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Introduction

The entire body of research literature is currently estimated at 100-150 million publications, with an an-
nual increase of around 1.5 million. Research literature constitutes the complete representation of knowl-
edge we have assembled as human species. It enables us to develop cures to diseases, solve challenging
engineering problems and answer many of the world’s challenges we are facing today. Systematically
reading and analysing the full body of knowledge is now beyond the capacities of any human being.
Consequently, it is essential to understand better how we can leverage Natural Language Processing/Text
Mining techniques to aid knowledge creation and improve the process by which research is being done.

This workshop aims to bring together people from different backgrounds who:

1. have experience with analysing and mining databases of scientific publications,

2. develop systems that enable such analysis and mining of scientific databases or

3. who develop novel technologies that improve the way research is being done.

The topics of the workshop were organised around the following themes:

1. The whole ecosystem of infrastructures including repositories, aggregators, text-and data-mining
facilities, impact monitoring tools, datasets, services and APIs that enable analysis of large volumes
of scientific publications.

2. Semantic enrichment of scientific publications utilising text and data mining.

3. analysis of large databases of scientific publications to identify research trends and improve access
to research content.

This year, we hosted a new shared task:

3C Citation Context Classification Shared Task

Recent years have witnessed a massive increase in the amount of scientific literature and research data
being published online, providing revelation about the advancements in the field of different domains.
The introduction of aggregator services like CORE has enabled unprecedented levels of open access to
scholarly publications. The availability of full text of the research documents facilitates the possibility of
extending the bibliometric studies by identifying the context of the citations. The shared task organized
as part of the WOSP 2020 focused on classifying citation context in research publications based on their
influence and purpose.

• Subtask A: Multiclass classification of citations into one of six classes: Background, Uses, Com-
pare_Contrast, Motivation, Extension and Future.

• Subtask B: Binary classification of citations based on the classes Incidental and Influential, a task
for identifying the importance of a citation.

Given a citation context, the participants were required to predict the intent of the citations. The partici-
pants were provided with a labelled dataset of 3000 training instances annotated using the ACT platform.
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Abstract
The relatedness of research articles, patents,
court rulings, web pages, and other docu-
ment types is often calculated with citation
or hyperlink-based approaches like co-citation
(proximity) analysis. The main limitation of
citation-based approaches is that they cannot
be used for documents that receive little or no
citations. We propose Virtual Citation Prox-
imity (VCP), a Siamese Neural Network ar-
chitecture, which combines the advantages of
co-citation proximity analysis (diverse notions
of relatedness / high recommendation perfor-
mance), with the advantage of content-based
filtering (high coverage). VCP is trained on a
corpus of documents with textual features, and
with real citation proximity as ground truth.
VCP then predicts for any two documents,
based on their title and abstract, in what prox-
imity the two documents would be co-cited, if
they were indeed co-cited. The prediction can
be used in the same way as real citation prox-
imity to calculate document relatedness, even
for uncited documents. In our evaluation with
2 million co-citations from Wikipedia articles,
VCP achieves an MAE of 0.0055, i.e. an im-
provement of 20% over the baseline, though
the learning curve suggests that more work is
needed.

1 Introduction

Calculating document relatedness is key in creat-
ing recommender systems for digital libraries (we
focus on research paper recommenders – our work
is, however, equally applicable to patents, web-
sites, court rulings and other documents with hy-
perlinks, citations respectively). Recommender
systems in digital libraries calculate relatedness of
research articles typically via content-based filter-
ing or hyperlink/citation-based approaches (Jan-
nach et al., 2010; Beel et al., 2016; Lops et al.,
2019). Citation-based approaches consider docu-
ments as related that reference the same documents

(bibliographic coupling), that are co-cited by other
documents or that are otherwise connected in the
citation graph (Beel et al., 2016).

Citation-based approaches may recommend
more diverse items than content-based filtering, as
citations can be made for various reasons (Willett,
2013; Färber and Sampath, 2019; Erikson and Er-
landson, 2014). For instance, two documents can
be co-cited because they address the same research
problem; use the same methodology (to solve dif-
ferent problems); or two documents may be co-
cited for less predictable reasons. Today’s text-
based methods can hardly distinguish such diverse
types of relatedness. Instead, text-based methods
generally consider two documents as related the
more terms they have in common 1.

A particularly promising citation-based ap-
proach is Citation Proximity Analysis (CPA) (Gipp
and Beel, 2009), which is illustrated in Figure 1.
CPA considers documents as the more related, the
closer the distance in which they are co-cited. For
instance, in the example, the Citing Document cites
Document A and Document B in the same sen-
tence. Document C is cited in a different paragraph.
Hence, A and B are more related than A and C (or
B and C).

CPA out-performs standard co-citation analysis
by up to 95% (Schwarzer et al., 2016) and has
successfully been used with research articles (Bal-
aji et al., 2017; Liu and Chen, 2011; Knoth and
Khadka, 2017; Gipp and Beel, 2009), Wikipedia
(Schwarzer et al., 2016, 2017), web pages (Gipp
et al., 2010), mind-maps (Beel and Gipp, 2010) and
authors (Kim et al., 2016). The downside of CPA
is that it can be only be applied to documents that
are (co-)cited. Most research articles, however, are

1Of course, there are multiple approaches like word em-
beddings that go beyond a simple term-overlap comparison.
However, eventually, text-based approaches focus on content
similarity, which is just one type of relatedness.
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Figure 1: Illustration of Citation Proximity Analysis
(Gipp and Beel, 2009). A citing document cites the
three documents A, B, and C. Documents A and B are
cited within the same sentence and are hence strongly
related. Documents A and C, as well as documents
B and C, are each cited within different paragraphs.
Hence, they are considered as less strongly related to
each other. A recommender system that receives docu-
ment B as input, and that should recommend the most
related document, would recommend document A.

never cited, and even if they are, it usually takes a
year or more before they receive their first citation
(Golosovsky, 2017; Abramo et al., 2016). Conse-
quently, CPA has a low coverage, i.e. it can only
be applied to a small fraction of research articles in
a corpus and only relatively late.

We propose2, implement and evaluate a novel
approach that we name ’Virtual Citation Proximity’
(VCP). We hypothesize that VCP combines the ad-
vantages of co-citation proximity analysis (diverse
notions of relatedness / high recommendation effec-
tiveness), with the advantage of content-based fil-
tering (high coverage). Hence, we expect that VCP
advances the state-of-the-art in related-document
calculations for search engines and recommender
systems significantly.

2 Virtual Citation Proximity (VCP)

Virtual Citation Proximity (VCP) predicts in which
distance two documents – that are not co-cited –
would be co-cited if they were co-cited. This pre-

2We proposed VCP previously in a non-peer-reviewed
research proposal, but did neither implement nor evaluate
it (Beel, 2017). Also, please note that the work we present
is based on Paul Molloy’s Bachelor thesis ”Virtual Citation
Proximity: Using Citation-Ground Truth to Train a Text-Based
Machine Learning Model” at Trinity College Dublin, Ireland,
2018/2019. The Bachelor thesis is not (yet) published.

dicted proximity can then be used in the same way
as real co-citation proximity to calculate document
relatedness. At an abstract level, the idea behind
VCP is that there is an inherent concept of relat-
edness between articles. This inherent relatedness
can be described either through text or co-citations.
As both, text and citations, eventually refer to the
same relatedness, the text and citation are kind of a
’siamese twin’.

We propose to implement VCP via artificial neu-
ral networks that are trained with textual features
– e.g. terms or word embeddings from the title or
abstract – as input, and real citation proximity as
target. In other words, we feed a neural network
with pairs of documents of which we know how
strongly they are related (expressed by the real
proximity of their co-citations). The network then
learns a similarity function that predicts based on
the text the degree to which the two documents are
related – even if the two documents have no terms
or word embeddings in common.

We hypothesize that a neural network will be
able to learn the diverse types of relatedness inher-
ent to co-citations. Once the network is trained, it
receives the text of two documents as input, and pre-
dicts in what proximity these two documents would
be co-cited if they were co-cited. VCP can be ap-
plied to all document pairs in a corpus that contain
a title (and abstract), i.e. typically all document
in a corpus (100% coverage). If the predictions of
VCP are precise, a recommender system based on
VCP would be as effective as a system based on
real citation proximity, but with a coverage as high
as content-based filtering (100%).

Although Virtual Citation Proximity is based
on textual features as input, we hypothesise that
VCP will create recommendations similar to those
based on real citation-proximity, since the machine
learning algorithm is trained on real citation prox-
imity as ground truth. With the recent advances
in (deep) machine learning we hypothesise that a
(deep) machine-learning algorithm will be able to
detect hidden layers in the text. These will allow
determining what makes two documents related,
more reliable than the typical assumption in text-
based approaches that two documents are related
when they share the same terms or embeddings.

3 Related Work

Virtual Citation Proximity trains a machine learn-
ing model with real citation proximity as ground
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Figure 2: Screenshot of the MeSH classification tree

truth / target, and to the best of our knowledge we
are first to do this. The method that is closest to us-
ing citation-proximity as ground truth for machine
learning is using expert judgements (or knowledge
bases) as ground truth, e.g. MeSH, ACM CCS, or
DMOZ (Mohammadi et al., 2016; Hassan, 2017).

For instance, the MeSH classification is a classi-
fication tree that represents the major fields and sub-
fields in the biomedical domain. MeSH was created
by medical experts and biomedical manuscripts are
often classified with MeSH, i.e. manuscripts are
assigned to one of the MeSH categories, whereas
two documents in the same category are considered
to be related, and can be used either for training ma-
chine learning models or evaluating recommenda-
tion approaches (Hassan, 2017). Machine learning
algorithms can infer from the existing documents in
a category, which textual features make a document
likely to belong to a certain category. New docu-
ments can then automatically be classified based
on their text (Peng et al., 2018),

There are disadvantages to using expert classifi-
cations like MeSH, when compared to citations and
VCP respectively. First, expert classifications are
often one-dimensional, i.e. they provide only one
type of relatedness (typically, the overall topic a
research article is about). Second, most expert clas-
sification schemes allow documents to be in few
categories only, and they focus on one field (e.g.
medicine or computer science). Especially with
today’s increasingly interdisciplinary work, this is
often not enough to adequately find all related docu-
ments. Third, classification schemes typically have

a limited number of categories (a few thousand at
most). This means, in large collections, categories
contain thousands of documents that are somewhat
related to each other but only at a relatively broad
level. Fourth, classifications are often static, i.e.
articles are classified at the time of publication. If a
classification scheme is changed, the papers are not
updated or re-classified. Finally, for many domains,
expert classifications simply do not exist.

