; Vert
et al., 2006). In our case, ®(x) is the concatenated
features from all layers of pre-trained transform-
ers, which makes our approximation fundamentally
different from prior work.

3.2 Feature fine-tuning

We can also fine-tune the pre-trained transformer
f on the unsupervised in-domain dataset D,, so
that f(z) can better represent the distribution of
D,,. We explore two domain-specific fine-tuning
approaches.

In-domain masked language modeling IMLM)
Gururangan et al. (2020) find that domain-adaptive
masked language modeling (Devlin et al., 2019)
would improve supervised classification capabil-
ity of BERT when it is transferred to that domain.
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Cross-corpus Examples (SST)

Type Source Text
In-Domain SST if you love reading and or poetry , then by all means check it out
In-Domain SST there ’s no disguising this as one of the worst films of the summer
Out-of-Domain RTE capital punishment is a deterrent to crime
Out-of-Domain  SNLI a crowd of people are sitting in seats in a sports ground bleachers
Out-of-Domain  Multi30K a trailer drives down a red brick road
Cross-intent Examples (CLINIC150)
Type Intent Text
In-Domain Transfer move 100 dollars from my savings to my checking
In-Domain PTO Request  let me know how to make a vacation request
In-Domain Food Last is rice ok after 3 days in the refrigerator
In-Domain Tell Joke can you tell me a joke about politicians

Out-of-Domain —
Out-of-Domain —
Out-of-Domain —

how are my sports teams doing
create a contact labeled mom
what’s the extended zipcode for my address

Table 1: Examples of in-domain/out-of-domain samples for SST and CLINIC150. The source labels for SST and
the intent labels for CLINIC150 are here just for illustration and are not included in D,,. None of the above OOD

samples are provided in training as well.

Similarly, we can do MLM on D,, and argue this
would make the features of D,, concentrate, bring-
ing benefits to downstream OOD detection.

Binary classification with auxiliary dataset
(BCAD) Another way of fine-tuning the model
f is to use the public dataset Dy, that pretrains it.
We consider the training data in D,, as in-domain
positive samples and data in the public dataset
Dpu, as OOD negative samples. We add a new
classification layer on top of f and update this layer
together with all parameters of f by performing a
binary classification task. In practice, we only need
a small subset of Dy, denoted as ﬁpub, for fine-
tuning. Since ﬁpub is publicly available and has no
labels, we do not violate the unsupervised setting.
ﬁpub does not provide any information about the
OOD samples at test time as well.

Besides, the added classification layer can actu-
ally be applied for OOD detection using the MSP
method, and this is exactly the setting of zero-shot
classification, which we use as a baseline for com-
parison in our experiments.

4 Experiments

Datasets We consider two distinct datasets for
experiments, where one is to regard text from un-
seen corpora as OOD, and the other one is to detect
class-level OOD samples within the same corpus.

e Cross-corpus dataset (SST) We follow the
experimental setting in Hendrycks et al. (2020),

by providing in-domain D,, with the original train-
ing set of SST dataset (Socher et al., 2013) and
considering samples from four other datasets (i.e.,
20 Newsgroups (Lang, 1995), English-German
Multi30K (Elliott et al., 2016), RTE (Dagan et al.,
2005) and SNLI (Bowman et al., 2015)) as OOD
data. For evaluation, we use the original test data
of SST as in-domain positives and randomly pick
500 samples from each of the four datasets as OOD
negatives. We do not include any sentiment labels
from SST to D,, for training.

e Cross-intent dataset (CLINIC150) This is
a crowdsourced dialog dataset (Larson et al., 2019),
including in-domain queries covering 150 intents
and out-of-domain queries that do not fall within
any of the 150 intents. We use all 15,000 queries
that are originally in its training data as in-domain
samples but discard their intent labels. For eval-
uation, we mix the 4,500 unseen in-domain test
queries with 1,000 out-of-domain queries and wish
to separate two sets by their anomaly scores.

Examples taken from the two datasets can be
found in Table 1. Note that for both datasets, only
the in-domain samples are used for training, and
the source/intent labels are not used in our experi-
ments.

Evaluation metrics We rank all test samples by
their anomaly scores and follow Liang et al. (2018)
to report four different metrics, namely, Area Un-
der the Receiver Operating Characteristic Curve
(AURQOC), Detection Accuracy (DTACC), and
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Area under the Precision-Recall curve (AUPR) for
in-domain and out-of-domain testing sentences re-
spectively, denoted by AUIN and AUOUT.

