A Graphical Interface for Curating Schemas

Piyush Mishra'~?

Martha Palmer!?

Akanksha Malhotra'*

Susan W. Brown!?

Ghazaleh Kazeminejad'?

I University of Colorado Boulder
2: firstname.lastname @colorado.edu

Abstract

Much past work has focused on extracting in-
formation like events, entities, and relations
from documents. Very little work has focused
on analyzing these results for better model un-
derstanding. In this paper, we introduce a cura-
tion interface that takes an Information Extrac-
tion (IE) system’s output in a pre-defined for-
mat and generates a graphical representation
of its elements. The interface supports edit-
ing while curating schemas for complex events
like Improvised Explosive Device (IED) based
scenarios. We identify various schemas that
either have linear event chains or contain par-
allel events with complicated temporal order-
ing. We iteratively update an induced schema
to uniquely identify events specific to it, add
optional events around them, and prune unnec-
essary events. The resulting schemas are im-
proved and enriched versions of the machine-
induced versions.

1 Introduction

Understanding events, how they progress, and who
is involved in them is fundamental to our knowl-
edge of the world and our ability to anticipate future
events. Human beings have mental representations
of typical scenarios at various levels of granular-
ity. Defining such scenarios or templates for use in
information extraction, knowledge base construc-
tion, and narrative prediction has a long history.
As these fields have progressed, the complexity of
the events and sequences being represented has in-
creased. Any machine-readable format capable of
representing multiple events, tracking their partici-
pants across the events, and delineating the tempo-
ral and causal relations between the events will be
extremely difficult for a person to read and review.
Because the extraction and construction of such
complex schemas has accelerated in recent years
(Li et al., 2020; Zhang et al., 2020), the need for a

159

way for people to easily review them has increased.
In this paper we will describe a tool designed to
take complex event schemas in a json format and
render them graphically for human review and re-
vision.

The complex schemas handled by our tool in-
clude multiple levels of intersecting information.
For example, imagine a typical emergency medi-
cal intervention. We know this includes a Victim
who is injured or ill and usually begins with com-
munication by the Victim or a Bystander to an
emergency Dispatcher, then progresses to commu-
nication from the Dispatcher to Medical Personnel,
travel by Medical Personnel to the Victim, immedi-
ate medical assessment of the Victim, and, finally,
possible transportation of the Victim to a Medical
facility. A more complete schema would include
some alternative or parallel events, such as the pos-
sibility of Medical personnel already being on site
or the death of the Victim at any point in the se-
quence of subevents. As we will describe in more
detail, the tool uses distinctive nodes and edges to
represent these subevents and participants and their
relationships to each other. Left to right progres-
sion of subevents across the visual field represents
temporal progression, and types of edges further in-
dicate specific temporal and causal relations. Users
can zoom in to specific subevents to see participants
and their relations. In addition, our tool allows for
simultaneous visualization of a complex schema
and direct revision of the underlying json file.

Our paper begins by describing the background
and motivation for our schema editing tool in Sec-
tion 2. Section 3 gives detailed description of the
tool implementation, while Sections 4 and 5 pro-
vide examples of its use, and discuss general issues
with respect to editing schemas. We conclude in
Section 6.

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 159-166, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

2 Background

The idea of typical event scenarios being stored
by people as abstract mental frames or schemas
with slots for particular participants has a long his-
tory in psychology (Bobrow and Norman, 1975),
linguistics (Fillmore, 1976) and artificial intelli-
gence (Schank and Abelson, 2013). Prototypical
sequences of events, such as the medical interven-
tion sequence described above, can be made ex-
plicit in scripts that detail the usual subevents, their
typical sequence, the people and objects generally
involved in those events, and the progression of
those participants through the subevents.

Proving useful for both linguistic analysis and
natural language processing, repositories of de-
fined schemas and event representations were man-
ually developed, such as FrameNet (Fillmore et al.,
2002), PropBank (Kingsbury and Palmer, 2002)
and VerbNet (Kipper et al., 2008). Most long-
standing repositories of such frames or scripts were
built at the level of single events and their partic-
ipants, although some have made sparse connec-
tions between these simple event descriptions (e.g.,
FrameNet’s Uses and Precedes relations). The de-
sire to extend these event representations to include
more complex relations led to the development of
systems of temporal, causal and other semantic re-
lations, such as TimeML (Pustejovsky et al., 2005),
Richer Event Descriptions (O’ Gorman et al., 2016),
Reference Event Ontology (Brown et al., 2017),
and Abstract Meaning Representations (Banarescu
et al., 2013).