With VCP, the problems could be overcome.
(Virtual) citation proximity (1) covers many types
of relatedness; (2) allows documents to be in un-
limited numbers of co-citation clusters; (3) has no
limitations for the number of clusters; (4) is dy-
namic; and (5) can be learned for any domain that
uses citations.

In recent years advances in deep-learning have
shown the ability to identify complex patterns in
text based data in areas such as translation (Wu
et al., 2016) and sentiment analysis (Dos Santos
and Gatti, 2014).

A document embedding (Le and Mikolov, 2014;
Dai et al., 2015) is an embedding representing an
entire document trained using a paragraph embed-
ding model. Document embedding vectors have
been shown to be superior to other text represen-
tations such as bag-of-words as they take into ac-
count the relative positions of the words in the text,
although experimental they may be an interesting
feature representation to train VCP. Overall, papers
with success in using machine learning for deal-
ing with larger passages of text more limited in
number (Liu et al., 2018), compared to longer texts
(Lopez and Kalita, 2017). Some relevant research
was found in the areas of news article recommender
systems (Park et al., 2017).

4 Methodology

4.1 VCP Implementation

We implement four VCP variations. The first im-
plementation is a sequential neural network with a
CNN and LSTM layer with drop-out. The second,
third and fourth implementation are Siamese neu-
ral networks, whereas the second implementation
consists of two LSTM layers with drop-out (Fig-
ure 3); the third implementation consists of a CNN
and LSTM layer with drop-out; and the fourth im-
plementation consists of a CNN and LSTM layer
with no drop-out. The Siamese architectures fin-
ish with a sequential dense layer to join the sub-
networks. We choose combinations of 200-neuron
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Figure 3: Siamese Neural Network Architecture Dia-
gram.

LSTM and 64-filter CNN layers in both sequential
and Siamese architectures.

So far, Siamese networks have been particularly
successful in face recognition. During training, the
network receives a triplet as input consisting of
an anchor image of a person A, another image of
the same person, and an image of a person that is
not A. The network is trained to learn a similar-
ity or distance function that can express the high
similarity (or low distance) of the anchor image
and images of the same person, and disimilarity
(or high distance) of the anchor image and neg-
ative person. Siamese networks also have been
successfully used to learn text similarity (Mueller
and Thyagarajan, 2016). Siamese architectures fa-
cilitate the sister sub-networks to learn high level
representations from both input texts first. Then
once the Siamese Neural Network has transformed
the input into higher level representations they can
be combined together again to determine the rela-
tionship between the two texts.

In our scenario, triplets consist of an anchor ci-
tation and a close co-citation (as both express the
same semantic concept) as well as of a document
that is dissimilar to the anchor citation. We hy-
pothesize that a neural network that is capable of
learning the abstract concept of a ”person”, based
on vastly different images (pixels) of that person,
should also be able to learn the abstract semantic
concept of relatedness, based on vastly different
documents (textual features) and citation proxim-
ity.

Each of the four implementations takes as input
two documents represented by their title and the
first 200 words of the body text, and predicts the

distance in which these two documents would be
co-cited, if they were co-cited. All VCP variations
used the GloVe6B word embedding model to repre-
sent textual features. We used Glove6B out-of-box,
i.e. trained on a dump from English Wikipedia
in 2014, and with 100 dimensions. All four mod-
els were implemented in Keras, and trained over
50 epochs. The source code and data is available
on GitHub https://github.com/BeelGroup/Virtual-
Citation-Proximity/.

We need to emphasize that we did not compare
our implementations against a state-of-the-art base-
line as there does not exist any other work that
predicts citation proximity. Hence, we only com-
pare the performance of our models against a trivial
baseline, i.e. the average co-citation proximity in
the corpus. In the future, the predicted citation
proximity should be used in a recommender sys-
tem and could then be compared against baselines
like content-based filtering .

4.2 Dataset

We initially aimed to use research papers and ci-
tations for our experiments. Eventually, we de-
cided to choose Wikipedia as a substitute. Parsing
research papers (PDF files) for their in-text cita-
tion was too computationally expensive and error
prone, and we did not find existing suitable dataset
that would have contained enough in-text citation
data3. Wikipedia contains millions of articles, that
are somewhat comparable to research articles, and
these articles contain hyperlinks, that are compara-
ble to citations. Also, Wikipedia data is machine
readable, i.e. hyperlinks/citations can easily be
identified. We used the Wikipedia dump from Jan-
uary 1st 2019 with 1̃5 million articles, of which
we choose a random sample (filtering out articles
co-cited less than 5 times) of 1,000 articles and all
articles co-cited with those sample articles. This
resulted in 2.1 million co-citation pairs.

A key factor in citation proximity analysis is the
question how to exactly measure proximity, or dis-
tance. The original authors of Citation Proximity
Analysis expressed the distance between two co-
citations through a ’citation proximity index’ (CPI)
(Gipp and Beel, 2009). If two documents were co-
cited in the same sentence, CPI was 1; if documents
were co-cited in the same paragraph, CPI was 0.5;
and so on (Table 1). Many more variations have

3unarXive (Saier and Färber, 2020) might be suitable, but
it was just released after we conducted our experiments
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been proposed to calculate CPIs, e.g. (Kim et al.,
2016). We follow Schwarzer et al. including their

suggested damping factor α of 0.855 to scale word
distance (Schwarzer et al., 2016).

CPI(a, b) =

m∑

j=1

∆j(a, b)
−α,

with ∆j(a, b)
−α =

{
|va,j − vb,j |−α, va,j > 0 ∧ vb,j > 0
0, otherwise

} (1)

Table 1: CPI values for co-cited document pairs, as pro-
posed by the original authors (Gipp and Beel, 2009).
However, these values are only for a single occurrence
of a co-citation pair. If e.g. documents A and B are
co-cited by document C in the same sentence but by
document D in different paragraphs, the final CPI value
must be a fusion of these CPI values (e.g. the min, max
or average).

Occurrence CPI Value

Sentence 1
Paragraph 1/2
Chapter 1/4
Same journal / same book 1/8
Same journal but different
edition

1/16

A second important question is how to deal with
multiple occurrences of the same co-citation pair
in different documents, and hence different CPI
values for each occurrence. The most simple so-
lutions are using the minimum, average or sum of
the individual CPIs (Knoth and Khadka, 2017). We
choose for our work the average CPI as this has
been shown to be among the most effective choices
typically(Knoth and Khadka, 2017). We calcu-
lated CPI values with the tool Citolytics (Schwarzer
et al., 2017)4 as per the equation below, based on
Schwarzer et al.. (a,b) is a document pair with m
co-citations and va,j is the position in words of the
jth citation of a. See example data (Table 2).

4.3 Evaluation Metric

We evaluate the VCP implementations based on
how well they predict the actual CPI, which theo-
retically takes values between 0 and 1, but typically
is between 0 and 0.1 (Figure 4). Performance is
measured by mean absolute error (MAE).

We have not yet conducted additional

4Citolytics only returns the sum of the individual CPIs, so
we calculated average CPIs ourselves

Figure 4: Distribution of CPI Values in the Wikipedia
dataset. Many CPI values are very small.

recommender-system specific experiments. We
assume that the more precise the prediction of
the CPIs are, the better the recommendation
performance becomes. Of course, this is a strong
assumption that needs to be validated in future
experiments.

5 Results and Discussion

All four models achieved relatively low MAEs be-
tween 0.0059 (Sequential 1D CNN + LSTM) and
0.0055 (Siamese LSTM + LSTM; Siamese CNN +
LSTM, No Dropout) (Figure 5). All three Siamese
Neural Networks outperformed the simple Sequen-
tial model CNN+LSTM. The differences among
the three Siamese architectures are statistically not
significant. All four models performed statisti-
cally significant better (p¡0.01; two-tailed t-test)
than the baseline, i.e. the mean CPI in the dataset
(MAE=0.0069). The low MAEs must be seen with
some skepticism. The average of the actual CPI
values in the dataset was 0.0069 with data skewed
towards smaller values. Hence, an MAE of e.g.
0.0055 is promising (20% lower, i.e. better, than
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Table 2: Citolytics Wikipedia CPI Pair Dataset Format Example.

Hash Title A Title B Dist Count Title A ID Title B ID CPI

-124 USA USSR 312 12 5 7 0.26

Figure 5: Mean Average Error of the four VCP variations and the mean-baseline.

the mean CPI) but not as good as it may seem on
first glance.

The learning curves of the four VCP approaches
indicates that citation proximity could not be
learned very effectively. Figure 6 shows the train-
ing and validation error rates of the Siamese CNN
+ LSTM Model over 50 epochs. The validation
error shows that no real learning occurs after the
first epoch.

Overall, our result, i.e. a 20% improvement over
the trivial ’mean’ baseline, is promising but more
research is needed to confirm the effectiveness of
Virtual Citation Proximity. In the current experi-
ment, we used the average CPI of document pairs as
target, but alternatives such as the minimum or max-
imum CPI might be easier to learn for a Siamese
network. Also, there were many documents with
low CPI values in the corpus, which might have
introduced noise. In future work, we would focus
on documents with higher CPI values as we ex-
pect their signal to be stronger. We also plan to
use more than 200 words in future experiments, as
more words might contain more semantic mean-
ing of why a document was cited. Maybe most
importantly, Virtual Citation Proximity needs to
be evaluated in more recommender-system specific
experiments. So far, we ’only’ predicted citation
distance. The key question, however, is how good

Figure 6: Mean Average Error of Siamese 1D CNN and
LSTM over 50 Epochs.

