Compositional Generalization and Natural Language Variation:
Can a Semantic Parsing Approach Handle Both?

Peter Shaw Ming-Wei Chang Panupong Pasupat

Kristina Toutanova

Google Research
{petershaw, mingweichang, ppasupat, kristout}@google.com

Abstract

Sequence-to-sequence models excel at han-
dling natural language variation, but have been
shown to struggle with out-of-distribution
compositional generalization. This has mo-
tivated new specialized architectures with
stronger compositional biases, but most of
these approaches have only been evaluated on
synthetically-generated datasets, which are not
representative of natural language variation. In
this work we ask: can we develop a semantic
parsing approach that handles both natural lan-
guage variation and compositional generaliza-
tion? To better assess this capability, we pro-
pose new train and test splits of non-synthetic
datasets. We demonstrate that strong exist-
ing approaches do not perform well across a
broad set of evaluations. We also propose
NQG-TS5, a hybrid model that combines a high-
precision grammar-based approach with a pre-
trained sequence-to-sequence model. It outper-
forms existing approaches across several com-
positional generalization challenges on non-
synthetic data, while also being competitive
with the state-of-the-art on standard evalua-
tions. While still far from solving this problem,
our study highlights the importance of diverse
evaluations and the open challenge of handling
both compositional generalization and natural
language variation in semantic parsing.

1 Introduction

Sequence-to-sequence (seq2seq) models have been
widely used in semantic parsing (Dong and Lap-
ata, 2016; Jia and Liang, 2016) and excel at han-
dling the natural language variation' of human-
generated queries. However, evaluations on syn-
thetic? tasks such as SCAN (Lake and Baroni,

"We use the term natural language variation in a broad
sense to refer to the many different ways humans can express
the same meaning in natural language, including differences
in word choice and syntactic constructions.

2We make a coarse distinction between synthetic datasets,
where natural language utterances are generated by a program,

PREDOMINANT APPROACHES

Specialized
architectures
with strong

I
I
I
|
. Under-explored
I
compositional bias :
I
I

T

| General-purpose
| pre-trained models
I
I
L

COMPOSITIONAL
GENERALIZATION

(e.g. seq2seq)

SYNTHETIC NON-SYNTHETIC

NATURAL LANGUAGE VARIATION

Figure 1: We study whether a semantic parsing ap-
proach can handle both out-of-distribution composi-
tional generalization and natural language variation.
Existing approaches are commonly evaluated across
only one dimension.

2018) have shown that seq2seq models often gener-
alize poorly to out-of-distribution compositional ut-
terances, such as “jump twice” when only “jump”,
“walk”, and “walk twice” are seen during training.
This ability to generalize to novel combinations of
the elements observed during training is referred to
as compositional generalization.

This has motivated many specialized architec-
tures that improve peformance on SCAN (Li et al.,
2019; Russin et al., 2019; Gordon et al., 2019; Lake,
2019; Liu et al., 2020; Nye et al., 2020; Chen et al.,
2020). However, most approaches have only been
evaluated on synthetic datasets. While synthetic
datasets enable precise, interpretable evaluation of
specific phenomena, they are less representative
of the natural language variation that a real-world
semantic parsing system must handle.

In this paper, we ask: can we develop a semantic
parsing approach that handles both natural lan-
guage variation and compositional generalization?

and non-synthetic datasets, where natural language utterances
are collected from humans.

922

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 922-938
August 1-6, 2021. ©2021 Association for Computational Linguistics

Surprisingly, this question is understudied. As visu-
alized in Figure 1, most prior work evaluates either
out-of-distribution compositional generalization on
synthetic datasets, or in-distribution performance
on non-synthetic datasets. Notably, designing ap-
proaches that can handle both compositional gen-
eralization and the natural language variation of
non-synthetic datasets is difficult. For example,
large pre-trained seq2seq models that perform well
on in-distribution evaluations do not address most
of the compositional generalization challenges pro-
posed in SCAN (Furrer et al., 2020).

Our research question has two important motiva-
tions. First, humans have been shown to be adept
compositional learners (Lake et al., 2019). Several
authors have argued that a greater focus on com-
positional generalization is an important path to
more human-like generalization and NLU (Lake
et al., 2017; Battaglia et al., 2018). Second, it
is practically important to assess performance on
non-synthetic data and out-of-distribution exam-
ples, as random train and test splits can overesti-
mate real-world performance and miss important
error cases (Ribeiro et al., 2020). Therefore, we are
interested in approaches that do well not only on
controlled synthetic challenges of compositionality
or in-distribution natural utterances, but across all
of the diverse set of evaluations shown in Figure 2.

Our contributions are two-fold. First, on the
evaluation front, we show that performance on
SCAN is not well-correlated with performance
on non-synthetic tasks. In addition, strong existing
approaches do not perform well across all evalu-
ations in Figure 2. We also propose new Target
Maximum Compound Divergence (TMCD) train
and test splits, extending the methodology of Key-
sers et al. (2020) to create challenging evaluations
of compositional generalization for non-synthetic
datasets. We show that TMCD splits complement
existing evaluations by focusing on different as-
pects of the problem.

Second, on the modeling front, we propose NQG,
a simple and general grammar-based approach that
solves SCAN and also scales to natural utterances,
obtaining high precision for non-synthetic data. In
addition, we introduce and evaluate NQG-T5, a
hybrid model that combines NQG with T5 (Raf-
fel et al., 2020), leading to improvements across
several compositional generalization evaluations
while also being competitive on the standard splits
of GEOQUERY (Zelle and Mooney, 1996) and SP1-

923

[TRAIN AND TEST SPLITS |

I
MCD !
(Keysers et al., 2020) : TMCD
I
Add Primitive l Template
(Lake and Baroni, 2018) I (Finegan-Dollak et al., 2018)
I
Length | | | Length |
I

COMPOSITIONAL
GENERALIZATION

NON-SYNTHETIC

SYNTHETIC

NATURAL LANGUAGE VARIATION

Figure 2: We evaluate semantic parsing approaches
across a diverse set of evaluations focused on natu-
ral language variation, compositional generalization, or
both. We add TMCD splits to complement existing
evaluations. Ordering within each cell is arbitrary.

DER (Yu et al., 2018). Our results indicate that
NQG-TS5 is a strong baseline for our challenge of
developing approaches that perform well across a
diverse set of evaluations focusing on either natural
language variation, compositional generalization,
or both. Comparing five approaches across eight
evaluations on SCAN and GEOQUERY, its aver-
age rank is 1, with the rank of the best previous
approach (T5) being 2.9; performance is also com-
petitive across several evaluations on SPIDER.

While still far from affirmatively answering our
research question, our study highlights the impor-
tance of a diverse set of evaluations and the open
challenge of handling both compositional general-
ization and natural language variation.?

2 Background and Related Work

In this section, we survey recent work related to
compositional generalization in semantic parsing.

Evaluations To evaluate a model’s ability to gen-
eralize to novel compositions, previous work has
proposed several methods for generating train and
test splits, as well as several synthetic datasets.