Because of the substantial effort involved in
manually creating schemas, automatically inducing
schemas from textual and visual data has become
a priority. Automatically generated schemas have
advanced from schemas for single events (Bala-
subramanian et al., 2013; Chambers and Jurafsky,
2009; Chambers, 2013; Cheung et al., 2013; Huang
etal., 2016; Nguyen et al., 2015) to complex, multi-
step schemas (Li et al., 2020; Zhang et al., 2020)
However, for optimal usefulness, these generated
schemas still benefit from human revision. To our
knowledge, no open-source interface for complex
schema visualization and editing has previously
been developed.

One large-scale effort to create a repository of
complex event schemas is the DARPA Knowlege-
directed Artificial Intelligence Reasoning Over
Schemas (KAIROS) program. KAIROS relies on
the assumption discussed above, that humans make

160

sense of events by organizing them into frequently
occurring narrative structures that in this context
are called schemas. The goal of the program is to
develop schema-based Al systems that can iden-
tify, link and temporally sequence complex events
and their subsidiary elements and participants. The
program is set up with separate tasks. Task 1 in-
volves inducing schemas from large amounts of
text, followed by careful hand curation, with the
goal of creating a schema library. Task 2 is aimed
at finding schema instances that match schemas
from the schema library in streaming news feeds.
In order to evaluate system performance for both
of these tasks, a common, agreed upon KAIROS
Schema Format is needed. This also allows one
DARPA team to try to instantiate schemas from an-
other team’s Schema Library and vice versa. The
KAIROS Schema Format (KSF) stores represen-
tations of real-world complex events in a system-
atic JSON-LD format containing primitive events,
their participants, possible entities acting as the par-
ticipants, and the relations between these events
and entities. Our tool takes these JSON files as
input and assumes that all the schemas are vali-
dated and tested for format consistency before use.
An additional complexity in this beginning phase
of the program is a restriction against hierarchical
schemas, in which subschemas could be collapsed
into a single parent node. The schemas are order-
ings of all individual events, that can therefore get
quite lengthy.

3 Schema Curation Interface

The Schema Curation Interface!? is a web applica-
tion designed for interpreting induced schemas. It
provides a visual representation of the schema to
understand the underlying structure, reflects rela-
tions between events and entities, and allows cor-
rection of potential flaws. The interface accepts
KSF-validated schemas as input, extracts the events
and participants as nodes and relations as edges,
and visualizes them as a graph on a canvas. These
graphs, in turn, can be corrected at the discretion
of the curators. The interface is an open-source
project that is accessible from ’cu-clear’ GitHub
repository.

We use React.js and Flask for designing the
web application. React.js is a JavaScript library
to build interactive user interfaces (UI). It allows

!GitHub: https://github.com/cu-clear/schema-interface
’Demo: https://youtu.be/J9yox50gZUU

encapsulated component building and easy debug-
ging, which makes new features easy to integrate.
Flask is a micro web framework written in Python
that acts as the web server for receiving requests
from the user and sending a response. React passes
the schema, uploaded by a user, to the Flask web
server, which in turn extracts the possible nodes
and edges between them and returns them to the
UI for rendering. Cytoscape.js (Franz et al., 2015)
uses these nodes and links to generate the graph
on a canvas. Cytoscape.js is a fully featured graph
library written in JavaScript that allows users to
display and manipulate rich, interactive graphs. In
the curation interface, it controls the positioning
and layout. Explicit configuration constrains Cy-
toscape.js to orient the representation from left to
right within the canvas, which preserves any pos-
sible temporal ordering and parallel events. It also
has standard gestures like dragging and zooming
on desktops as well as touch devices. Besides the
canvas, a JSON-viewer provides a JSON view of
the uploaded schema. It allows the user to edit the
schema and dynamically update the graph structure.
Add, edit, and delete are the three operations the
“react-json-view” library allows for manipulating
schemas. “react-json-view” is a React component
for displaying and editing JavaScript arrays and
JSON objects.