VCP-based recommendations can be, i.e. how pre-
cise they need to be to contribute to business value
(Jannach and Jugovac, 2019). It will also be in-
teresting to see how VCP compares with content-
based filtering, citation-based approaches, and ma-
chine learning models trained on expert opinions
as ground truth.

While our initial results are ’only’ good, we see
an enormous potential in Virtual Citation Proximity
for improving recommender systems for research
papers, web pages, patents, and other document
types. We are confident that VCP could become
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a new state-of-the-art approach for research paper
recommender systems that brings citation-based
recommendation effectiveness to the community,
applicable to all textual documents. In the best
case, VCP might even outperform citation based
approaches as VCP learns from both terms and
citations and hence VCP might be able to learn
semantic concepts in a completely new way beyond
traditional citation and content analysis.
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Bela Gipp and Jöran Beel. 2009. Citation proxim-
ity analysis (cpa): A new approach for identify-
ing related work based on co-citation analysis. In
ISSI09: 12th International Conference on Sciento-
metrics and Informetrics, pages 571–575.

Bela Gipp, Adriana Taylor, and Jöran Beel. 2010. Link
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Abstract

The question of the utility of the blind peer-
review system is fundamental to scientific re-
search. Some studies investigate exactly how
“blind” the papers are in the double-blind re-
view system by manually or automatically
identifying the true authors, mainly suggest-
ing the number of self-citations in the submit-
ted manuscripts as the primary signal for iden-
tity. However, related studies on the automated
approaches are limited by the sizes of their
datasets and the restricted experimental setup,
thus they lack practical insights into the blind
review process. Using the large Microsoft Aca-
demic Graph, we train models that identify au-
thors, affiliations, and nationalities of the af-
filiations for anonymous papers, with 40.3%,
47.9% and 86.0% accuracy respectively from
the top-10 guesses. Further analysis on the re-
sults leads to interesting findings e.g., 93.8%
of test papers written by Microsoft are iden-
tified with top-10 guesses. The experimental
results show, against conventional belief, that
the self-citations are no more informative than
looking at the common citations, thus suggest-
ing that removing self-citations is not suffi-
cient for authors to maintain their anonymity.

1 Introduction

Scientific publications play an important role in
dissemination of advances, and they are often re-
viewed and accepted by professionals in the domain
before publication to maintain quality. In order to
avoid unfairness due to identity, affiliation, and
nationality biases, peer review systems have been
studied extensively (Yankauer, 1991; Blank, 1991;
Lee et al., 2013), including analysis of the opinions
of venue editors (Brown, 2007; Baggs et al., 2008)
and evaluation of review systems (Yankauer, 1991;
Tomkins et al., 2017). It is widely believed that a
possible solution for avoiding biases is to keep the
author identity blind to the reviewers, called double-

blind review, as opposed to only hiding the iden-
tity of the reviewers, as in single-blind review (Lee
et al., 2013). Since some personal information (e.g.,
author, affiliation and nationality) could implicitly
affect the review results (Lee et al., 2013), these
procedures are required to keep them anonymous
in double-blind review, but this is not foolproof.
For example, experienced reviewers could iden-
tify some of the authors in a submitted manuscript
from the context. In addition, the citation list in
the submitted manuscript can be useful in identify-
ing them (Brown, 2007), but is indispensable as it
plays an important role in the reviewing process to
refer readers to related work and emphasize how
the manuscript differs from the cited work.

To investigate blindness in double-blind review
systems, Hill and Provost (2003) and Payer et al.
(2015) train a classifier to predict the authors, and
analyze the results. However, they focus primar-
ily on the utility of self-citations in the submitted
manuscripts as a key to identification (Mahoney
et al., 1978; Yankauer, 1991; Hill and Provost,
2003; Payer et al., 2015), and do not take author’s
citation history beyond just self-citations into ac-
count. The experiment design in these studies is
also limited: they use relatively small datasets, in-
clude papers only from a specific domain (e.g.,
physics (Hill and Provost, 2003), computer sci-
ence (Payer et al., 2015) or natural language pro-
cessing (Caragea et al., 2019)), and pre-select the
set of papers and authors for evaluation (Payer et al.,
2015; Caragea et al., 2019). Furthermore, they fo-
cus on author identification, whereas knowing affil-
iation and the nationality also introduces biases in
the reviewing process (Lee et al., 2013).

In this paper, we use the task of author iden-
tity, affiliation, and nationality predictions to an-
alyze the extent to which citation patterns matter,
evaluate our approach on large-scale datasets in
many domains, and provide detailed insights into
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the ways in which identity is leaked. We describe
the following contributions:
1. We propose approaches to identify the aspects

of the citation patterns that enable us to guess
the authors, affiliations, and nationalities accu-
rately. To the best of our knowledge, this is
the first study to do so. Though related stud-
ies mainly suggest authors avoid self-citations
for increasing anonymity of submitted papers,
we show that overlap between the citations in
the paper and the author’s previous citations is
an incredibly strong signal, even stronger than
self-citations in some settings.

2. Our empirical study is performed on (i) a real-
world large-scale dataset with various fields of
study (computer science, engineering, mathe-
matics, and social science), (ii) study different
relations between papers and authors, and (iii)
two identification situations: “guess-at-least-
one” and “cold start”. For the former, we iden-
tify authors, affiliations and nationalities of the
affiliations with 40.3%, 47.9% and 86.0% accu-
racy respectively, from the top-10 guesses. For
the latter, we focus on papers whose authors are
not “guessable”, and find that the nationalities
are still identifiable.

3. We perform further analysis on the results to an-
swer some common questions on blind-review
systems: “Which authors are most identifiable
in a paper?”, “Are prominent affiliations easier
to identify?”, and “Are double-blind reviewed
papers more anonymized than single-blind?”.
One of the interesting findings is that 93.8%
of test papers written by a prominent company
can be identified with top-10 guesses.

The dataset used in this work is publicly available,
and the complete source code for processing the
data and running the experiments is also available.2

2 Related work

Here, we summarize related work, and describe
their limitations in analyzing anonymity in the
blind review systems.

2.1 Citation Analysis and Application

There are several studies that propose applications
using citation networks (Dong et al., 2017), and
they are not limited to applications of scientific
papers in academia. Fu et al. (2015, 2016) study

2https://github.com/
yoshitomo-matsubara/guess-blind-entities

patent citation recommendation and propose a ci-
tation network modeling. Levin et al. (2013) intro-
duce new features for citation-network-based sim-
ilarity metric and feature conjunctions for author
disambiguation, and it outperforms the clustering
with features from prior work. Fister et al. (2016)
define citation cartel as a problem arising in scien-
tific publishing, and they introduce an algorithm
to discover the cartels in citation networks using a
multi-layer network. Petersen et al. (2010) propose
the methods for measuring the citation and produc-
tivity of scientists, and examine the cumulative ci-
tation statistics of individual authors by leveraging
six different journal paper datasets. Though a study
of Su et al. (2017) is not a citation related work, it
proposes an approach to de-anonymize web brows-
ing histories with social networks and link them to
social media profiles. Kang et al. (2018) publish
the first dataset of scientific peer reviews, including
drafts and the decisions in ACL, CoNLL, NeurIPS
and ICLR. Using the published dataset, they also
present simple models to predict the accept/reject
decisions and numerical scores of review aspects.

2.2 Blind Review and Author Identification

Blind review systems in conferences and journals
have been addressed for decades, and have at-
tracted researchers’ attention recently (Blank, 1991;
Brown, 2007; Lee et al., 2013). For instance,
Snodgrass (2006) summarizes previous studies of
the various aspects in blind reviewing within a
large number of disciplines, and discusses the ef-
ficacy of blinding while mentioning how blind
submitted/published papers are in different stud-
ies. Tomkins et al. (2017) show an example of
affiliation bias in the reviewing process. They per-
formed an experiment in the reviewing process
of WSDM 2017, which considers the behavior of
the program committee (PC) members only, and
the members are randomly split into two groups
of equal size: single-blind and double-blind PCs.
They report that single-blind reviewers bid for 22%
more papers, and preferentially bid for papers from
top institutions. Bharadhwaj et al. (2020) discuss
the relation between de-anonymization of authors
through arXiv preprints and acceptance of a re-
search paper at a (nominally) double-blind venue.
Specifically, they create a dataset of ICLR 2020 and
2019 submissions, and present key inferences ob-
tained by analyzing the dataset such as “releasing
preprints on arXiv has a positive correlation with
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acceptance rates of papers by well known authors.”

Some studies attempt to manually identify au-
thors and affiliations in submitted manuscripts.
Yankauer (1991) sent a short questionnaire the re-
viewers of American Journal of Public Health for
asking them to identify the author and/or institution
of submitted manuscripts, and reported that blind-
ing could be considered successful 53% of time.
Justice et al. (1998) examine whether masking re-
viewers to author identity improves the peer review
quality. Through a controlled trial for external re-
views of manuscripts submitted to five different
journals, they conclude that masking fails to the
identity of well known authors, and may not im-
prove the fairness of review.

In addition to the manual identification studies,
some researchers propose automatic approaches to
guess authors in published papers. Table 1 summa-
rizes datasets in other studies. To the best of our
knowledge, Hill and Provost (2003) first propose
automatic methods using citation information for
author identification and perform an experiment
with a dataset, that consists of physics papers in the
arXiv High Energy Particle Physics between 1992
and 2003. Payer et al. (2015) propose deAnon, a
multimodal approach to deanonymize authors of
academic papers. They perform experiments with
papers in the proceedings of 17 different computer
science related conferences from 1996 to 2012.
Similarly, Caragea et al. (2019) address a similar
research question, and train convolutional neural
networks on the datasets of the prefiltered ACL and
EMNLP papers, using various types of features
such as context, style, and reference.