A widely used synthetic dataset for assessing
compositional generalization is SCAN (Lake and
Baroni, 2018), which consists of natural language
commands (e.g., “jump twice”) mapping to action
sequences (e.g., “1_Jgump 1_JuMp”). One split for
SCAN is the length split, where examples are sepa-
rated by length such that the test set contains longer

0ur code and data splits are available at
https://github.com/google-research/
language/tree/master/language/ngg.

https://github.com/google-research/language/tree/master/language/nqg
https://github.com/google-research/language/tree/master/language/nqg

examples than the training set. Another is the prim-
itive split, where a given primitive (e.g., “jump”)
is seen by itself during training, but the test set
consists of the primitive recombined with other
elements observed during training (e.g., ‘“‘jump
twice”). Other synthetic datasets have been de-
veloped to evaluate aspects of compositional gen-
eralization beyond SCAN, including NACS (Bast-
ings et al., 2018), CFQ (Keysers et al., 2020), and
COGS (Kim and Linzen, 2020).

In addition to introducing the CFQ dataset, Key-
sers et al. (2020) propose Maximum Compound
Divergence (MCD) splits based on the notion of a
compound distribution. Their algorithm generates
train and test splits that maximize the divergence
of their respective compound distributions while
bounding the divergence of their respective atom
distributions. We extend their methodology to cre-
ate new TMCD splits for non-synthetic datasets.

Another method for generating train and test
splits is the template* split (Finegan-Dollak et al.,
2018). Unlike the aforementioned evaluations,
template splits have been applied to non-synthetic
datasets, primarily for text-to-SQL. In template
splits, any parse template (defined as the target
SQL query with entities anonymized) appearing in
the training set cannot appear in the test set. We
analyze and discuss template splits in § 6.1.

Finally, Herzig and Berant (2019) studies biases
resulting from methods for efficiently collecting
human-labeled data, providing further motivation
for out-of-distribution evaluations.

Approaches Many specialized architectures
have been developed to address the compositional
generalization challenges of SCAN. Several of
them have recently reached 100% accuracy across
multiple SCAN challenges (Liu et al., 2020; Nye
et al., 2020; Chen et al., 2020). Similarly to the
NQG-TS5 approach we propose in § 4, all of these
models incorporate discrete structure. However,
unlike NQG-T35, they have only been evaluated on
synthetic parsing tasks.

Recently, Herzig and Berant (2020) also begins
to address our research question, proposing an ap-
proach that not only solves several SCAN chal-
lenges but also achieves strong performance on the
standard and template splits of the non-synthetic
dataset GEOQUERY. However, their approach re-
quires some manual task-specific engineering. We
compare NQG-T5 with this approach and other

4 Also referred to as a query split.

924

SCAN:-inspired architectures. Oren et al. (2020)
and Zheng and Lapata (2020) also explored compo-
sitional generalization on non-synthetic datasets
by focusing on the template splits proposed by
Finegan-Dollak et al. (2018), demonstrating im-
provements over standard seq2seq models.

The effect of large-scale pre-training on compo-
sitional generalization ability has also been studied.
Furrer et al. (2020) finds that pre-training alone can-
not solve several compositional generalization chal-
lenges, despite its effectiveness across NLP tasks
such as question answering (Raffel et al., 2020).

While our work focuses on modeling approaches,
compositional data augmentation techniques have
also been proposed (Jia and Liang, 2016; Andreas,
2020). NQG-T5 outperforms previously reported
results for these methods, but more in-depth analy-
sis is needed.

3 Target Maximum Compound
Divergence (TMCD) Splits

The existing evaluations targeting compositional
generalization for non-synthetic tasks are template
splits and length splits. Here we propose an addi-
tional method which expands the set of available
evaluations by generating data splits that maximize
compound divergence over non-synthetic datasets,
termed Target Maximum Compound Divergence
(TMCD) splits. As we show in § 6, it results in a
generalization problem with different characteris-
tics that can be much more challenging than tem-
plate splits, and contributes to the comprehensive-
ness of evaluation.

In standard MCD splits (Keysers et al., 2020),
the notion of compounds requires that both source
and target are generated by a rule-based proce-
dure, and therefore cannot be applied to existing
non-synthetic datasets where natural language ut-
terances are collected from humans. For TMCD,
we propose a new notion of compounds based only
on the target representations. We leverage their
known syntactic structure to define atoms and com-
pounds. For instance, example atoms in FunQL are
longest and river, and an example compound
1S longest (river). Detailed definitions of atoms
and compounds for each dataset we study can be
found in Appendix B.3.

Given this definition of compounds, our defini-
tion of compound divergence, D¢, is the same as
that of Keysers et al. (2020). Specifically,

DC =1- 00.1(]:TRAIN ||]:TEST)a

where Frray and Fregr are the weighted frequency
distributions of compounds in the training and
test sets, respectively. The Chernoff coefficient
Co(P|Q) = X, p¥ @, (Chung et al., 1989) is
used with o = 0.1.

For TMCD, we constrain atom divergence by re-
quiring that every atom appear at least once in the
training set. An atom constraint is desirable so that
the model knows the possible target atoms to gener-
ate. A greedy algorithm similar to the one of Key-
sers et al. (2020) is used to generate splits that ap-
proximately maximize compound divergence. First,
we randomly split the dataset. Then, we swap ex-
amples until the atom constraint is satisfied. Finally,
we sequentially identify example pairs that can be
swapped between the train and test sets to increase
compound divergence without violating the atom
constraint, breaking when a swap can no longer be
identified.

4 Proposed Approach: NQG-TS

We propose NQG-T5, a hybrid semantic parser
that combines a grammar-based approach with a
seq2seq model. The two components are motivated
by prior work focusing on compositional general-
ization and natural language variation, respectively,
and we show in § 5 that their combination sets a
strong baseline for our challenge.

The grammar-based component, NQG, consists
of a discriminative Neural parsing model and a
flexible Quasi-synchronous Grammar induction
algorithm which can operate over arbitrary pairs
of strings. Like other grammar-based approaches,
NQG can fail to produce an output for certain in-
puts. As visualized in Figure 3, in cases where
NQG fails to produce an output, we return the out-
put from T5 (Raffel et al., 2020), a pre-trained
seq2seq model. This simple combination can work
well because NQG often has higher precision than
TS5 for cases where it produces an output, especially
in out-of-distribution settings.

We train NQG and T5 separately. Training data
for both components consists of pairs of source and
target strings, referred to as x and y, respectively.

4.1 NQG Component

NQG is inspired by more traditional approaches
to semantic parsing based on grammar formalisms
such as CCG (Zettlemoyer and Collins, 2005, 2007;
Kwiatkowski et al., 2010, 2013) and SCFG (Wong
and Mooney, 2006, 2007; Andreas et al., 2013; Li

//\\\\
— | R NQG has no
‘\ S }_» un / Q as_» Run

NQG [S output? T5
yes ‘/Return TS5 output)
‘/ Return NQG output\‘

Figure 3: Overview of how predictions are generated
by NQG-T5, a simple yet effective combination of
T5 (Raffel et al., 2020) with a high-precision grammar-
based approach, NQG.

et al., 2015). NQG combines a QCFG induction al-
gorithm with a neural parsing model. Training is a
two-stage process. First, we employ a compression-
based grammar induction technique to construct
our grammar. Second, based on the induced gram-
mar, we build the NQG semantic parsing model
via a discriminative latent variable model, using
a powerful neural encoder to score grammar rule
applications anchored in the source string x.