The interface is currently accessible from the
web using Google Cloud Platform (GCP). We use
Docker and Kubernetes in this process. Docker
enables the packing, shipping, and running of our
application as a portable and self-sufficient con-
tainer, which can run virtually anywhere. Kuber-
netes runs and coordinates these containerized ap-
plications across a cluster of machines, automating
the deployment, scaling, and management process.
Kubernetes’ load balancing configuration keeps at
least one instance always available to a user. Since
the user count is small, six replicas serve the pur-
pose. But as the users increase, we can scale it up.
A separate log server keeps track of any issue or
error that occurs while parsing the schemas using
RabbitMQ. It helps in debugging and analyzing the
usage of the interface.

The representation consists of nodes and edges.
The nodes signify an event (referred to in the
schema as “step”), entity (as “participant” or
“slot”), or filler (as “value” for the mentioned “par-
ticipant”). Shapes like ellipse, round-rectangle, and
round-pentagon distinguish one node type from

161

another. The edges signify temporal relations be-
tween any two events, an entity’s participation in
an event, or co-reference between two entities.

The current implementation allows a dual-layer
view. The first (default) view (Figure 2) shows
only the representation of events and their temporal
relations. Selecting an event opens the second view
(Figure 3), consisting of entities and values for that
event. As a result, all the entities and fillers remain
hidden in the default view and reduce the clutter in
the visualization, increasing readability.

While the dual-layer view allows a cleaner vi-
sualization of schemas, having many events in a
schema (currently constrained to not make use of
hierarchical structure) can still clutter the repre-
sentation. Since the layout is from left to right,
a complex event with a long sequential chain of
events becomes partially hidden on reaching the
screen width. Cytoscape.js reacts by zooming out
the canvas to keep the graph in view as much as
possible. However, in doing so, the schema graph
becomes illegible. The only solution is manually
arranging the nodes so they are in the scope and
are using an appropriate zoom setting.

4 Interface Use

Approximately 10 people collaborating across
three institutions used the interface heavily to in-
duce schemas and manually curate them. The
schemas were induced from shared data using infor-
mation extraction systems. After evaluating a sys-
tem’s output, the inducers shared the schema draft
with the human curators for editing. The interface
facilitated the interpretation of the schemas and
simplified the identification of needed changes to
events, entities, values, or relations between them.
We then created a new set of visualizations for com-
parison with the pre-curated version. The schema li-
brary inducers, after discussion, used these curated
sets of schemas for improved inductions, which
were passed back for further curation. We repeated
this process until we reached a version where the
schema had the highest coverage over the data for
each complex event.

The human curators worked with two sets of
automatically induced schemas, from two differ-
ent institutions. One set of schemas consisted of
events in a linear chain, lacking parallel events.
The other set contained parallel events with more
complex temporal ordering. By comparing the vi-
sualizations of these schemas, curators were able to

identify which schemas covered similar events and
could select the best parts of each to create a sin-
gle, comprehensive schema. In addition, we aimed
to include all possible events in a scenario from
planning stages to results. Every induced schema
was missing events or had extraneous events, which
were easy to identify and fix with the curation in-
terface. However, the greatest improvement to cu-
ration came from the ease of visualizing parallel
and optional events and of tracking entities across
multiple subevents, all of which are obscured in the
necessarily linear presentation of a JSON file.

Label Life.Die

Description The death of a person

Slot Role Slot Argument Constraints
Victim per
Place loc, gpe, fac

Temporal
Start and End (times specific to event)

Duration 1 minute through 1 day expected

Figure 1: Life.Die Event Primitive

KAIROS Event Primitives are the backbone of
the schemas. KAIROS has defined event primitives
to be elemental single events that are unlikely to be
decomposed into subevents, but could themselves
form crucial elements of more complex events. The
event primitives are comprised of the event defini-
tion, the roles associated with the event and their
corresponding constraints, as well as temporal in-
formation about the event. Figure 1 provides an
example of a Life.Die Event Primitive.

Events in the schema are automatically gener-
ated in temporal order from left to right in the cu-
ration interface. Parallel events originate from the
same source and can occur simultaneously or in-
dependently of the sibling events. A gray rectan-
gle labeled START indicates the beginning of the
schema. Individual events are green ellipses. The
general attack schema (Figure 2) can be used to
represent any attack. We include a demonstration
event as an instigating event that could motivate
an attack. Alternative instigating events will be
added in future work. After the instigating event,
the attack event happens, leading to three simul-
taneously occurring parallel events - death, injury,
and damages due to the attack, and one indepen-
dently occurring parallel event - an investigation.
Events related to medical intervention, an arrest, a
trial, and sentencing follow.