However, there are some biased observations in
their work. As shown in Table 1, one of the biggest
concerns lies in their datasets. They use only one
major field dataset in their work: physics (Hill and
Provost, 2003) , computer science (Payer et al.,
2015) and natural language processing (Caragea
et al., 2019), but it would be not enough to dis-
cuss if their approaches actually work in various
fields of study. The second biggest concern is that
they understate a possibility that there are also pa-
pers where no authors can be found in the training
dataset (Payer et al., 2015; Caragea et al., 2019).
Especially in Payer et al. (2015)’s work, the authors
do not mention the possibility, but achieve 100%
accuracy after trying all guesses for each paper
in their guess-one, guess-most-productive-one and
guess-all scenarios even though it is very difficult

in general to find papers where all the authors are
seen in the training dataset.

Furthermore, they focus only on productive au-
thors who have at least three papers in the training
dataset, and the numbers of candidates in training
and test papers can be considered very limited. Sim-
ilarly, Caragea et al. (2019) exclude any authors
with less than three papers from their datasets after
an author name normalization process described
in Section 4.3. Hill and Provost (2003) argue that
there are some test papers for which they did not
see the author(s) in their training dataset. However,
the lack of true authors’ citation histories does not
seem to strongly affect their observed matching
accuracy, and it can be caused by the scale of the
dataset. Also, their studies do not cover either
affiliation or nationality (including cold start sce-
nario), which could cause affiliation and nationality
biases (Lee et al., 2013) if they are identifiable.

3 Identification Approach

Training and test datasets are independently pre-
pared, and papers in the training dataset are older
than those in the test dataset. We extract features
from the training dataset to model each author’s
citation pattern, and the entity also can be affilia-
tion or nationality depending on what we guess in
the test papers. Building entity models, we score
each entity based on its extracted features for a test
paper, and sort the scores for the paper to rank all
the entities. We describe the detail of each process
in the following sections.

3.1 Citation Features

Scientific papers have references to introduce re-
lated work to readers and sometimes compare the
results with the work in order to emphasize the
difference between them. We assume that authors
have their own citation patterns, and it can be a clue
to guess authors in papers. They would repeatedly
cite the same papers and their own publication if
the projects and fields are similar to their previous
ones. Also, we assume that the citation list in a
paper would not dramatically change between be-
fore and after the blind-review process, since we
are limited in access to the published papers only.

In addition to citation features (Hill and Provost,
2003), Payer et al. (2015) and Caragea et al.
(2019) use contextual features. As discussed
in (Narayanan et al., 2012; Rosen-Zvi et al., 2004),
author-topic model and writing style would be hints
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Table 1: Dataset comparison with other studies.

Hill and Provost (2003) Payer et al. (2015) Caragea et al. (2019) Our work

Domains Physics CS NLP All, CS, Eng., Math, Soc. Sci.
#authors 7,424 1,405 262 & 922 22k - 2M
#papers 29,514 3,894 622 & 3,011 231k - 825k

Wrote, W

Cited, C

Author a

Author b

Paper p
  = 1

 = 1

Self-citation

Common Citation

Social Citation

 = 1 + 2 = 3

Figure 1: Example of self-, social and common cita-
tions Φ{self, soc, c}(a, p) for author a and paper p.

to identify authors. In this work, however, we only
use citation and publication histories for identifica-
tion. This also reduces computational load in train-
ing and test processes and enables us to further ana-
lyze the performances in various situations focused
on citation features. In the following approaches,
the models skip scoring candidate authors (entities)
given a test paper if they have no citation features
(all zero(s)) since this work focuses on citation pat-
tern in the identification problems.

Figure 1 illustrates an example citation graph
with red and blue edges from x→ y indicating x
cited y and x wrote y, respectively. We focus here
on three types of citations described in the follow-
ing sections: self, social, and common citations.

3.2 Self-citations, SC
As discussed in these studies (Mahoney et al., 1978;
Yankauer, 1991; Hill and Provost, 2003; Payer
et al., 2015), self-citations can be a clue in identi-
fication. The Self-citation (SC) model calculates
how many papers written by author a are cited by
paper p based on his/her publication history

Φself(a, p) =
∑

r∈Refp

W (a, r) ,

W (a, p) =

{
1 if a wrote p
0 otherwise

,

where p is a blind (test) paper, and a is a candidate
author seen in the training dataset. Refp is the set
of paper IDs cited by paper p. In Figure 1, a wrote
three different papers, and one of them is cited by
p i.e., (Φself(a, p) = 1), assuming a wrote p.

Hill and Provost (2003) use inverse citation-
frequency (icf) for weighted scoring for self-
citations to incorporate importance of the self-
citation. We include this in our SC model as well:

Φicf
self(a, p) =

∑

r∈Refp

W (a, r) · icf (r) (1)

icf (r) = log
( Ntr

1 +
∑

p′∈P∗ C(p′, r)

)
,

C(p, r) =

{
1 if p cited r
0 otherwise

,

where P∗ denotes the set of papers in the training
dataset, Ntr = |P∗| is the number of papers, and A
is the set of all authors in the training dataset.

3.3 Social citations, SocC

Instead of self-citations, it is also common to cite
papers written by past collaborators. In this work,
we call such citations social citations. Though
this model itself will not be as powerful as the
SC model, the social citation feature helps us iden-
tify potential connections between a test paper and
candidates (authors) as this approach covers the
publication histories of the past collaborators given
an author. Social citation score is defined as:

Φsoc(a, p) =
∑

r∈Refp

∑

ac∈Aa

W (ac, r), (2)

where Aa is the set of authors who wrote a paper
with author a. In Figure 1, author a wrote a paper
with author b, and p cited a paper written by b.
Then, the social citation count is one.

Similar to the SC model, our SocC model uses
the weighted score:

Φicf
soc(a, p) =

∑

r∈Refp

∑

ac∈Aa

W (ac, r) · icf (r). (3)

3.4 Common Citations, CC

Apart from self and social citations, another clue to
the identity might be in all past citations (even ones
that are not self or social). Common Citation (CC)
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Table 2: Features used for our combined model.

Feature Name Feature Value

Average icf-weighted CC score Φicf
c (a,p)

|Refp|

CC coverage |Refp∧Ref∗a|
|Refp|

Average SocC score Φicf
soc(a,p)

|Refp|

SocC coverage |Refp∧PubAa |
|Refp|

icf-weighted SC score Φicf
self(a, p)

SC score Φself(a, p)

Ref∗a: set of paper IDs cited by papers written by a in the
training dataset, while PubAa : set of papers written by past
collaborators of author a.

model thus calculates how many times in author a
cites each of the papers cited by paper p:

Φc(a, p) =
∑

r∈Refp

∑

p′a∈Pa

C(p′a, r) , (4)

where Pa is the set of a’s papers in the training
dataset. In Figure 1, the paper p cites two of the
papers cited by a, and the author’s common citation
count is three. We also include a weighted version:

Φicf
c (a, p) =

∑

r∈Refp

∑

p′a∈Pa

C(p′a, r) · icf (r). (5)

3.5 Learning a Classifier
In addition to separately using the SC, SocC and
CC models, we introduce a combined model (Full)
that uses all the citation features. We estimate the
parameters of features by the mini-batch gradient
descent method. Due the cost of computing soft-
max function over all possible authors for a paper,
we use negative sampling, similar to (Mikolov et al.,
2013), leading to the following loss:

l({ai, pi},θ) =
1

K

K∑

i=1

(
log σ

(
θ · φ(ai, pi)

)

− 1

|Āpi |
∑

ā∈Āpi

log σ
(
θ · φ(ā, pi)

))
− λ||θ||22

(6)

where {ai, pi} is a set of pairs of authors and their
papers, and θ is 7-dimensional estimated parameter
vector. φ(ai, pi) contains a bias term and features
shown in Table 2, and K is the batch size. Āpi

is a set of randomly sampled authors as negative
samples given paper pi, and λ is a hyperparameter
for regularization. Note that these parameters θ are
shared across all the authors in the dataset.

4 Experimental Setup

We define some terms and variables used in the
following sections, and then describe the MAG
dataset and how we develop benchmarks from it.

4.1 Evaluation Setup

We consider three different entity disambiguation
scenarios: author, affiliation, and nationality. For
each, our primary evaluation metric is hits at least,
HALM@k, accuracy of our guesses. If our top-k
ranking hits at least M of all the true entities in a
test paper, it is considered successfully guessed. M
is typically fixed at 1 in the related studies (Blank,
1991; Yankauer, 1991; Justice et al., 1998; Hill and
Provost, 2003; Payer et al., 2015; Caragea et al.,
2019). Similarly, the range of k is 1-100 (Hill
and Provost, 2003), 1-1000 (Payer et al., 2015)
and 10 (Caragea et al., 2019) in the previous work
respectively. We also consider an evaluation where
we set k to X , the number of the true entities of a
test paper (i.e., each test paper has a different X .

Additionally, we differentiate between guessable
and not guessable papers. We call a test paper
guessable if at least M of all the true entities in
the training set have any (non-zero) citation feature
used in a model. IfM is greater than the number of
the true entities in a test paper, it is not guessable.

4.2 Dataset: Microsoft Academic Graph

The Microsoft Academic Graph (MAG) is a large
heterogeneous graph of academic entities provided
by Microsoft. For paper and author entities, Sinha
et al. (2015) collect data from publisher feeds (e.g.,
IEEE and ACM) and web-page indexed by Bing.
They also report that often the quality of the feeds
from publishers are significantly better, although
the majority of their data come from the indexed
pages. The MAG was used in the KDD Cup 2016
for measuring the impact of research institutions
and in the WSDM Cup 2016 for entity ranking
challenge. The MAG is much larger and more di-
verse than datasets used in related studies (Hill and
Provost, 2003; Payer et al., 2015; Caragea et al.,
2019), and uses disambiguated entity IDs. Since
some authors seem to be assigned to different au-
thor IDs though they look identical, we perform au-
thor disambiguation in a more conservative method
(Section 4.3) than those in the previous work (Hill
and Provost, 2003; Caragea et al., 2019). We use
the dataset released in February 2016, thus it in-
cludes very few papers published in 2016 than in
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the years earlier. Some entries do not have all the
attributes we need; we discard such entries.