Model configurations We evaluate all methods
with both BERT and RoBERTa (ba se models with
768 latent dimensions and 12 layers).

Choice of ﬁpub for BCAD We adopt the
BooksCorpus (Zhu et al.,, 2015) and English
Wikipedia, which are the sources used in common
by BERT and RoBERTa for pre-training. We split
paragraphs into sentences and sample @pub to have
the same size as D,, for BCAD.

Baselines To examine the effectiveness of our
newly proposed anomaly score based on MDF that
utilizes the representations of all layers, we com-
pare it with the following baselines.

e (Ro)BERT(a)-Single layer: It uses fy(x) men-
tioned above. We iterate all 12 layers and detailed
results of each layer are discussed in Section 5.1.

¢ (Ro)BERT(a)-Mean pooling: we construct all-
layer representation by averaging all f,(z), which
has 768 dimensions.

¢ (Ro)BERT(a)-Max pooling: we aggregate all
layers by picking largest values along each feature
dimension and get a 768-dimension vector.

¢ (Ro)BERT(a)-Euclidean distance as features
(EDF): we replace Mahalanobis distance with Eu-
clidean distance and still obtain a 12-dimension
vector.

o TF-IDF: we extract TF-IDF features and adopt
SVD to reduce high-dimensional features to 100
dimensions for computational efficiency.

All of the above methods extract features as the
input to OC-SVM to compute anomaly scores.

e BCAD + MSP: It performs zero-shot classifi-
cation after BCAD fine-tuning, as discussed in Sec-
tion 3. The temperature scaling is tuned to achieve
the best result. This method is not applicable when
no f?pub is provided.

5 Results and Discussions

In this section, we present the results for our exper-
iments and summarize our findings.
5.1 Using single-layer feature f,(x)

Table 2 shows results obtained from using the
[CLS] embedding or averaging token embeddings

SST CLINIC150

BERT RoBERTa BERT RoBERTa
CLS AVG CLS AVG| CLS AVG CLS AVG
92.7 81.7 89.8 87.8 |61.5 60.2 53.4 51.6
88.8 66.3 88.8 68.857.3 59.0 51.6 55.5
87.7 52.1 79.6 68.4|56.6 55.4 53.8 56.2
85.5 50.7 84.2 67.2|56.8 56.5 58.3 56.5
82.9 57.6 78.7 67.7|61.6 55.8 58.9 56.0
85.8 59.2 83.6 67.5(62.3 63.0 57.5 56.4
76.4 61.9 73.0 67.8 |58.2 62.3 555 56.7
74.2 582 63.5 67.2|56.3 62.8 56.2 57.1
66.7 67.4 70.0 69.8|61.9 60.9 52.7 57.8
65.8 67.5 62.9 69.3|54.3 594 51.0 58.5
62.6 63.2 75.7 68.8|60.4 58.6 55.6 59.9
68.1 63.5 70.0 71.0|60.9 64.6 55.6 58.5

Layer

S —
S = N

— D W AR LN J 0 O

Table 2: The AUROC scores of OOD detection
on the SST/CLINIC150 dataset for each layer of
BERT/RoBERTa. CLS denotes using the hidden state
of the [CLS] token and AVG represents averaging all to-
ken embeddings in the same layer. Layer 12 indicates
the top layer and layer 1 is the bottom layer right af-
ter the word embedding layer. The best result for each
column is marked in bold.

(AVG) at each layer of (Ro)BERT(a) models in the
cross-corpus and the cross-intent dataset.

We observe that detecting cross-intent OOD sam-
ples in CLINIC150 is more challenging than that of
cross-dataset OOD data in SST. This is mainly be-
cause the OOD samples in CLINIC150 are sorted
by humans and the differences between intents can
be subtle. We will further compare the performance
of these two settings in Figure 2.

The best f;(x) for OOD is dataset-specific For
the cross-corpus dataset (SST), we find that the
best results come from the top layer of both
(Ro)BERT(a). However, for the cross-intent dataset
(CLINIC150), the middle layers perform the best
when using [CLS], while the bottom layers achieve
the best results with AVG. This indicates that OOD
distributions are not simply based on certain types
of linguistic features and the strategy of choos-
ing f,(z) is dataset-specific; for some dataset, se-
mantic features play a more important role, while
sometimes we need to focus on syntactic or lexical
features. This validates the assumption that it is
beneficial to fully utilize all layers of the hidden
representations from pre-trained transformers to
detect OOD instances.