4.1.1 NQG Grammar Induction

Grammar Formalism Synchronous context-
free grammars (SCFGs) synchronously generate
strings in both a source and target language. Com-
pared to related work based on SCFGs for machine
translation (Chiang, 2007) and semantic parsing,
NQG uses a slightly more general grammar formal-
ism that allows repetition of a non-terminal with the
same index on the target side. Therefore, we adopt
the terminology of quasi-synchronous context-free
grammars (Smith and Eisner, 2006), or QCFGs,
to refer to our induced grammar G.> Our gram-
mar G contains a single non-terminal symbol, NT'.
We restrict source rules to ones containing at most
2 non-terminal symbols, and do not allow unary
productions as source rules. This enables efficient
parsing using an algorithm similar to CKY (Cocke,
1969; Kasami, 1965; Younger, 1967) that does not
require binarization of the grammar.

Induction Procedure To induce G from the
training data, we propose a QCFG induction algo-
rithm that does not rely on task-specific heuristics
or pre-computed word alignments. Notably, our
approach makes no explicit assumptions about the
source or target languages, beyond those implicit
in the QCFG formalism. Table 1 shows examples
of induced rules.

Our grammar induction algorithm is guided by
the principle of Occam’s razor, which leads us to

3See Appendix A.1 for additional background on QCFGs.

925

SCAN

NT — (turn right, | TURN_RIGHT)
NT — <NT[1] after NT'D] s NT[Q] NT[1]>
NT — <NT[1] thrice, NT[l] NT[l] NT[1]>

GEOQUERY

NT — (names of NTjj, NTjy))

NT — (towns, cities)

NT — (N 171 have NTjs) running through them,
intersection (NT“] , traverse_1 (NT[Q])))

SPIDER-SSP

NT — (reviewer, reviewer)
NT — (what is the id of the NT};) named N'Tjy ?,
select rid from NT};; where name =" NTjy ")

Table 1: Examples of induced QCFG rules. The sub-
script 1 in N'T7y) indicates the correspondence between
source and target non-terminals.

seek the smallest, simplest grammar that explains
the data well. We follow the Minimum Description
Length (MDL) principle (Rissanen, 1978; Grun-
wald, 2004) as a way to formalize this intuition.
Specifically, we use standard two-part codes to
compute description length, where we are inter-
ested in an encoding of targets y given the inputs
X, across a dataset D consisting of these pairs. A
two-part code encodes the model and the targets
encoded using the model; the two parts measure
the simplicity of the model and the extent to which
it can explain the data, respectively.

For grammar induction, our model is simply our
grammar, . The codelength can therefore be ex-
pressed as H(G) — >_y vep logs Pg(y[x) where
H(G) corresponds to the codelength of some en-
coding of G. We approximate H(G) by counting
terminal (C7) and non-terminal (Cn) symbols in
the grammar’s rules, R. For Py, we assume a
uniform distribution over the set of possible deriva-
tions.® As the only mutable aspect of the grammar
during induction is the set of rules R, we abuse
notation slightly and write our approximate code-
length objective as a function of 'R only:

L(R) =InNCN(R) + l7Cr(R)—
79
> o 2
(x,y)€D ‘Zx’*’
where Zgy is the set of all derivations in G that
yield the pair of strings x and y, while Zg* D Zgy

8This can be viewed as a conservative choice, as in practice
we expect our neural parser to learn a better model for P (y|x)
than a naive uniform distribution over derivations.

is the set of derivations that yield source string x
and any target string. The constants [and /7 can
be interpreted as the average bitlength for encoding
non-terminal and terminal symbols, respectively.
In practice, these are treated as hyperparameters.

We use a greedy search algorithm to find a
grammar that approximately minimizes this code-
length objective. We initialize G by creating a rule
NT — (x,y) for every training example (x,y).
By construction, the initial grammar perfectly fits
the training data, but is also very large. Our algo-
rithm iteratively identifies a rule that can be added
to G that decreases our codelength objective by
enabling > 1 rule(s) to be removed, under the in-
variant constraint that G can still derive all training
examples. The search completes when no rule that
decreases the objective can be identified. In prac-
tice, we use several approximations to efficiently
select a rule at each iteration. Additional details
regarding the grammar induction algorithm are de-
scribed in Appendix A.2.

4.1.2 NQG Semantic Parsing Model

Based on the induced grammar G, we train a dis-
criminative latent variable parsing model, using a
method similar to that of Blunsom et al. (2008).
We define p(y | x) as:

ply |x)= Y plz]x),

zEZf,y

where Z,%,y is the set of derivations of x and y in
G. We define p(z | x) as:

o enlsx)
Pl) = = (s %)’

z’EZf,*

where s(z, x) is a derivation score and the denom-
inator is a global partition function. Similarly to
the Neural CRF model of Durrett and Klein (2015),
the scores decompose over anchored rules. Unlike
Durrett and Klein (2015), we compute these scores
based on contextualized representations from a
BERT (Devlin et al., 2019) encoder. Additional de-
tails regarding the model architecture can be found
in Appendix A.3.

At training time, we use a Maximum Marginal
Likelihood (MML) objective. We preprocess each
example to produce parse forest representations
for both Zgy and Z,%*, which correspond to the
numerator and denominator of our MML objective,
respectively. By using dynamic programming to

926

efficiently sum derivation scores inside the training
loop, we can efficiently compute the exact MML
objective without requiring approximations such as
beam search.

At inference time, we select the highest scoring
derivation using an algorithm similar to CKY that
considers anchored rule scores generated by the
neural parsing model. We output the corresponding
target if it can be derived by a CFG defining valid
target constructions for the given task.

4.1.3 NQG Discussion

We note that NQG is closely related to work that
uses synchronous grammars for hierarchical statis-
tical machine translation, such as Hiero (Chiang,
2007). Unlike Hiero, NQG does not rely on an
additional word alignment component. Moreover,
Hiero simply uses relative frequency to learn rule
weights. Additionally, in contract with traditional
SCFG models for machine translation applied to
semantic parsing (Wong and Mooney, 2006; An-
dreas et al., 2013), our neural model conditions on
global context from the source x via contextual
word embeddings, and our grammar’s rules do not
need to carry source context to aid disambiguation.

4.2 TS5 Component

T5 (Raffel et al., 2020) is a pre-trained sequence-to-
sequence Transformer model (Vaswani et al., 2017).
We fine-tune TS5 for each task.

5 Experiments

We evaluate existing approaches and the newly
proposed NQG-T5 across a diverse set of evalu-
ations to assess compositional generalization and
handling of natural language variation. We aim to
understand how the approaches compare to each
other for each type of evaluation and in aggregate,
and how the performance of a single approach may
vary across different evaluation types.

5.1 Experiments on SCAN and GEOQUERY

For our main experiments, we focus on evaluation
across multiple splits of two datasets with compo-
sitional queries: SCAN (Lake and Baroni, 2018)
and GEOQUERY (Zelle and Mooney, 1996; Tang
and Mooney, 2001). The two datasets have been
widely used to study compositional generalization
and robustness to natural language variation, re-
spectively. Both datasets are closed-domain and
have outputs with straightforward syntax, enabling

927

us to make clear comparisons between synthetic vs.
non-synthetic setups.

Approaches For NQG-T?3, to assess the effect of
model size, we compare two sizes of the underlying
TS model: Base (220 million parameters) and 3B (3
billion parameters). To evaluate NQG individually,
we treat any example where no output is provided
as incorrect when computing accuracy.

We select strong approaches from prior work
that have performed well in at least one setting.
We group them into two families of approaches
described in Figure 1. First, for general-purpose
models that have shown strong ability to handle
natural language variation, we consider TS, a pre-
trained seq2seq model, in both Base and 3B sizes.