4.3 Author Disambiguation

It would be ideal if an author name uniquely iden-
tifies the entity. In practice, however, an author
name tends to be directed to different entities,
and an entity may correspond to multiple names
(e.g., misspelling and shortened names). Hill and
Provost (2003) used the dataset3 released for KDD
Cup 2003. Since this dataset does not contain au-
thor IDs, they performed author name disambigua-
tion on the dataset by using author’s initial of the
first name and entire last name, and Caragea et al.
(2019) used the same technique.

Though Hill and Provost (2003) consider the
method conservative, it seems rather rough when
we tried to reproduce the result. We found that
there are 12,625 unique author names, and their
disambiguation method resulted in 8,625 unique
shortened author names. However, 883 of them
have potential name conflicts. Taking an example
from the result, “Tadaoki Uesugi” and “Tomoko
Uesugi” are considered identical as “T Uesugi”,
but their names look completely different. Another
example is with shortened name; there is a conflict
between “A Suzuki”, “Alfredo Suzuki” and “Akira
Suzuki” though it would make sense if there were
only one pair of “A Suzuki” and “Alfredo Suzuki”
(or “Akira Suzuki”) in the dataset.

The MAG dataset contains author IDs, but there
still remains some ambiguity of authors. One of
the possible reasons is that some authors may have
moved to different affiliations and their new au-
thor IDs were generated. Leveraging some of the
knowledge in KDD Cup 2013 (author disambigua-
tion challenge) (Chin et al., 2013), we merge au-
thors into one entity if and only if they meet all the
following conditions: (1) they have identical full
names, and (2) have at least one common past col-
laborator. This policy reduces the number of unique
author IDs in our extracted datasets by about 4%.
It may be still incomplete, but it is more conser-
vative and would bias our results less than related
work (Hill and Provost, 2003; Caragea et al., 2019).

4.4 Extracted Datasets

Since the MAG dataset is significantly larger than
the datasets used in the previous studies (Hill and

3https://www.cs.cornell.edu/projects/
kddcup/datasets.html

Provost, 2003; Payer et al., 2015; Caragea et al.,
2019), we extract five different datasets from the
MAG dataset: randomly sampled, computer sci-
ence, engineering, mathematics, and social science
datasets. All these datasets consist of papers pub-
lished between 2010 and 2016, and we split the
datasets into training (from 2010 to 2014) and test
(from 2015 to 2016) datasets. As we mentioned
in Section 4.2, the original dataset includes few
papers published in 2016 due to its release date.
Note that the test datasets include over 20% of the
test papers all of whose authors are not found in
the training datasets since these training and test
datasets are independently prepared.

The first dataset (MAG(10%)) is composed of
randomly sampled papers to extract 10% of the
whole dataset, and it is most diverse with respect to
fields of study among the five datasets. All the other
datasets are extracted based on the venue list for
each field. For efficiency, it is reasonable to filter
candidates (and papers in training dataset) by their
fields given a paper because reviewers will know
the fields of their venues. Here, an extracted candi-
date has at least one paper published at a venue in
the field defined below, and papers in the training
dataset consists of papers written by extracted can-
didates. Though some papers may not be guessable
because of the filter, we consider the possibility to
keep our experimental design unbiased (i.e., we do
not discard test papers responding to the filtered
training dataset). For computer science (CS), we
extract papers presented at any of the 60 different
venues in a list based on CSRankings4. We also cre-
ate lists of conferences based on Scimago Journal
& Country Rank5 for engineering (Eng.), mathe-
matics (Math), and social science (Soc. Sci.), and
the lists consist of 60, 60, and 34 venues respec-
tively. Table 3 shows the statistics of each dataset
in author identification. Because of few venues of
social science in the original dataset, the dataset is
smaller than the others, but still larger than those
used in the previous studies (Hill and Provost, 2003;
Payer et al., 2015; Caragea et al., 2019).

4.5 Entity Conversion

We also use the above datasets for affiliation and
nationality identifications (see Tables 4 and 5 for
details). Since some papers in the datasets lack
affiliation information, we drop papers from the

4http://csrankings.org/
5http://www.scimagojr.com/
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Table 3: Author Identification: Statistics of training
(2010-2014) and test (2015-2016) datasets.

Dataset Avg. X # author IDs # unique papers

test training test training test (guessable)

MAG(10%) 4.97 2,138,060 484,215 715,968 110,565 (34.1%)
CS 3.81 61,621 19,284 449,875 6,363 (64.7%)
Eng. 3.77 45,731 18,537 391,768 6,065 (48.0%)
Math 3.29 29,950 4,957 269,015 1,723 (53.6%)
Soc. Sci. 3.12 22,059 1,737 231,110 603 (28.7%)

Table 4: Affiliation Identification: Statistics of training
(2010-2014) and test (2015-2016) datasets.

Dataset Avg. X # affiliation IDs # unique papers

test training test training test (guessable)

MAG(10%) 1.72 12,416 6,441 289,748 34,927 (78.0%)
CS 1.62 8,487 1,506 260,990 5,738 (93.0%)
Eng. 1.50 8,043 1,646 222,229 5,386 (88.6%)
Math 1.51 7,124 698 153,629 1,265 (94.3%)
Soc. Sci. 1.43 6,597 401 128,718 432 (79.8%)

Table 5: Nationality Identification: Statistics of train-
ing (2010-2014) and test (2015-2016) datasets.

Dataset Avg. X # nationality IDs # unique papers

test training test training test (guessable)

MAG(10%) 1.16 130 112 190,026 23,579 (75.5%)
CS 1.16 115 64 194,378 4,073 (89.7%)
Eng. 1.17 108 62 168,631 3,738 (83.9%)
Math 1.16 108 49 114,854 895 (91.8%)
Soc. Sci. 1.08 106 34 98,665 322 (73.6%)

training and test datasets used in affiliation identi-
fication if we cannot find at least one affiliation in
each of the papers. Since the original dataset does
not have nationality information for each affilia-
tion, we perform substring matching for affiliation
name based on the information by LinkedIn6 and
Webometrics7 in order to convert an affiliation to
its nationality. Similarly, we drop papers from na-
tionality identification if we cannot find at least one
nationality in each of the papers. Note that indus-
trial affiliations may have their offices at several
countries, and therefore it is difficult to use their
names when converting an affiliation to its nation-
ality. For this reason, we use academic affiliations
only in affiliation identification.

Basically, each reference paper can be cited by
several published papers, and similarly each pub-
lished paper can be written by several authors. In
contrast, each author (ID) belongs to an affiliation
(ID), and an academic affiliation is in a nationality.
For this dataset, we can also say that the nationality-
affiliation and affiliation-author relationships are
single-to-single, and the author-published paper
and published paper-reference paper relationships

6https://www.linkedin.com/
7http://www.webometrics.info/

are single-to-many. Authorship and citations of
an affiliation are the total papers/citations of their
authors, respectively, and similarly for author-
ship/citations of a nationality.

4.6 Baseline approaches

We extract several sub-datasets based on fields of
study from the original dataset. Since the scale of
the dataset depends on the field, we use a random
scoring approach (Rand) as a baseline to relatively
evaluate performance for each dataset. The score is
randomly generated between 0 and 1. We also use
another random scoring approach (Rand(S)) that
skips scoring the candidate authors in a test paper
if their citation histories do not include any of the
papers cited by the test paper. Since the SC model
is based on Hill and Provost (2003), it is also a
baseline approach.

5 Experiments and Results

Using various approaches explained above, we
perform experiments in two different identifi-
cation scenarios: “guess-at-least-on” and “cold
start”. Through the first experiment, we show how
anonymized a paper is in each of author, affiliation
and nationality identifications. In the second ex-
periment, we show that there remain identity leaks
even when no authors in a paper are identifiable.

5.1 Guess-At-Least-One Identification

In this experiment, we aim to guess at least one
author / affiliation / nationality (M = 1), and eval-
uate HAL1 performances of the five different ap-
proaches. If our top k ranking (guesses) includes
at least one author in a given paper, the guess is
considered successful. Obviously, a paper is less
anonymous if we can identify at least one entity
(author / affiliation / nationality) in the paper with
few guesses. Tables 6-10 show identification per-
formances with five different datasets. The average
of Xs and the percentage of the guessable papers
in each dataset are given in Tables 3-5.

Overall, our combined model consistently
achieves the best performances in the author iden-
tification with the datasets, and in the affiliation
and nationality identifications the performances of
the common citation approach are comparable to
those of our combined model. As for the social ci-
tation approach, interestingly, it performs better in
author identification than in affiliation and nation-
ality identifications though all the other approaches
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Table 6: Guess-At-Least-One Scenario: Identification performances with randomly sampled dataset.

MAG(10%) Author Identification [%] Affiliation Identification [%] Nationality Identification [%]

Top X 10 100 1000 X 10 100 1000 X 10 100

Rand 0.003 0.0009 0.01 0.089 0.028 0.123 1.37 12.7 1.10 8.60 79.7
Rand(S) 1.63 2.67 12.5 27.8 2.66 9.20 31.2 42.8 11.3 52.8 75.5
SC 8.33 9.71 10.8 10.8 5.67 7.25 7.34 7.34 11.1 12.9 12.9
SocC 6.95 8.62 11.3 11.7 0.544 1.60 7.76 18.7 0.674 3.72 16.5
CC 12.4 15.4 25.5 31.7 11.5 22.9 38.6 42.9 37.3 71.1 75.5
Full 13.4 16.5 26.8 32.9 12.0 23.6 40.1 48.8 37.6 71.7 77.9

Table 7: Guess-At-Least-One Scenario: Identification performances with computer science dataset.