We find using fy(x) of BERT is generally better
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SST CLINIC150
#feats | AUROC DTACC AUIN AUOUT | AUROC DTACC AUIN AUOUT
BERT-Single layer (best) 768 | 9277 858 934 917 646 609 884 26.7
RoBERTa-Single layer (best) 768 | 89.8 915 792 938 599 576 86.8 227
BERT + Mean-Pooling 768 | 81.8 765 772 828 629 599 870 279
BERT + Max-Pooling 768 | 67.2 66.1 642 594 63.0 600 88.0 258
RoBERTa + Mean-Pooling 768 | 91.0 923 809 945 57.1 56.2 857 205
RoBERTa + Max-Pooling 768 | 932 919 893 95.1 549 544 848 194
BERT + EDF 12 | 90.1 84.8 928 842 553 552 843 203
BERT + MDF 12 | 933 875 949 8&9.1 76.7  T71.1 934 382
BERT + IMLM + MDF 12 | 936 881 975 894 778 722 938 39.1
BERT + BCAD + MDF 12 | 97.0 945 980 948 812 745 946 474
BERT + IMLM + BCAD + MDF 12 | 98.1 954 987 959 82.1 75.6  95.0 47.6
RoBERTa + EDF 12 | 995 958 995 994 569 569 863 19.6
RoBERTa + MDF 12 | 998 977 99.8 99.8 78.6 719 938 426
RoBERTa + IMLM + MDF 12 | 999 978 99.8 998 80.1 73.1 945 449
RoBERTa + BCAD + MDF 12 | 992 96,6 994 987 80.5 729 943 494
RoBERTa + IMLM + BCAD+MDF | 12 | 999 98.6 999 999 844 767 954 599
TF-IDF + SVD 100 | 780 720 782 732 585 565 862 21.8
BERT + BCAD + MSP - 685 690 615 654 683 635 89.7 341
RoBERTa + BCAD + MSP - 737 693 69.0 753 62.1 59.6 859 278

Table 3: OOD detection performance on SST and CLINIC 150 for all models. OC-SVM is used for computing
anomaly scores except MSP, and its parameters size is #feats. For (Ro)BERT(a)+Single-layer, the best results in
Table 2 are reported. For all MDF-based model, we only report results of AVG as sequence representation at each
layer due to space limit. Larger values of all four metrics indicate better performances. The best result for each

metric is marked in bold.

than RoBERTa, especially with [CLS]. We guess
next sentence prediction may cause this, which pre-
trains on [CLS] and is exclusive for BERT.

In later sections, (Ro)BERT(a)-Single layer will
refer to the best one in Table 2.

5.2 Overall OOD detection performance

We report the empirical results of OOD detection
in Table 3 and the following observations.

Pre-trained transformers produce good feature
representations Methods using single-layer fea-
ture f,; outperforms frequency-based features (TF-
IDF) and zero-shot classification (MSP), which val-
idates the strong representation capability granted
by self-supervised pre-training.

Simple aggregations of all layers are not so ef-
fective The results of max-pooling and mean-
polling are not very promising. Even though we
observe an absolute 0.5% boost in SST using max-
pooling, using the best single layer actually outper-
forms those simple aggregations in CLINIC150.

MDF is more effective MDF consistently out-
performs methods that directly use features fy(z),
simple aggregations of fy(x), or TF-IDF features
on all four metrics. In terms of AUROC, MDF out-
performs the best single-layer of (Ro)BERT(a) by
absolute 7.1% on SST and 14.0% on CLINIC150.

MDF also performs better than EDF. Note that
Euclidean distance is a special case of Mahalanobis
distance when the covariance is an identity matrix.
Empirically, the features generated by neural mod-
els are not invariant across all dimensions; and
the comparison between MDF and EDF validates
SVDD with a hyper-ellipsoid is better than a hyper-
sphere.

MDF is more efficient in training OC-SVM
Notice that our approach is also more computa-
tionally efficient when obtaining optimal w and
R since the optimization is performed on a new
transformed low dimensional data space (d = 12
is number of layers in f). See column #feats in
Table 3 for detailed comparisons.
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Figure 2: (a): ROC curves on the SST dataset. (b): Distribution of anomaly scores generated by IMLM + BCAD + MDEF. Both
figures are based on the BERT model. (c): ROC curves on the CLINIC150 dataset. (d): Distribution of anomaly scores generated

by IMLM + BCAD + MDF.
Sentence GT | TF-IDF | Single | MDF
(a) is a visa necessary for traveling to south africa In In In In
(b) can you tell me who sells dixie paper plates Out In Out Out
(c) | can you tell me how to solve simple algebraic equations with one variable | Out Out In Out
(d) what oil is best for chicken Out In In In

Table 4: Examples of CLINIC150 with predictions from three models, which is “In” when sample’s anomaly score is lower
than 25th percentile and “Out” when larger than 75th percentile. GT is the ground truth and Single stands for BERT-Single.