Second, for specialized methods with strong
compositional biases, we consider approaches that
have been developed for SCAN. Some previous
approaches for SCAN require task-specific infor-
mation such as the mapping of atoms (Lake, 2019;
Gordon et al., 2019) or a grammar mimicking the
training data (Nye et al., 2020), and as such are dif-
ficult to adapt to non-synthetic datasets. Among the
approaches that do not need task-specific resources,
we evaluate two models with publicly available
code: Syntactic Attention (Russin et al., 2019) and
CGPS (Liet al., 2019). We report results on SCAN
from the original papers as well as new results on
our proposed data splits.

Datasets For the SCAN dataset, we evaluate us-
ing the length split and two primitive splits, jump
and turn left, included in the original dataset (Lake
and Baroni, 2018). We also evaluate using the
SCAN MCD splits from Keysers et al. (2020).
GEOQUERY (Zelle and Mooney, 1996) contains
natural language questions about US geography.
Similarly to prior work (Dong and Lapata, 2016,
2018), we replace entity mentions with placehold-
ers. We use a variant of Functional Query Lan-
guage (FunQL) as the target representation (Kate
et al., 2005). In addition to the standard split of
Zettlemoyer and Collins (2005), we generate multi-
ple splits focusing on compositional generalization:
a new split based on query length and a TMCD
split, each consisting of 440 train and 440 test ex-
amples. We also generate a new template split
consisting of 441 train and 439 test examples.’

"We generate a new template split rather than use the GEo-
QUERY template split of Finegan-Dollak et al. (2018) to avoid
overlapping templates between the train and test sets when
mapping from SQL to FunQL.

SCAN GEOQUERY Avg.
System Jump TurnLeft Len. MCD Standard Template Len. TMCD Rank
LANE (Liu et al., 2020) 100 — 100 100 — — — — —
NSSM (Chen et al., 2020) 100 — 100 — — — — — —
Syntactic Attn. (Russin et al., 2019) 91.0 99.9 152 29 71.5 70.6 23.6 0.0 39
CGPS (Li et al., 2019) 98.8 99.7 203 20 62.1 32.8 93 323 44
GECA (Andreas, 2020) 87.0 — — 78.0f — — — —
SBSP (Herzig and Berant, 2020) 100 100 100 100 86.17 — — — —
SBSP —lexicon 100 100 100 100 78.91 — — — —
T5-Base (Raffel et al., 2020) 99.5 62.0 144 154 92.9 87.0 39.1 543 29
T5-3B (Raffel et al., 2020) 99.0 65.1 33 116 93.2 83.1 368 51.6 —
NQG-T5-Base 100 100 100 100 92.9 88.8 522 56.6 1.0
NQG-T5-3B 100 100 100 100 93.7 85.0 514 541 —
NQG 100 100 100 100 76.8 61.9 374 411 2.3

Table 2: Main Results. Existing approaches do not excel on a diverse set of evaluations across synthetic and
non-synthetic tasks, but NQG-T5 obtains significant improvements. For comparison, we report the average rank
among 5 approaches across all 8 evaluations. Gray cells are previously reported results. T indicates differences in
GEOQUERY settings (see discussion in § 5.1). Boldfaced results are within 1.0 points of the best result.

We report exact-match accuracy for both
datasets.® Hyperparameters and pre-processing de-
tails can be found in Appendix B.

Results The results are presented in Table 2.
The results for T5 on SCAN are from Furrer
et al. (2020). Additionally, we include results
for GECA® (Andreas, 2020), a data augmentation
method, as well as LANE (Liu et al., 2020) and
NSSM (Chen et al., 2020)'°. We also compare with
SpanBasedSP!! (Herzig and Berant, 2020).

From the results, we first note that the rela-
tive performance of approaches on compositional
splits of SCAN is not very predictive of their rela-
tive performance on compositional splits of GEO-
QUERY. For example, GGPS is better than T5
on the length split of SCAN but is significantly
worse than TS on the length split of GEOQUERY.
Similarly, the ranking of most methods is different

8For GEOQUERY we report the mean of 3 runs for NQG,
with standard deviations reported in Appendix B.5

“GECA reports GEOQUERY results on a setting with Pro-
log logical forms and without anonymization of entities. Note
that the performance of GECA depends on both the quality of
the generated data and the underlying parser (Jia and Liang,
2016), which can complicate the analysis.

These SCAN-motivated approaches both include aspects
of discrete search and curriculum learning, and have not been
demonstrated to scale effectively to non-synthetic parsing
tasks. Moreover, the code is either not yet released (NSSM)
or specialized to SCAN (LANE).

1SpanBasedSP preprocesses SCAN to add program-level
supervision. For GEOQUERY, they similarly use FunQL, but
uses slightly different data preprocessing and report denotation
accuracy. We computed NQG-T5’s denotation accuracy to be
2.1 points higher than exact-match accuracy on the standard
split of GeoQuery.

on the (T)MCD splits of the two datasets. Sec-
ond, the proposed NQG-T5 approach combines the
strengths of T5 and NQG to achieve superior re-
sults across all evaluations. It improves over T5 on
compositional generalization for both synthetic and
non-synthetic data while maintaining T5’s perfor-
mance on handling in-distribution natural language
variation, leading to an average rank of 1.0 com-
pared to 2.9 for TS. (To the best of our knowledge,
both TS5 and NQG-TS5 achieve new state-of-the-art
accuracy on the standard split of GEOQUERY.)
Finally, we note that there is substantial room
for improvement on handling both compositional
generalization and natural language variation.

5.2 Experiments on SPIDER

We now compare the approaches on SPIDER (Yu
et al., 2018), a non-synthetic text-to-SQL dataset
that includes the further challenges of schema link-
ing and modeling complex SQL syntax.

SPIDER contains 10,181 questions and 5,693
unique SQL queries across 138 domains. The
primary evaluation is in the cross-database set-
ting, where models are evaluated on examples for
databases not seen during training. The primary
challenge in this setting is generalization to new
database schemas, which is not our focus. There-
fore, we use a setting where the databases are
shared between train and test examples.'> We gen-

"2This is similar to the “example split” discussed in Yu
et al. (2018). However, we only consider examples in the
original training set for databases with more than 50 examples
to ensure sufficient coverage over table and column names in

928

SPIDER-SSP

System Rand. Templ. Len. TMCD
T5-Base —schema 76.5 453 425 423
T5-Base 82.0 593 49.0 60.9
T5-3B 85.6 648 567 69.6
NQG-T5-Base 81.8 592 490 60.8
NQG-T5-3B 85.4 647 567 695
NQG 1.3 0.5 0.0 0.5

Table 3: Results on Spider-SSP. While the text-to-SQL
task is not modeled well by the NQG grammar due to
SQL’s complex syntax, NQG-TS5 still performs well by
relying on T5.

erate 3 new splits consisting of 3,282 train and
1,094 test examples each: a random split, a split
based on source length, and a TMCD split. We also
generate a template split by anonymizing integers
and quoted strings, consisting of 3,280 train and
1,096 test examples. We adopt the terminology
of Suhr et al. (2020) and use SPIDER-SSP to re-
fer to these same-database splits, and use SPIDER-
XSP to refer to the standard cross-database setting.

We prepend the name of the target database to
the source sequence. For TS, we also serialize the
database schema as a string and append it to the
source sequence similarly to Suhr et al. (2020). We
report exact set match without values, the standard
Spider evaluation metric (Yu et al., 2018).