CS Author Identification [%] Affiliation Identification [%] Nationality Identification [%]

Top X 10 100 1000 X 10 100 1000 X 10 100

Rand 0.00 0.015 0.283 2.81 0.00 0.157 2.04 18.1 1.74 10.5 88.8
Rand(S) 2.40 5.30 25.7 55.1 2.09 9.22 46.2 74.2 9.18 51.1 89.7
SC 27.0 34.2 38.1 38.1 23.4 37.4 38.3 38.3 45.1 56.6 56.6
SocC 15.5 23.3 38.6 43.5 1.17 4.98 30.1 68.3 1.17 6.41 59.4
CC 24.6 33.9 52.3 60.5 20.1 43.7 69.2 74.2 54.1 85.1 89.7
Full 30.3 40.3 56.4 63.9 22.7 47.9 71.3 79.9 43.1 86.0 93.0

Table 8: Guess-At-Least-One Scenario: Identification performances with engineering dataset.

Eng. Author Identification [%] Affiliation Identification [%] Nationality Identification [%]

Top X 10 100 1000 X 10 100 1000 X 10 100

Rand 0.00 0.033 0.313 3.13 0.037 0.149 2.01 17.7 1.39 11.7 93.5
Rand(S) 3.15 6.43 25.6 44.3 2.64 10.4 42.8 58.9 10.2 53.6 83.9
SC 19.0 22.1 22.9 22.9 15.0 21.1 21.2 21.2 31.4 37.1 37.1
SocC 9.73 14.5 22.4 23.5 0.613 2.73 17.8 45.7 0.00 1.55 25.2
CC 18.9 25.3 39.5 44.9 15.4 32.1 53.8 58.9 44.4 78.3 83.9
Full 22.4 29.8 42.4 47.7 16.7 34.6 56.2 66.4 40.5 79.5 88.6

Table 9: Guess-At-Least-One Scenario: Identification performances with mathematics dataset.

Math Author Identification [%] Affiliation Identification [%] Nationality Identification [%]

Top X 10 100 1000 X 10 100 1000 X 10 100

Rand 0.00 0.058 0.464 3.31 0.00 0.158 2.37 21.0 1.34 9.60 94.0
Rand(S) 3.83 7.66 31.5 51.2 2.92 13.2 51.9 70.4 10.8 59.7 91.8
SC 23.7 27.0 27.3 27.3 21.6 28.2 28.3 28.3 35.9 43.6 43.6
SocC 11.7 19.4 26.5 27.3 0.395 2.92 19.7 48.3 0.670 5.47 42.7
CC 22.1 32.8 46.5 51.2 20.6 43.1 67.2 70.4 50.7 87.0 91.8
Full 26.5 36.3 49.4 53.6 22.5 46.0 69.7 78.7 47.6 87.6 94.3

Table 10: Guess-At-Least-One Scenario: Identification performances with social science dataset.

Soc. Sci. Author Identification [%] Affiliation Identification [%] Nationality Identification [%]

Top X 10 100 1000 X 10 100 1000 X 10 100

Rand 0.00 0.00 0.166 2.32 0.00 0.00 2.78 19.2 2.17 9.94 97.2
Rand(S) 3.65 6.14 18.2 26.5 3.94 8.30 27.8 38.2 15.8 53.7 73.6
SC 14.1 16.6 17.1 17.1 14.8 19.4 19.4 19.4 34.8 36.6 36.6
SocC 7.13 9.95 15.4 15.8 1.85 4.40 13.7 32.9 0.00 1.55 25.2
CC 12.8 17.9 24.2 26.9 11.1 24.8 35.9 38.2 51.2 69.9 73.6
Full 15.4 21.1 26.7 28.7 13.4 27.8 39.4 46.5 51.2 71.1 79.8
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Figure 2: Author (a), Affiliation (b) and Nationality (c) Identifications: Normalized performances (divided by
the percentage of guessable papers = 64.7, 84.3, 89.7[%] respectively) of five different approaches with CS dataset.

perform best in nationality identification. In ad-
dition, as we expected, filtering training datasets
(candidates) by venues (fields of study) is effective
to guess blind entities in papers of the fields though
it is more difficult to guess entities in papers of the
randomly sampled and social science datasets be-
cause of their smaller percentages of the guessable
papers in the datasets.

Figure 2 illustrate the relations between rankings
and normalized accuracies with the computer sci-
ence dataset in author, affiliation and nationality
identifications. The self-citation performances con-
verge faster than other approaches using common
citation, and this implies that test papers are more
likely to have common citations than self-citations.
In addition, the performance difference between
the SC and our CC (and combined) models are
significantly increasing after top 10 choices. Com-
pared to author and affiliation identifications, the
number of candidate countries in nationality identi-
fication is much smaller, and it could help us easily
guess nationalities in test papers.

Some previous studies (Mahoney et al., 1978;
Yankauer, 1991; Hill and Provost, 2003; Payer
et al., 2015) argue that citing their own papers can
be a clue to guess them in their submitted manu-
script, and Hill and Provost (2003) reported that
their self-citation based method outperforms their
common citation based method in the experiment
(the Guess-At-Least-One scenario). As shown in
Tables 6-10, however, there are few significant dif-
ferences between the accuracy with top 10 or fewer
guesses by the CC and SC approaches in author
identification. Furthermore, the CC approach out-
performs the SC approach in affiliation (with top
10 or more guesses) and nationality (with top X or
more guesses) identifications. From these results,
it is confirmed that not only self-citation but also
common citation can be a clue to identify blind enti-

Table 11: Cold Start: Identification for top 10 guesses.

Top-10 Affiliation [%] Nationality [%]

SC SocC CC Full SC SocC CC Full

MAG(10%) 1.19 0.715 9.42 9.59 6.28 3.27 61.8 62.2
CS 7.57 2.66 13.9 15.4 25.1 5.62 65.8 66.5
Eng. 4.18 1.32 9.68 10.2 17.1 6.93 62.8 63.4
Math 7.03 1.90 16.2 16.9 22.8 6.52 76.1 76.9
Soc. Sci. 4.78 1.36 6.83 7.51 22.8 2.34 59.8 60.3

ties in a paper. In other words, we need to decrease
both of the numbers of self-citations and common
citations if we want to increase anonymity of our
submitted manuscripts in the blind review process.

5.2 Identification in Cold Start Scenario

In the previous author identification problem, we
can see from Table 3 that approximately 35-70%
of test papers in the datasets are not guessable as
they do not have any link to at least one of the true
authors in the training datasets. The affiliations and
nationalities in such test papers, however, may be
still guessable since other authors who belong to
the affiliation and/or other affiliations in the same
country may have similar citation history. In this
section, we focus on non-guessable test papers in
the author identification experiment, and guess the
true affiliations and nationalities.

In affiliation identification with non-guessable
papers for author identification, we ignore papers
all of whose authors’ affiliations are missing in the
datasets, and similarly ignore papers in nationality
identification all of whose affiliations could not be
converted to their counties. As for training, we use
the same training datasets and parameters used in
Section 5.1. Table 11 shows the performances of
our approaches with top 10 guesses and the percent-
ages of guessable papers in affiliation and national-
ity identifications. The performances of affiliation
and nationality identifications in the cold start sce-
nario for author identification are worse than those
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Figure 3: Relation between identification rates (top 10
guesses) and author sequence numbers with CS dataset.

in Tables 6-10. However, at least nationality is still
identifiable with a small number of guesses in all
the datasets even when we cannot guess true au-
thors in a test paper. Furthermore, we find that the
self-citation (SC) model is not useful in this sce-
nario even compared to another baseline approach
Rand(S) in nationality identification.

6 Further Analysis

In Section 5, all the entity types are identifiable
with a small number of guesses. However, we
provide further analysis of the combined model on
the CS dataset to answer the following questions.

Which authors are most identifiable?
Figure 3 shows identification rates of different au-
thor positions for test papers that have at most 5
authors (85% of the test dataset). As shown, the last
author in a paper consistently turns out to be most
identifiable, and this may be because the last author
is likely to be a director of the research group who
may have a stronger research background.

Are prominent affiliations easier to identify?
Here, we consider the number of test papers written
by researchers in an affiliation as its prominence.
It is apparent from Figure 4 that identification rates
of prominent affiliations tend to be high. For ex-
ample, 93.8% and 77.5% of test papers written by
Microsoft and Carnegie Mellon University respec-
tively are identified with top 10 guesses. Note that
there are 1,506 affiliations in the graph, but most
of the points are overlapped each other.

Are double-blind reviewed papers more
anonymized than single-blind reviewed ones?
As shown in Table 12, the performances for papers
at single- and double-blind review conferences are
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Figure 4: Affiliation prominences and identification
rates (top 10 guesses) with CS dataset.

Table 12: Average percentages of identified papers (top
10 guesses) for single- and double-blind review venues.

CS Macro average [%] Micro average [%]

Blind review Single Double Single Double

Author 43.3 42.9 38.3 40.9
Affiliation 55.0 51.9 46.1 48.1

almost the same as author and affiliation identifi-
cations. This similar performance suggests that
the level of anonymity in venues with single-blind
review is comparable to that with double-blind re-
view. We only use conferences with at least 40 test
papers for denoising here, however, they account
for 95% of all test papers.