By clicking on individual events, the event’s ar-
guments are revealed, along with various relation-
ships between them. The entity nodes are peach-
colored pentagons. Coreference relationships are
indicated using the relation “Same as.” In Figure 3,
these coreference relations indicate that the attacker
is the same as the agent of the Death event and of
the Damage event. On the right side of the schema,
the interface shows the schema in the JSON format
(see Figure 2), which is directly editable. There-
fore, if one sees that the order of events is wrong,
or deletion or addition of events is necessary, these
changes can be made within the interface.

We can also see details of the events and partici-
pant entities more legibly on the screen’s left side
by right-clicking on any specific event or entity, as
shown in Figure 3.

The Drone IED (Figure 4) is an expansion of the
general attack schema. We added more events spe-
cific to Drone IED’s, such as buying drones, buying
parts to make an IED, moving both to a common
place, and assembling them. We added options like
a drone crash, and a detonate event in place of the
attack event from the general attack schema. We
also added more event primitives related to damage
and destruction. All other events are similar to the
general attack schema.

5 Iterative Schema Updates

As mentioned above, there were several rounds
of schema curation. One of our goals was iden-
tifying distinctive schema events. For example,
in a drone-based IED schema, acquiring a drone
is an essential step; and in a vehicle-based IED
schema, acquiring a vehicle is an essential step.
The final step was checking the proper temporal
ordering between the events. We went through
several wiki articles about various IED attacks to
determine generic event types and the correct tem-
poral ordering for all the steps. The visualization
in the interface facilitated these tasks by allowing
us to see generalities across schemas and to easily
spot gaps in the temporal ordering.

In the subsequent rounds, we focused on ro-
bustness. We introduced new optional events to
schemas, such as an acquittal event, which better
encompassed the possible outcomes of a trial. We
also introduced additional phases to the schemas,
such as instigating events like conflict between the
terrorist organization and a government. We also
introduced retaliatory events to describe what ac-

162

CURATE

Viewer Compare

Schema Curation interface

Upload Schema

General Attack

C | semema
“oag
"65d" : "resiniSchemas/General Attack”
T T Samage from Retaliatory ™ » "comment” : ()
C— (Damage from™ (Petaliatory ™,
(Demonstration) attack -
<
@ 4 & & omm—
3 $ L&, & Post-Attack
S & - o, ¢]
% <& (_Evacuation ™® of° (pemonstration
S wn ©
20" iz Ao g . aral_Artack/slots/kairos :primit
B g Shmmmtec — — Gonvict acoused) (~ Broadesst -
I start Attack) @ Before §_ (Investigate - Before ('\'{ﬂ“’:"v'j}/ D Q;ﬁ) teed) (decision |
—— t3 s, rav, P’ g
& S 5 o, 58
S, & 658 s /General_Attack/Relation/kairod
% <f - T
N P £ g Cmeon D
e — = TS % O — ©
. S o 2 5, S ives/Relations/Physical.Sanchs |
(\lr;lmimri D G pe= 3 % & 2 . < -
e %,
Y %, o S "relationPredicate" :
% e, i A B . By Kairos:Primitives/Relations/Physical.saneas .
® — n & o Car o) (Comespondence) B
G) Cometts meat) Carestouspect) (Gomsspandonce) Caatertam D i
»
o &
e £ gt
& L
dlE “Medical troops ™
L i] e ™™D

Figure 2: Editable JSON for schema curation

CURATE

Viewer Compare

Schema Curation interface

Upload Schema

General Attack

instrument . c
NAME: e \ / <
el < reguiator > < detendant
c-a“"““e?:(‘!»“”e

@D: L g oo oS
resin:Schemas/General_Attack/S| T e, 8 e M@‘N?
ots/kairos:Primitives/Events/Confl Y e s"m,,,%’ wo™
ict.Attack.Unspecified:1/attacker F"ymca;_ oo, /v% :