Results Table 3 shows the results of TS and
NQG-T5 on different splits of SPIDER-SSP.
We also show T5-Base performance without the
schema string appended. The text-to-SQL map-
ping is not well modeled by NQG. Nevertheless,
the performance of NQG-T5 is competitive with
T3, indicating a strength of the hybrid approach.

Table 4 shows the results on SPIDER-XSP,
which focuses on handling unseen schema rather
than compositional generalization. To our surprise,
T5-3B proves to be competitive with the state-of-
the-art (Choi et al., 2020) for approaches without
access to database contents beyond the table and
column names. As NQG-T5 simply uses T5’s out-
put when the induced grammar lacks coverage, it
too is competitive.

6 Analysis
6.1 Comparison of Data Splits

Table 6 compares the compound divergence, the
number of test examples with unseen atoms, and

the training data. This includes 51 databases.

SPIDER-XSP
System Dev
RYANSQL v2 (Choi et al., 2020) 70.6
T5-Base 57.1
T5-3B 70.0
NQG-T5-Base 57.1
NQG-T5-3B 70.0
NQG 0.0

Table 4: Although Spider-XSP is not our focus, T5 and
NQG-TS5 are competitive with the state-of-the-art.

the accuracy of T5-Base across various splits. For
GEOQUERY, the TMCD split is significantly more
challenging than the template split. However, for
SPIDER, the template and TMCD splits are simi-
larly challenging. Notably, template splits do not
have an explicit atom constraint. We find that for
the SPIDER template split, T5-Base accuracy is
53.9% for the 30.3% of test set examples that con-
tain an atom not seen during training, and 61.6%
on the remainder, indicating that generalization to
unseen atoms can contribute to the difficulty of
template splits.!> Length splits are also very chal-
lenging, but they lead to a more predictable error
pattern for seq2seq models, as discussed next.

6.2 TS Analysis

We analyze NQG-T5’s components, starting with
T5. On length splits, there is a consistent pat-
tern to the errors. T5’s outputs on the test set are
not significantly longer than the maximum length
observed during training, leading to poor perfor-
mance. This phenomenon was explored by New-
man et al. (2020).

Diagnosing the large generalization gap on the
(T)MCD splits is more challenging, but we noticed
several error patterns. For T5-Base on the GEO-
QUERY TMCD split, in 52 of the 201 incorrect
predictions (26%), the first incorrectly predicted
symbol occurs when the gold symbol has 0 prob-
ability under a trigram language model fit to the
training data. This suggests that the decoder’s im-
plicit target language model might have over-fitted
to the distribution of target sequences in the train-
ing data, hampering its ability to generate novel
compositions. Non-exclusively with these errors,
53% of the incorrect predictions occur when the
gold target contains an atom that is seen in only 1

BFuture work could explore different choices for construct-

ing template and TMCD splits, such as alternative compound
definitions and atom constraints.

929

SCAN GEOQUERY SPIDER-SSP
Metric Jump TurnL. Len. MCD Stand. Templ. Len. TMCD Rand. Templ. Len. TMCD
NQG Coverage 100 100 100 100 80.2 645 433 437 1.5 0.5 0.0 0.6
NQG Precision 100 100 100 100 95.7 95.8 864 941 87.5 83.3 — 85.7

Table 5: NQG coverage and precision. NQG-T5 outperforms T5 when NQG has higher precision than TS over the

subset of examples it covers.

Dataset Split %za Do T5-Base
GEOQUERY Standard 0.3 0.03 92.9
GEOQUERY Random 1.4 0.03 91.1
GEOQUERY Template 0.9 0.07 87.0
GEOQUERY Length 43 0.17 39.1
GEOQUERY TMCD 0 0.19 54.3
SPIDER-SSP Random 6.2 0.03 82.0
SPIDER-SSP Template 30.3 0.08 59.2
SPIDER-SSP Length 274 0.08 49.0
SPIDER-SSP TMCD 0 0.18 60.9

Table 6: Percentage of test examples with atoms not in-
cluded in the training set (% 4), compound divergence
(D¢), and T5-Base accuracy for various dataset splits.

example during training, suggesting that TS strug-
gles with single-shot learning of new atoms. In
other cases, the errors appear to reflect over-fitting
to spurious correlations between inputs and outputs.
Some error examples are shown in Appendix B.6.

6.3 NQG Analysis

To analyze NQG, we compute its coverage (frac-
tion of examples where NQG produces an output)
and precision (fraction of examples with a correct
output among ones where an output is produced)
on different data splits. The results in Table 5 show
that NQG has high precision but struggles at cover-
age on some data splits.

There is a significant difference in the effective-
ness of the grammar induction procedure among
the three datasets. Induction is particularly unsuc-
cessful for SPIDER, as SQL has complicated syn-
tax and often requires complex coordination across
discontinuous clauses. Most of the induced rules
are limited to simply replacing table and column
names or value literals with non-terminals, such as
the rule shown in Table 1, rather than representing
nested sub-structures. The degree of span-to-span
correspondence between natural language and SQL
is seemingly lower than for other formalisms such
as FunQL, which limits the effectiveness of gram-
mar induction. Intermediate representations for
SQL such as SemQL (Guo et al., 2019) may help

increase the correspondence between source and
target syntax.

For both GEOQUERY and SPIDER, NQG is lim-
ited by the expressiveness of QCFGs and the simple
greedy search procedure used for grammar induc-
tion, which can lead to sub-optimal approxima-
tions of the induction objective. Notably, QCFGs
cannot directly represent relations between source
strings, such as semantic similarity, or relations
between target strings, such as logical equivalence
(e.g. intersect (a,b) < intersect (b, a)), that
could enable greater generalization. However, such
extensions pose additional scalability challenges,
requiring new research in more flexible approaches
for both learning and inference.

7 Conclusions

Our experiments and analysis demonstrate that
NQG and T5 offer different strengths. NQG gen-
erally has higher precision for out-of-distribution
examples, but is limited by the syntactic constraints
of the grammar formalism and by requiring exact
lexical overlap with induced rules in order to pro-
vide a derivation at inference time. T5’s coverage
is not limited by such constraints, but precision can
be significantly lower for out-of-distribution exam-
ples. With NQG-T5, we offer a simple combination
of these strengths. While accuracy is still limited
for out-of-distribution examples where NQG lacks
coverage, we believe it sets a strong and simple
baseline for future work.

More broadly, our work highlights that evaluat-
ing on a diverse set of benchmarks is important,
and that handling both out-of-distribution composi-
tional generalization and natural language variation
remains an open challenge for semantic parsing.

Acknowledgements

We thank Kenton Lee, William Cohen, Jeremy
Cole, and Luheng He for helpful discussions.
Thanks also to Emily Pitler, Jonathan Herzig, and
the anonymous reviewers for their comments and
suggestions.

930

Ethical Considerations

This paper proposed to expand the set of bench-
marks used to evaluate compositional generaliza-
tion in semantic parsing. While we hope that en-
suring semantic parsing approaches perform well
across a diverse set of evaluations, including ones
that test out-of-distribution compositional gener-
alization, would lead to systems that generalize
better to languages not well represented in small
training sets, we have only evaluated our methods
on semantic parsing datasets in English.

Our NQG-T5 method uses a pre-trained TS5
model, which is computationally expensive in fine-
tuning and inference, especially for larger mod-
els (see Appendix B.1 for details on running time
and compute architecture). Our method does not
require pre-training of large models, as it uses
pre-existing model releases. NQG-T5-base out-
performs or is comparable in accuracy to T5-3B on
the non-SQL datasets, leading to relative savings
of computational resources.