Fine-tuning techniques improve performance
From Table 3, we can see both MILM and BCAD
improve OOD detection performance when incor-
porated with MDF separately. The overall best de-
tecting performance is achieved by MILM + BCAD
+ MDF, combining both proposed fine-tuning meth-
ods with MDF.

We also find that RoBERTa outperforms BERT
when using MDF, even though features from a sin-
gle layer prefers BERT in Table 2.

5.3 Visualizations

We plot the ROC curves of four different anomaly
scores on SST in Figure 2 (a) and on CLINIC150
in Figure 2 (c), confirming that our proposed MDF
and two fine-tuning techniques improve the ability
in detecting OOD samples. We also present the
distributions of anomaly scores Z(x) generated by
our best method in Figure 2 (b) for SST and in
Figure 2 (d) for CLINIC150. For SST, the OOD de-
tector can clearly separate Z(x) of in-domain and
out-domain samples, and the in-domain scores are
densely concentrated on the low-score region. Al-
though for CLINIC150, we do observe some OOD
samples mixing with in-domain ones, accounting
for the gap of metric scores between two datasets.

5.4 Case Studies

We present some examples from CLINIC150 to-
gether with their corresponding predictions by TF-
IDF, BERT-single layer and MDF methods in Ta-
ble 4. TF-IDF predicts false positives for examples
(b) and (d) because most of the words in the exam-

ple test query are seen in the training set, like “i
would like you to buy me some paper plates” (in-
tent: order), “i need to know how long to cook
chicken for” (intent: cooking time) and etc. BERT-
single layer learns the syntax of “can you tell me
how to ...”, which is frequently seen in the train-
ing data, but it fails to discern that the semantic
meaning is out-of-domain. For example (d), all
models make the mistake, potentially associating it
with the intent: recipe (“i need to find a good way
to make chicken soup” or “what’s the best way to
make chicken stir fry”).

6 Related Work

Out-of-domain detection is essentially an important
component for trustworthy machine learning appli-
cations. There are two lines of work proposed to
perform out-of-domain detection. One is to tackle
the problem in specific multi-class classification
tasks, where well-trained classifiers are utilized to
design anomaly scores (e.g., Hendrycks and Gim-
pel, 2017; Liang et al., 2018; Lee et al., 2018; Card
etal., 2019; Hendrycks et al., 2020; Xu et al., 2020),
Those methods can only be useful when multi-class
labels are available, which limits their application
in more general domains. Our proposed work goes
beyond this limitation and can utilize large amounts
of unsupervised data.

Another line of work is based on support esti-
mation or density estimation, which assumes that
the in-domain data is in specific support or from
the high density region (Scholkopf et al., 2001; Tax
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and Duin, 2004). In principle, our work is closely
related to this line of work. Besides, Zhai et al.
(2016); Ruff et al. (2018); Zong et al. (2018) also
leverage the features of neural networks, though
these methods require designing specific network
structures for different data. Our work circumvents
the issues of prior work by designing a computa-
tionally efficient method that leverages the power-
ful representations of pre-trained transformers.
Finally, the fine-tuning techniques we use to im-
prove the representation of data are closely related
to unsupervised pre-training for transformers (De-
vlin et al., 2019; Yang et al., 2019), and recently
proposed contrastive learning (e.g., He et al., 2020;
Chen et al., 2020). Lately, Gururangan et al. (2020)
discover that performing pre-training (MLM) on
the target domain with unlabeled data can also help
to improve downstream classification performance.
To the best of our knowledge, our method is the
first to incorporate transformers and pre-training
techniques to improve out-of-domain detection.

7 Conclusion

We study the problem of detecting out-of-domain
samples with unsupervised in-domain data, which
is a more general setting for out-of-domain detec-
tion. We propose a simple yet effective method us-
ing Mahalanobis distance as features, which signif-
icantly improves the detection ability and reduces
computational cost in learning the detector. Two
domain-adaptive fine-tuning techniques are further
explored to boost the detection performance.

In the future, we are interested in deploying our
OOD method to real-world applications, such as
detecting unseen new classes for incremental few-
shot learning (Zhang et al., 2020; Xia et al., 2021)
or filtering OOD samples in data augmentations.
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