S oo, s e,
ROLE: L & Pooif
Kairos:Primitives/Events/Conflict. . / valuate:Sentiment-Negative-
Attack.Unspecified/Slots/Attacker
ENTITYTYPES: e
Kairos:Primitives/Entities/PER b
Kairos:Primitives/Entities/ORG ‘aﬁ"da
Kairos:Primitives/Entities/GPE (T \‘ i
kairos:Primitives/Entities/SID — T e 3 "
Kairos:Primitives/Entities/AML D T 4 e ol officiats meet)

(Domenstration>
L

Sorop,,

\at;:;ur/ Physicel Sameas SameAs—><_ Gamege >

e, BE0®
oo
Carie)

pes

C Evacuation) Before '\Ezlfhnl wnnes/:\/\

gefor®

Pﬁy;
Voas,
W"SB'MA,

& kiter >

Figure 3: Entity ass

tions were taken after the attack happened, such as
demonstrations against the IED attacks or retalia-
tory actions taken by the army.

To demonstrate a typical editing task, the fol-
lowing example walks through the steps needed to
make a new temporal connection between events.
This example is also illustrated in our demo video.

In Figure 5a, there is a missing link between the
events Injury and Medical Intervention. To add
the link, we get the IDs of the Injury and Medi-
cal Intervention events by right-clicking on these
events, and then create a new entry in the order key
provided in the JSON editor on the right side of the
screen by clicking on the plus sign next to the or-

ociated to event Attack

der key. This creates a new order step with NULL
value. As shown in Figure 5b, within this box, we
write the ID of the Injury event as the value to the
“before” key, and the ID of the Medical Intervention
event as the value to the “after” key. This signifies
that an injury event needs to happen before medical
intervention. We can also add flags like optional
or precondition. The flag name is displayed on the
arrow connecting the events. If no flags are given,
“Before” is displayed on the arrow. We also need
to provide a unique ID to this order step. After
saving the JSON, the changes are automatically
reflected in the visualization. Figure Sc shows the
curated schema, with a link present between the

163

iotsting ~ 5101~ o
o b
By
sant S gl e = =
Learn bomb ";::h:':ema %r i %‘i& 4
—— < % B, & L
Bt % 2 ey H
% = % 2 ™ Evacustion ‘confict 3
& B it —
% —— e R
Sy sapiosvs g (Do b e HHE
—= 8 Y Bty * R — Tt rer
S < % Demansason it spect; "
N O v | BB - o, A, T L
&2 i £ — TNl THEP,
Wove explosive e s Duenage g"bz it Imestomte 5 o cstena) s
parts = — £l — 5
@ eé“‘a “'*m&
S, e E
Drone crashed) TN
Betoce = — .-
—>= Be &
Destroy things fore Ilm}!
%
% Q}éz
L —
Figure 4: Drone IED
General Attack P13t {..-} General Attack
P14y {eaa)}
F 15 {...}
6 { [x 1]
"@id" {---3®
"resin:Schemas/Gener amage from
(
y Before»- Inl’::v‘::a!m Bel al Attack/Order/17", re ¥ attack
Bet "before": B%'b Bef
"resin:Schemas/Gener A
al Attack/Steps/kair \ Bef
os:Primitives/Events o e 4
A /Life.Injure.Unspeci A 99\0
fied:1", i
%, "after": s
G « ! 8
"resin:Schemas/Gener 91‘0,b
@ al_Attack/Steps/kair A e
@0\0 os:Primitives/Events Bef
/Medical.Interventio ° v
fof
4 n.Unspecified:1" N o
Damage from
) -

(a) No temporal link between
Injury and Medical Intervention

(b) Editing JSON

(c) Temporal Link Added

Figure 5: Schema Curation Demo

Injury and Medical Intervention Event. Similarly,
we can delete the events or link them. An event
can be deleted by removing it from the step key in
the JSON, and links can be deleted by deleting the
order ID containing the mentioned events.

6 Conclusion and Future Work

In this paper, we introduced an interface that as-
sists human curators in refining induced schemas.
These schemas contain events, entities, and the rela-
tions between them. The curation interface extracts
these elements in the form of nodes and edges and
represents them in a graphical structure. The visual-
ization enables the curators to better understand the
ordering of events and the relations between enti-
ties, resulting in an improved and enriched schema.