References

Alfred V Aho and Jeffrey D Ullman. 1972. The the-
ory of parsing, translation, and compiling, volume 1.
Prentice-Hall Englewood Cliffs, NJ.

Jacob Andreas. 2020. Good-enough compositional
data augmentation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 75567566, Online. Association
for Computational Linguistics.

Jacob Andreas, Andreas Vlachos, and Stephen Clark.
2013. Semantic parsing as machine translation. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 47-52, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Jasmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: Scan both left and right. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 47-55.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst,
Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Ma-
teusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. 2018. Rela-
tional inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261.

Phil Blunsom, Trevor Cohn, and Miles Osborne. 2008.
A discriminative latent variable model for statisti-
cal machine translation. In Proceedings of ACL-08:

931

HLT, pages 200-208, Columbus, Ohio. Association
for Computational Linguistics.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn
Song, and Denny Zhou. 2020. Compositional gen-
eralization via neural-symbolic stack machines. Ad-

vances in Neural Information Processing Systems,
33.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. computational linguistics, 33(2):201-228.

DongHyun Choi, Myeongcheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2020. RYANSQL: recur-
sively applying sketch-based slot fillings for com-
plex text-to-sql in cross-domain databases. arXiv
preprint arXiv:2004.03125.

JK Chung, PL Kannappan, CT Ng, and PK Sahoo.
1989. Measures of distance between probability dis-
tributions. Journal of mathematical analysis and ap-
plications, 138(1):280-292.

John Cocke. 1969. Programming languages and their
compilers: Preliminary notes. New York Univer-
sity.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33-43.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731-742, Melbourne, Australia. Association
for Computational Linguistics.

Greg Durrett and Dan Klein. 2015. Neural crf parsing.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
302-312.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351-360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://www.aclweb.org/anthology/P13-2009
https://www.aclweb.org/anthology/P08-1024
https://www.aclweb.org/anthology/P08-1024
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schirli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Jonathan Gordon, David Lopez-Paz, Marco Baroni,
and Diane Bouchacourt. 2019. Permutation equiv-
ariant models for compositional generalization in
language. In International Conference on Learning
Representations.

Peter Griinwald. 1995. A minimum description length
approach to grammar inference. In International
Joint Conference on Artificial Intelligence, pages
203-216. Springer.

Peter Grunwald. 2004. A tutorial introduction to
the minimum description length principle. arXiv
preprint math/0406077.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4524—
4535.

Jonathan Herzig and Jonathan Berant. 2019. Don’t
paraphrase, detect! rapid and effective data collec-
tion for semantic parsing. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3801-3811.

Jonathan Herzig and Jonathan Berant. 2020. Span-
based semantic parsing for compositional general-
ization. arXiv preprint arXiv:2009.06040.

Theo MV Janssen and Barbara H Partee. 1997. Com-
positionality. In Handbook of logic and language,
pages 417—473. Elsevier.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22.

T. Kasami. 1965. An efficient recognition and syntax
analysis algorithm for context-free languages. Tech-
nical Report AFCRL-65-758, Air Force Cambridge
Research Laboratory, Bedford, MA.

Rohit J Kate, Yuk Wah Wong, and Raymond J Mooney.
2005. Learning to transform natural to formal lan-
guages. In Proceedings of the National Conference
on Artificial Intelligence, volume 20, page 1062.
Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,

932

Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In /CLR.

Najoung Kim and Tal Linzen. 2020. COGS: A com-
positional generalization challenge based on seman-
tic interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087-9105, Online. As-
sociation for Computational Linguistics.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 conference on empirical methods in natural
language processing, pages 1545-1556.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2010. Inducing proba-
bilistic ccg grammars from logical form with higher-
order unification. In Proceedings of the 2010 con-
ference on empirical methods in natural language
processing, pages 1223-1233. Association for Com-
putational Linguistics.

B. M. Lake, T. Linzen, and M. Baroni. 2019. Human
few-shot learning of compositional instructions. In
Proceedings of the 41st Annual Conference of the
Cognitive Science Society.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873-2882.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. In Ad-
vances in Neural Information Processing Systems,
pages 9788-9798.

Brenden M Lake, Tomer D Ullman, Joshua B Tenen-
baum, and Samuel J Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and brain sciences, 40.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188-197.

Junhui Li, Muhua Zhu, Wei Lu, and Guodong Zhou.
2015. Improving semantic parsing with enriched
synchronous context-free grammar. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1455—
1465, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hes-
tness. 2019. Compositional generalization for prim-
itive substitutions. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language

https://arxiv.org/pdf/1912.09713.pdf
https://arxiv.org/pdf/1912.09713.pdf
https://arxiv.org/pdf/1912.09713.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/D15-1170
https://doi.org/10.18653/v1/D15-1170
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4284-4293, Hong Kong, China. As-
sociation for Computational Linguistics.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, and
Dongmei Zhang. 2020. Compositional generaliza-
tion by learning analytical expressions. Advances in
Neural Information Processing Systems, 33.

Richard Montague. 1970. Universal grammar. Theo-
ria, 36(3):373-398.

Benjamin Newman, John Hewitt, Percy Liang, and
Christopher D. Manning. 2020. The EOS decision
and length extrapolation. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 276-291,
Online. Association for Computational Linguistics.

Maxwell I Nye, Armando Solar-Lezama, Joshua B
Tenenbaum, and Brenden M Lake. 2020. Learn-
ing compositional rules via neural program synthe-
sis. arXiv preprint arXiv:2003.05562.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving com-
positional generalization in semantic parsing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 2482-2495.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 209-217,
Boulder, Colorado. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21:1-67.

Sujith Ravi and Kevin Knight. 2009. Minimized mod-
els for unsupervised part-of-speech tagging. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 504-512, Suntec, Singapore. Associ-
ation for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902—
4912, Online. Association for Computational Lin-
guistics.

933

Jorma Rissanen. 1978. Modeling by shortest data de-
scription. Automatica, 14(5):465-471.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics. arXiv preprint arXiv:1904.09708.

Markus Saers, Karteek Addanki, and Dekai Wu. 2013.
Unsupervised transduction grammar induction via
minimum description length. In Proceedings of the
Second Workshop on Hybrid Approaches to Transla-
tion, pages 67-73, Sofia, Bulgaria. Association for
Computational Linguistics.

David A Smith and Jason Eisner. 2006. Quasi-
synchronous grammars: Alignment by soft projec-
tion of syntactic dependencies. In Proceedings on
the Workshop on Statistical Machine Translation,
pages 23-30.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818-827, Vancouver, Canada.
Association for Computational Linguistics.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372—
8388.

Lappoon R Tang and Raymond J Mooney. 2001. Us-
ing multiple clause constructors in inductive logic
programming for semantic parsing. In European
Conference on Machine Learning, pages 466-477.
Springer.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 960-967.