7 Conclusions

The blind review systems are fundamental for re-
search communities to maintain the quality of the
published studies. However, it is unclear to what
extent the submissions maintain anonymity and
how fair the review processes are. In this work, we
focus on one of the aspects of de-anonymization
by investigating the extent to which we can predict
author identity from the paper’s citations. Through
practical large-scale experiments, we show we can
identify author identity, affiliation, and national-
ity with a few guesses. These results indicate that
merely omitting author names is not a sufficient
guarantee of anonymity, and may not alleviate fair-
ness considerations in blind review process. This
study only involves published papers; analyzing
submissions for double-blind review requires con-
siderable involvement of the research communities
since they are not public (Tomkins et al., 2017).
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Abstract
We introduce SmartCiteCon (SCC), a Java
API for extracting both explicit and implicit ci-
tation context from academic literature in En-
glish. The tool is built on a Support Vector Ma-
chine (SVM) model trained on a set of 7,058
manually annotated citation context sentences,
curated from 34,000 papers in the ACL An-
thology. The model with 19 features achieves
F1=85.6%. SCC supports PDF, XML, and
JSON files out-of-box, provided that they are
conformed to certain schemas. The API sup-
ports single document processing and batch
processing in parallel. It takes about 12–45
seconds on average depending on the format
to process a document on a dedicated server
with 6 multithreaded cores. Using SCC, we
extracted 11.8 million citation context sen-
tences from ∼33.3k PMC papers in the CORD-
19 dataset, released on June 13, 2020. The
source code is released at https://gitee.
com/irlab/SmartCiteCon.

1 Introduction

Citations are ubiquitous in scientific publications.
With proper citations, statements in research pa-
pers are supported by existing works, and readers
obtain relevant information beyond the current pa-
per. Citations also form graphs, which provide
unique models for ranking, sentimental classifica-
tion, and plagiarism detection. Therefore, citation
analysis plays an important role in helping to under-
stand the deep connection between literature. Accu-
rate citation context recognition is the prerequisite
of many downstream applications. Recently, cita-
tion context, the text segment that appears around
the citation mark in the body text, has been used
for enhancing and improving keyphrase extraction
(Caragea et al., 2014) and document summarization
(Cohan and Goharian, 2015).

There are two types of citation context. Explicit
citation contexts (ECC) are sentences containing ci-

tation marks. Each citation thus corresponds to one
explicit citation context sentence. Implicit citation
contexts (ICC) are sentences that are semantically
relevant to the cited articles but do not contain ci-
tation marks. ICC may appear before or after but
may not immediately precede or follow the ECC
sentence. One paper could be cited multiple times
and each time may have different citation contexts.
In the example below, the ECC, containing the ci-
tation mark “(Ma et al. 2004)”, is highlighted in
green. The ICC sentences are highlighted in yel-
low. The nonhighlighted sentence is not a citation
context for the given citation.

We investigate the impact of
semantic constraints on sta
tistical word alignment models
as prior knowledge. In (Ma
et al. 2004), bilingual se
mantic maps are constructed
to guide word alignment. The
framework we proposed seamlessly
integrates derived semantic
similarities into a statistical
word alignment model. And we
extended monolingual latent se
mantic analysis in bilingual
application.

Most existing tools extract ECC, i.e., sentences
containing citation marks. Although the results
are highly relevant, the method omits ICC if the
author uses multiple sentences to summarize the
results. To our best knowledge, there are no off-
the-shelf tools dedicated to ICC extraction. Unlike
ECC sentences with citation marks, the lack of
explicit marks makes citation context recognition
challenging.

In this work, we develop a Java API that imple-
ments a supervised machine learning model trained
on 7058 manually labeled sentences to extract both
ECC and ICC. The model achieves an F1-measure
of 85.6%. The Java API can be deployed on a local
machine or as a web service.
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2 Related Work

Several citation context extraction methods have
been developed. In Nanba and Okumura (1999),
the scope of the citation context covered several
consecutive sentences before and after the sen-
tences with citation marks (i.e., citation sentence),
identified based on a referential relationship with
the citation sentence. In another work, Markov
model was used for identifying citation context
(Qazvinian and Radev, 2010). Sugiyama (2010) de-
scribed a support vector machine (SVM) and maxi-
mum entropy (ME) model for identifying citation
sentences using shallow features such as proper
nouns and contextual classification of the previous
and next sentence (Sugiyama et al., 2010). They
found that the performances of SVM and ME do
not exhibit significant differences. The positive
samples were selected as sentences including cita-
tion marks using regular expression matching, ICC
extraction was not covered.

ParsCit is an open-source software commonly
used for citation parsing and citation context extrac-
tion (Councill et al., 2008). ParsCit parses citation
strings using a Conditional Random Field (CRF)
model. The citation context extraction was per-
formed by extracting a fixed window size of 200
characters on either side of the citation mark. GRO-
BID (Lopez, 2009) is a library to extract informa-
tion from scholarly documents. The documentation
reports the F1-measure of citation context resolu-
tion is around 75%, which counts both the correct
identification of citation marks and its correct asso-
ciation with bibliographic references.

In summary, existing citation context extraction
tools focus on ECC but ignore ICC, the latter of
which includes more sentences semantically related
to the cited papers.

3 Supervised Machine Learning Model

Our system is based on a supervised machine learn-
ing model proposed in Lei et al. (2016), which
classifies a sentence into ICC and non-ICC.

We adopted the ground truth built by Lei et al.
(2016) containing 130 articles from 34,000 com-
putational linguistics conference proceedings in
ACL Anthology. The original PDF files were con-
verted to XML format using OCR (Schäfer and
Weitz, 2012). The training set was labeled by 13
graduate students majoring in information manage-
ment. The labeling agreement was tested using
Cohen’s Kappa Coefficient (κ = 0.937). The fi-

nal ground truth contains 3,578 positive and 3,480
negative samples. The preprocessing uses Apache
OpenNLP for sentence segmentation. Citation
marks are identified using regular expressions. Ci-
tation marks are then removed, and the original
sentences are converted into regular sentences for
following analyses such as part-of-speech (POS)
tagging. Each sentence is represented by up to 19
features of four types (Table 1). The best model us-
ing all features achieves 86% F1-measure in a the
10-fold cross validation. The SVM outperformed
CRF by about 5% in F1-measure (Table 2).

4 Architecture

The SCC system completes the extraction in four
steps (Figure 1): (1) file type recognition, (2) pre-
processing, (3) feature extraction, and (4) sentence
classification. The output is a JSON file containing
ECC and ICC and other citation-related informa-
tion. The API was written based on the Springboot
framework in Java. The machine learning model
was implemented with WEKA.

4.1 File Type Recognition

SCC first recognizes the uploaded file type. For a
PDF file, SCC invokes GROBID and converts it
to an XML file under the TEI schema. If an XML
file is uploaded as input, SCC checks whether the
schema is in compliance with TEI or PloS ONE
schema and passes it to corresponding preproces-
sors. If a JSON file is uploaded, it checks if it is
in compliance with the S2ORC schema, published
by Semantic Scholar (Lo et al., 2020). We apply
Apache Tika to identify file format. Other format
of data files will not be processed.

4.2 Preprocessing

The preprocessing step reads files passed from the
last step with customized preprocessors depend-
ing on the schema and prepares a canonicalized
XML for feature extraction. This step includes the
following modules.

4.2.1 Tag removal
This module involves removing irrelevant tags from
the DOM structure in the XML file. For example,
in the PloS ONE XML files, the <fig>, <sub>, and
<italic> tags used for marking up figures, super-
scripts, and italic font are all moved. Only the text
inside these tags are retained. The <xref> tags
mark positions of citations, which will be used for
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# Features Categories

1 Distance to the citation sentence Location
2 In the same paragraph as the citation sentence Location
3 Include any citation marks Location
4 The preceding sentence is not a citation sentence Location
5 The following sentence is not a citation sentence Location
6 The preceding sentence is the first in paragraph Location
7 Is the first sentence in the paragraph Location
8 Section the sentence is in Location
9 Is the last sentence in the paragraph Location

10 Trigram Jaccard similarity Content
11 Bigram Jaccard similarity Content
12 Unigram Jaccard similarity Content
13 Include author names Reference
14 Include any words in the citation sentence Reference
15 Include He/She/It or their variants Reference
16 Include Lexical hooks (Murray, 2015) Reference
17 Include Work Nouns (Murray, 2015) Reference
18 Number of citation marks Type
19 Include certain conjunction Structure

Table 1: Features of the SVM model. A citation sentence is the sentence containing a citation mark.

Model Precision Recall F1-measure

SVM 19 85.6% 85.6% 85.6%
CRF 19 82.2% 79.9% 80.8%

Table 2: Evaluation of SVM and CRF models on 19
features.

restoring citations. We use a separate data struc-
ture to store the positions of <xref> tags before
removing them.

4.2.2 Sentence segmentation
We compared five commonly used sentence seg-
mentation tools, including the Pragmatic Seg-
menter by Kevin Dias1, lingpine2, NLTK3, a reg-
ular expression parser, and the Stanford CoreNLP
(Manning et al., 2014) sentence splitter. The golden
standard contains 52 sentences provided by Kevin
Dias, which covers most possible sentence forms.
According to Dias’ comparison, the Pragmatic Seg-
menter receives an accuracy of 98% and the Stan-
ford CoreNLP’s accuracy is 59.6%. In our exper-
iments, the accuracies for Lingpipe, NLTK, and

1https://github.com/diasks2/pragmatic_
segmenter

2http://www.alias-i.com/lingpipe/
3https://www.nltk.org/

regular expression parsers are 61.5%, 50.0%, and
38.5%, respectively. The Pragmatic Segmenter is
implemented by Ruby on Rails. To make our API
less dependent on a second programming language,
we decided to employ Lingpipe for sentence seg-
mentation. We select up to five sentences before
and after the current citation sentence as the can-
didates for classification. This covers almost all
sentences that could be classified as ICC.

4.2.3 Canonicalization

Because the input XML may have different
schemas, this module takes the processed docu-
ments from the above modules and transforms them
into a unified schema for feature extraction. The
canonicalized schema defines new IDs for chapters,
paragraphs, sentences, and citations. The canon-
icalized XML also includes whether the current
sentence contains citation marks.

4.3 Feature Extraction and Text
Classification

This step extracts 19 features (Table 1) from the
canonicalized XML files and represents each can-
didate sentence as a vector saved in Livsvm files4.

4https://www.csie.ntu.edu.tw/˜cjlin/
libsvm/
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Figure 1: SmartCiteCon architecture.

The SVM model classifies each sentence and out-
puts a binary indicating whether a sentence is ICC
or not. The output JSON file contains citation
marks and their positions, citation sentences, and
sentences classified as ICC.