164

We also discussed leveraging the attributes of two
structurally different induced schemas to design
a single unified schema. This schema captures
the salient events from its parents while reducing
the schema size. We explored various IED-based
schemas, General Attack, Medical Intervention,
and Disease outbreak schemas using the curation
interface.

The schemas currently include a small set of
primitive events, limiting the scope of an induced
complex event. In the future, a schema can have a
hierarchical composition, meaning a combination
of complex and primitive events within a single
schema. Future work will focus on improving the
handling of hierarchical schemas, provide dynam-
icity to the visualization, and comparison of two

schemas. It will also allow changes, like editing or
deleting nodes and edges, on the graph beside the
JSON editor.

Acknowledgements

We gratefully acknowledge the support of the
DARPA KAIROS Program (contract FA§750-19-2-
1004-A20-0047-S005, sub from RPI) for RESIN:
Reasoning about Event Schemas for Induction of
kNowledge, Approved for Public Release, Distri-
bution Unlimited. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
DARPA or the U.S. Government.

References

Niranjan Balasubramanian, Stephen Soderland,
Mausam, and Oren Etzioni. 2013. Generating co-
herent event schemas at scale. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1721-1731, Seattle,
Washington, USA. Association for Computational
Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 178—186.

Daniel G Bobrow and Donald A Norman. 1975. Some
principles of memory schemata. In Representation
and understanding, pages 131-149. Elsevier.

Susan Brown, Claire Bonial, Leo Obrst, and Martha
Palmer. 2017. The rich event ontology. In Proceed-
ings of the Events and Stories in the News Workshop,
pages 87-97.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1797-1807.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language

Processing of the AFNLP, pages 602-610.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy
Vanderwende. 2013. Probabilistic frame induction.
arXiv preprint arXiv:1302.4813.

165

Charles J. Fillmore. 1976. Frame semantics and the na-
ture of language™. Annals of the New York Academy
of Sciences, 280(1):20-32.

Charles J Fillmore, Collin F Baker, and Hiroaki Sato.
2002. The framenet database and software tools. In
LREC.

Max Franz, Christian T. Lopes, Gerardo Huck, Yue
Dong, Onur Sumer, and Gary D. Bader. 2015. Cy-
toscape.js: a graph theory library for visualisation
and analysis. Bioinformatics, 32(2):309-311.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R. Voss, Jiawei Han, and Avirup Sil. 2016.
Liberal event extraction and event schema induction.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 258-268, Berlin, Germany.
Association for Computational Linguistics.

Paul R Kingsbury and Martha Palmer. 2002. From tree-

bank to propbank. In LREC, pages 1989-1993. Cite-
seer.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification of
english verbs. Language Resources and Evaluation,
42(1):21-40.

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare
Voss. 2020. Connecting the dots: Event graph
schema induction with path language modeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 684—695.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret,
and Romaric Besancon. 2015. Generative event
schema induction with entity disambiguation. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 188—
197.

Tim O’Gorman, Kristin Wright-Bettner, and Martha
Palmer. 2016. Richer event description: Integrating
event coreference with temporal, causal and bridg-
ing annotation. In Proceedings of the 2nd Workshop
on Computing News Storylines (CNS 2016), pages
47-56.

James Pustejovsky, Robert Ingria, Roser Sauri, José M
Castario, Jessica Littman, Robert J Gaizauskas, An-
drea Setzer, Graham Katz, and Inderjeet Mani. 2005.
The specification language timeml.

Roger C Schank and Robert P Abelson. 2013. Scripts,
plans, goals, and understanding: An inquiry into
human knowledge structures. Artificial Intelligence
Series. Psychology Press.

https://www.aclweb.org/anthology/D13-1178
https://www.aclweb.org/anthology/D13-1178
https://doi.org/https://doi.org/10.1111/j.1749-6632.1976.tb25467.x
https://doi.org/https://doi.org/10.1111/j.1749-6632.1976.tb25467.x
https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.18653/v1/P16-1025
https://books.google.com/books?id=YFuJABU1ABIC
https://books.google.com/books?id=YFuJABU1ABIC
https://books.google.com/books?id=YFuJABU1ABIC

Hongming Zhang, Muhao Chen, Haoyu Wang,
Yangqiu Song, and Dan Roth. 2020. Analogous pro-
cess structure induction for sub-event sequence pre-
diction. arXiv preprint arXiv:2010.08525.

166