Yuk Wah Wong and Raymond J Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the main conference
on Human Language Technology Conference of the
North American Chapter of the Association of Com-
putational Linguistics, pages 439-446. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2020.blackboxnlp-1.26
https://doi.org/10.18653/v1/2020.blackboxnlp-1.26
https://www.aclweb.org/anthology/N09-1024
https://www.aclweb.org/anthology/N09-1024
https://www.aclweb.org/anthology/P09-1057
https://www.aclweb.org/anthology/P09-1057
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://www.aclweb.org/anthology/W13-2810
https://www.aclweb.org/anthology/W13-2810
http://aclweb.org/anthology/P17-1076
http://aclweb.org/anthology/P17-1076

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control, 10(2):189-208.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911-3921, Brussels, Belgium. Association for
Computational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the thirteenth na-

tional conference on Artificial intelligence-Volume 2,
pages 1050-1055.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to log-
ical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678—687.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
Proceedings of the Twenty-First Conference on Un-
certainty in Artificial Intelligence, pages 658—666.
AUALI Press.

Hao Zheng and Mirella Lapata. 2020. Compositional

generalization via semantic tagging. arXiv preprint
arXiv:2010.11818.

934

https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

Appendix

We organize the appendix into two sections:
e Additional details for NQG in Appendix A.

e Additional experimental details and analysis
in Appendix B.

A NQG Details

In this section we describe the NQG grammar
induction algorithm and parsing model in detail,
starting with relevant background and notation for
QCFGs.

A.1 Background: SCFGs and QCFGs

Synchronous Context-Free Grammars (SCFGs)
have been used to model the hierarchical mapping
between pairs of strings in areas such as compiler
theory (Aho and Ullman, 1972) and natural lan-
guage processing.

Informally, SCFGs can be viewed as an exten-
sion of Context-Free Grammars (CFGs) that syn-
chronously generate strings in both a source and
target language. We write SCFG rules as:

S = (e, f)

Where S is a non-terminal symbol, and « and
are strings of non-terminal and terminal symbols.
An SCFG rule can be viewed as two CFG rules,
S — aand S — [with a pairing between the
occurrences of non-terminal symbols in « and f.
This pairing is indicated by assigning each non-
terminal in « and $ an index € N. Non-terminals
sharing the same index are called /inked. Following
convention, we denote the index for a non-terminal
using a boxed subscript, e.g. NTj;). A complete
SCFG derivation is a pair of parse trees, one for the
source language and one for the target language.
An example derivation is shown in Figure 4.

The =" operator refers to a derives relation,
such that (a!, BY) =" (a?, 3?) states that the
string pair (a2, 3%) can be generated from (a!, 3')
by applying the rule ». We write = to leave the
rule unspecified, assuming the set of possible rules
is clear from context. We write == to indicate a
chain of 2 rule applications, omitting the interme-
diate string pair. Finally, we write = to denote the
reflexive transitive closure of =.

Quasi-Synchronous Context-Free Grammars
(QCFGs) QCFGs generalize SCFGs in various
ways, notably relaxing the restriction on a strict

one-to-one alignment between source and target
non-terminals (Smith and Eisner, 2006).

Compositionality Notably, = grammar for-
malisms such SCFGs and QCFGs capture the
formal notion of the principle of compositionality
as a homomorphism between source and target
structures (Montague, 1970; Janssen and Partee,
1997).

A.2 NQG Grammar Induction Details

Having defined the codelength scoring function
that we use to compare grammars in section 4.1.1,
we describe our greedy search algorithm that finds
a grammar that approximately minimizes this ob-
jective.!*

Initialization We initialize R to be {NT —
(x,y) | x,y € D}. We also add identity rules
for substrings that exactly match between source
and target examples, e.g. NT — (k, k) where k is
a substring of both x and y for some x,y € D."

Optimization Algorithm Our algorithm was de-
signed with simplicity in mind, and therefore uses
a simple greedy search process that could likely
be significantly improved upon by future work.
At a high level, our greedy algorithm iteratively
identifies a rule to be added to R that decreases
the codelength by enabling > 1 rules in R to be
removed while maintaining the invariant that G
allows for deriving all of the training examples,
ie. (NT,NT) = (x,y) forevery x,y € D. The
search completes when no rule that decreases L(R)
can be identified.

To describe the implementation, first let us define
several operations over rules and sets of rules. We
define the set of rules that can be derived from a
given set of rules, R:

d(R) = {NT — (a,) | (NT,NT) = (a,)}

We define an operation SPLIT that generates
possible choices for splitting a rule into 2 rules:

SPLIT(NT — (o, 8)) = {g, h |
(NT,NT) =9=" (o, 8) v
(NT,NT) ="=9 (a, B)},

!“The induction objective contains hyperparameters repre-
senting the bitlength of terminal and non-terminal symbols.
For all experiments we use [y = 1. For GEOQUERY and
SPIDER we use [= 8, and use [T = 32 for SCAN.

5These initialization rules are used for GEOQUERY and
SPIDER, but SCAN does not contain any exact token overlap
between source and target languages.

935

NT —
NT —
NT —
NT —

rivers, river)
the largest N'T7y), largest (N7y}))
state, state)

o~~~ o~

how many N7} pass through NTjy), answer (count (intersection (N7y, loc_1 (NTjg)))))

P EEE { (o) (many) V1) (pas) (orong) ()

/
() Qargesr) @D }- - - - - - - -

S

Figure 4: An example QCFG derivation. Each non-terminal in the source derivation (blue) corresponds to a non-
terminal in the target derivation (green). The QCFG rules used in the derivation are shown above.

where g and h is a pair of new rules that would
maintain the invariant that (N7, NT) = (x,y)
for every x,y € D, even if the provided rule is
eliminated.'®

SPLIT can be implemented by consider-
ing pairs of sub-strings in o« and § to re-
place with a new indexed non-terminal sym-
bol. For example, the rule “NT —
(largest state, largest (state))” can be split into the
rules “NT' — (largest N}y, largest (NTy;))”
and “NT — (state, state)”. This step can require
re-indexing of non-terminals.

During our greedy search, we only split rules
when one of the two resulting rules can already
be derived given ‘R. Therefore, we define a func-
tion NEW that returns a set of candidate rules to
consider:

NEW(R) =
{g]g,heSPLIT(f)A f€RAK€EdR)}

Similarly, we can compute the set of rules that
are made redundant and can be eliminated by intro-
ducing one these candidate rules, f:

ELIM(R, f) =
{h| f g €SPLIT(h) Ag € d(R)Ah € R}

16We optionally allow SPLIT to introduce repeated target
non-terminals when the target string has repeated substrings.
Otherwise, we do not allow SPLIT to replace a repeated
substring with a non-terminal, as this can lead to an ambiguous
choice. We enable this option for SCAN and SPIDER but not
for GEOQUERY, as FunQL does not require such repetitions.

We can then define the codelength reduction of
adding a particular rule, —AL(R, f) = L(R) —
L(R') where R’ = (R U f)\ ELIM(R, f)."” Fi-
nally, we can select the rule with the largest —AL:

MAX(R) = argmax — AL(R,f)

FENEW(R)
Conceptually, after initialization, the algorithm
then proceeds as:

while [INEW(R)| > 0 do
r < MAX(R)
if —AL(R,r) <0 then
break
end if
R+ (R U r)\ ELIM(R,r)
end while

For efficiency, we select the shortest N exam-
ples from the training dataset, and only consider
these during the induction procedure. Avoiding
longer examples is helpful as the number of can-
didates returned by SPLIT is polynomial with re-
spect to source and target length. Once induction

The last term of the codelength objective described in
section 4.1.1 is related to the increase in the proportion of
incorrect derivations due to introducing f. Rather than com-
puting this exactly, we estimate this quantity by sampling up
to k examples from D that contain all of the sub-strings of
source terminal symbols in f such that f could be used in a
derivation, and estimating the increase in incorrect derivations
over this sample only. We sample £ = 10 examples for all
experiments.

936

has completed, we then determine which of the
longer examples cannot be derived based on the
set of induced rules, and add rules for these exam-
ples.!®

Our algorithm maintains a significant amount of
state between iterations to cache computations that
are not affected by particular rule changes, based
on overlap in terminal symbols. We developed the
algorithm and selected some hyperparameters by
assessing the size of the induced grammars over
the training sets of SCAN and GEOQUERY.

Our grammar induction algorithm is similar to
the transduction grammar induction method for
machine translation by Saers et al. (2013). More
broadly, compression-based criteria have been suc-
cessfully used by a variety of models for language
(Griinwald, 1995; Tang and Mooney, 2001; Ravi
and Knight, 2009; Poon et al., 2009).

A.3 NQG Parsing Model Details

In this section we provide details on how we gener-
ate derivation scores, s(z, X), using a neural model,
as introduced in § 4.1. The derivation scores de-
compose over anchored rules from our grammar:

S(Z,X): Z qb(?“,i,j,x),

(ri.j)€z

where 7 is an index for a rule in G and ¢ and j are
indices defining the anchoring in x. The anchored
rule scores, ¢(r, i, j,x), are based on contextual-
ized representations from a BERT (Devlin et al.,
2019) encoder:

¢<Ta i,j,X) = fs([wi7wj]) + elf’/‘([w%wj])?

where [w;, w;] is the concatenation of the BERT
representations for the first and last wordpiece in
the anchored span, f, is a feed-forward network
with hidden size d that outputs a vector € R, f, is
a feed-forward network with hidden size d that out-
puts a scalar, and e, is an embedding € R for the
rule index . Our formulation for encoding spans
is similar to that used in other neural span-factored
models (Stern et al., 2017; Lee et al., 2017).

B Experimental Details

B.1 Model Hyperparameters and Runtime

We selected reasonable hyperparameter values and
performed some minimal hyperparameter tuning
BWe use N = 500 for SCAN and N = 1000 for SpI-

DER. As the GEOQUERY training set contains < 500 unique
examples, we use the entire training set.

for T5 and NQG based on random splits of the
training sets for GEOQUERY and SPIDER. We
used the same hyperparameters for all splits of a
given dataset.

For T5, we selected a learning rate of 1e~* from
[1e=3,1e~%, 1e75], which we used for all experi-
ments. Otherwise, we used the default hyperparam-
eters for fine-tuning. We fine-tune for 3, 000 steps
for GEOQUERY and 10, 000 for SPIDER. T5-Base
trained with a learning rate of 1e~* reached 94.2%
accuracy at 3,000 steps on a random split of the
standard GeoQuery training set into 500 training
and 100 validation examples.

For the NQG neural model, we use the pre-
trained BERT Tiny model of Turc et al. (2019)
(4.4M parameters) for SCAN and SPIDER, and
BERT Base (110.1M parameters) for GEOQUERY,
where there is more headroom for improved scor-
ing. We do not freeze pre-trained BERT parame-
ters during training. For all experiments, we use
d = 256 dimensions for computing anchored rule
scores. We fine-tune for 256 steps and use a learn-
ing rate of 1e=*. We use a batch size of 256.

We train NQG on 8 V100 GPUs. Training NQG
takes < 5 minutes for SCAN and SPIDER (BERT
Tiny), and up to 90 minutes for GEOQUERY (BERT
Base). We fine-tune T5 on 32 Cloud TPU v3
cores.!” For GEOQUERY, fine-tuning T5 takes
approximately 5 and 37 hours for Base and 3B,
respectively. For SPIDER, fine-tuning TS5 takes
approximately 5 and 77 hours for Base and 3B,
respectively.

B.2 Dataset Preprocessing

For GEOQUERY, we use the version of the
dataset with variable-free FunQL logical
forms (Kate et al., 2005), and expand certain
functions based on their logical definitions,
such that state (next_to_1(state(all)))
becomes the more conventional
intersection(state, next_to_1(state)).

We replace entity mentions with placeholders (e.g.

113 LR I3

m0”, “m1”") in both the source and target.

For SPIDER, we prepend the name of the target
database to the source sequence. For TS5, we also se-
rialize the database schema as a string and append
it to the source sequence similarly to Suhr et al.
(2020). This schema string contains the names of
all tables in the database, and the names of the
columns for each table. As we use a maximum

Phttps://cloud.google.com/tpu/

937

Source: how many states are next to major rivers

Target: answer (count (intersection
river)))))

Prediction: answer (count (intersection
intersection (river , mO))))))

(

(

state , next_to_2

state , next_to_2

(intersection (major ,

(intersection (major ,

Notes: The trigram “major , intersection” occurs 28 times during training, but “major , river”
occurs 0 times. In this case, TS also hallucinates “m0” despite no entity placeholder occuring the source.

Source: which state has the highest peak in the country
Target: answer (intersection (state , loc_1l (highest (place))))

Prediction: answer
loc_2 (

(highest (intersection
mob))))))

mountain ,

(

state , loc_2 (highest (intersection (

Notes: The token “highest” occurs after “answer (7 in 83% of instances in which “highest” occurs in
the training set. Note that T5 also hallucinates “m0” in this case.

Table 7: Example prediction errors for T5-Base for the GEOQUERY TMCD split.

Dataset Examples Induced Rules Ratio
SCAN 16727 21 796.5
GEOQUERY 600 234 2.6

SPIDER-SSP 3282 4155 0.79

Table 8: Sizes of induced grammars.

Std. Templ. Len. TMCD
NQG-T5-3B Acc. 0.6 1.2 1.2 0.4
NQG-T5-Base Acc. 0.5 1.4 1.1 0.4
NQG Acc. 1.2 4.5 1.5 0.4
NQG Coverage 0.7 34 1.8 0.1
NQG Precision 0.7 1.9 1.7 1.2

Table 9: Standard deviation of NQG for GEOQUERY.

source sequence length of 512 for TS5, this leads
to some schema strings being truncated (affecting
about 5% of training examples).

SCAN did not require any dataset-specific pre-
processing.

B.3 Atom and Compound Definitions

For GEOQUERY, the tree structure of FunQL is
given by explicit bracketing. We define atoms
as individual FunQL symbols, and compounds as
combinations between parent and child symbols
in the FunQL tree. Example atoms are longest,
river, and exclude and example compounds are
).

For SPIDER, we tokenize the SQL string and
define atoms as individual tokens. To define com-
pounds, we parse the SQL string using an unam-
biguous CFG, and define compounds from the re-
sulting parse tree. We define compounds over both
first and second order edges in the resulting parse
tree.

longest (river) and exclude (longest (_),

938

B.4 Grammar Sizes

Induced grammar sizes for a selected split of each
dataset are shown in Table 8. For SPIDER, the
number of induced rules is larger than the origi-
nal dataset due to the identity rules added during
initialization.

B.S GEOQUERY Variance

In tables 2 and 5 we report the mean of 3 runs for
NQG for GEOQUERY. The standard deviations for
these runs are reported in Table 9. The reported
standard deviations for NQG-T5 use the same fine-
tuned T5 checkpoint, so they do not reflect any
additional variance from different fine-tuned T5
checkpoints.

B.6 TS5 GEOQUERY Errors

We include several example T5-Base errors on the
GEOQUERY TMCD split in Table 7.