4.3.1 User Interfaces
Users can install SCC on a local machine. The API
interface supports 3 modes:

1. Single document mode – using the /extract

service;

2. Batch extraction model with files zipped
and transferred through TCP/IP – using
/batchExtract;

3. Local extraction model with files re-
trieved from a local directory – using
/localExtract.

In the single document and batch extraction
modes, the API will return JSON objects and ex-
ecution status. For the local extraction mode, the
API will return the execution status and the results
will be saved in JSON files.

5 SCC API Performance

We test the SCC API on a computer with 16GB
RAM and an Intel Core i7-8570H CPU@2.20GHz,
which has 6 hyperthreaded cores (12 threads in to-
tal). In a preliminary experiment, we compare the
runtime of processing 10 XML documents using
a single process under different JVM heap sizes.
The runtimes corresponding to 12GB, 8GB, 4GB,

and 2GB are 23.8 min, 12.7 min, 7.3 min, and
7.6 min, respectively. Higher heap does not boost
processing speed probably due to garbage collec-
tion. Based on the results, in the following exper-
iments, 4GB heap was allocated to JVM. The ex-
periments were set to extract citation context from
randomly selected documents in different formats.
The datasets include 10 PDF documents from PLoS
ONE, 10 XML documents corresponding to the
PDF documents, and 10 JSON documents from the
CORD-19 dataset. We monitor the system using
Jprofiler (version 11) and calculate the median time
it takes for processing one document as we vary the
number of processes Np. Figure 2 shows that the
CPU utilization increases from about 10% and sat-
urates when Np reaches 8. The memory utilization
climbs up slowly as Np increases but are mostly
well below the maximum allocated heap, because
processed documents are not stored in memory
anymore. The average processing time for all three
types gradually decreases as Np increases but in
general, it takes longer to process PDF files than
JSON and XML files. The maximum and mini-
mum processing time are shown in Table 3. The
runtime can be further reduced by running the API
on a computer with more processes on a multicore
server. On average, JSON files take the least time
to process.

6 Extracting Citation Context from
CORD-19

SCC is different from similar tools such as ParsCit
and GROBID in that it extracts both ECC and ICC.
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Figure 2: The performance of SCC on a multicore computer. Runtime is normalized at the 177 seconds; the middle
panel shows the CPU utilization monitored by Jprofiler; the right panel shows the memory utilization normalized
at 4GB.

XML PDF JSON

Max Min Max Min Max Min

164 43 177 45 39 12

Table 3: Runtime in seconds for different document
formats. The maximum and the minimum runtime are
achieved at Np = 1 and Np = 8, respectively.

We apply SCC and extract ECC and ICC from the
CORD-19 dataset. CORD-19 is an open-access
dataset compiled by Allen Institute of Artificial In-
telligence about COVID-19, SARS, MERS, and re-
lated keyphrases conforming to the S2ORC schema
(Lo et al., 2020). We downloaded the data released
on June 13, 2020 including 50,818 and 69,646 full
text papers under the PMC and the PDF folders re-
spectively. The PMC folder contains full-text files
obtained by parsing JATS5 XML files available for
PMC papers using a custom parser, generated to
the same target output JSON format. This resulted
in 1,605,695 ECC and 10,215,848 ICC sentences
from 33,319 documents. A fraction of documents
was not processed due to the lack of citation marks
and runtime exceptions.

SCC code is released at https://gitee.com/
irlab/SmartCiteCon. The dataset is available on
Microsoft OneDrive with a link on the code reposi-
tory.

7 Lessons Learned

The results in Table 3 indicate that SCC takes about
45 seconds on average to process a PDF document,
which is still relatively slow. Using Jprofiler, we
found that more than 90% time was spent on pre-
processing, specifically canonicalization, followed
by sentence classification (for XML and JSON) or

5https://jats.nlm.nih.gov/

file type recognition (for PDF). The bottleneck is
partially attributed to the word tokenization and
POS tagging in the Stanford CoreNLP API. One
way to mitigate this problem is to use the Stan-
ford CoreNLP Server6. Alternatively, we can use
Stanza (Qi et al., 2020), the successor of Stanford
CoreNLP. Empirical results have shown that it is
faster than CoreNLP in several NLP tasks. Stanza
was written in Python, but we can develop a REST-
ful service. The slowness can also be attributed
to the poor garbage collection in Java, which can
impact CPU usage massively. A more systematic
and fine-grained profiling is needed to diagnose the
root cause of this problem.

8 Conclusions and Future Works

We developed SmartCiteCon (SCC), a Java API to
extract explicit and implicit citation context from
academic literature. The API implements an SVM
model achieving an F1 = 85.6%. SCC accepts
XML (in PLoS ONE schema or GROBID schema),
PDF, and JSON (in S2ORC schema) formats. The
output of SCC is a JSON file containing marked
citation contexts and paper metadata if available.
We applied SCC on the PMC subset of the CORD-
19 dataset and obtained about 11.8 million citation
context sentences in which 10.2 million are implicit
citation context.

One limitation of SCC is that the model was
trained on papers in computational linguistics, so
more careful evaluation and feature distribution
analysis should be performed when applying the
model to other domains. In the future, we will
explore word embedding models to enrich semantic
features and improve scalability by overcoming
performance bottlenecks.

6https://stanfordnlp.github.io/
CoreNLP/corenlp-server.html
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Abstract

Citation parsing, particularly with deep neu-
ral networks, suffers from a lack of train-
ing data as available datasets typically contain
only a few thousand training instances. Man-
ually labelling citation strings is very time-
consuming, hence, synthetically created train-
ing data could be a solution. However, as
of now, it is unknown if synthetically cre-
ated reference-strings are suitable to train ma-
chine learning algorithms for citation pars-
ing. To find out, we train Grobid, which uses
Conditional Random Fields, with a) human-
labelled reference strings from ‘real’ bibliogra-
phies and b) synthetically created reference
strings from the GIANT dataset. We find1 that
both synthetic and organic reference strings
are equally suited for training Grobid (F1 =
0.74). We additionally find that retraining Gro-
bid has a notable impact on its performance,
for both synthetic and real data (+30% in F1).
Having as many types of labelled fields as pos-
sible during training also improves effective-
ness, even if these fields are not available in
the evaluation data (+13.5% F1). We con-
clude that synthetic data is suitable for train-
ing (deep) citation parsing models. We further
suggest that in future evaluations of reference
parsing tools, both evaluation data being sim-
ilar and data being dissimilar to the training
data should be used to obtain more meaning-
ful results.

1 Introduction

Accurate citation data is needed by publishers, aca-
demic search engines, citation & research-paper
recommender systems and others to calculate im-
pact metrics (Nisa Bakkalbasi et al., 2006; Jacso,
2008), rank search results (Beel and Gipp, 2009a,b),

1The work presented in this manuscript is based on Mark
Grennan’s Master thesis ”1 Billion Citation Dataset and Deep
Learning Citation Extraction” at Trinity College Dublin, Ire-
land, 2018/2019

generate recommendations (Beel et al., 2016; Eto,
2019; Färber et al., 2018; Färber and Jatowt, 2020;
Jia and Saule, 2018; Livne et al., 2014) and other ap-
plications e.g. in the field of bibliometric-enhanced
information retrieval (Cabanac et al., 2020). Cita-
tion data is often parsed from unstructured bibli-
ographies found in PDF files on the Web (Figure 1).
To facilitate the parsing process, a dozen (Tkaczyk
et al., 2018a) open source tools were developed
including ParsCit (Councill et al., 2008), Grobid
(Lopez, 2009, 2013), and Cermine (Tkaczyk et al.,
2015). Grobid is typically considered the most
effective one (Tkaczyk et al., 2018a). There is
ongoing research that continuously leads to novel
citation-parsing algorithms including deep learn-
ing algorithms (An et al., 2017; Bhardwaj et al.,
2017; Nasar et al., 2018; Prasad et al., 2018; Rizvi
et al., 2019; Rodrigues Alves et al., 2018; Zhang,
2018) and meta-learned ensembles (Tkaczyk et al.,
2018c,b).

Most parsing tools apply supervised machine
learning (Tkaczyk et al., 2018a) and require la-
belled training data. However, training data is rare
compared to other disciplines where datasets may
have millions of instances. To the best of our knowl-
edge, existing citation-parsing datasets typically
contain a few thousand instances and are domain
specific (Figure 2). This may be sufficient for tra-
ditional machine learning algorithms but not for
deep learning, which shows a lot of potential for
citation parsing (An et al., 2017; Bhardwaj et al.,
2017; Nasar et al., 2018; Prasad et al., 2018; Rizvi
et al., 2019). Even for traditional machine learning,
existing datasets may not be ideal as they often lack
diversity in terms of citation styles.

Recently, we published GIANT, a synthetic
dataset with nearly 1 billion annotated reference
strings (Grennan et al., 2019). More precisely, the
dataset contains 677,000 unique reference strings,
each in around 1,500 citation styles (e.g. APA,
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Figure 1: Illustration of a ’Bibliography’ with four ’Reference Strings’, each with a number of ’Fields’. A
reference parser receives a reference string as input, and outputs labelled fields, e.g. authors=”C. Lemke
...”; title=”Metalearning: a survey ...”; ...

Harvard, ACM). The dataset was synthetically cre-
ated. This means, the reference strings are not ‘real’
reference strings extracted from ‘real’ bibliogra-
phies. Instead, we downloaded 677,000 references
in XML format from CrossRef, and used Citeproc-
JS (Frank G. Bennett, 2011) with 1,500 citation
styles to convert the 677,000 references into a to-
tal of 1 billion annotated citation strings (1,500 *
677,000).2

We wonder how suitable a synthetic dataset
like GIANT is to train machine learning models
for citation parsing. Therefore, we pursue the
following research question:

1. How will citation parsing perform when
trained on synthetic reference strings, compared to
being trained on real reference strings?

Potentially, synthetic data could lead to higher
citation parsing performance, as synthetic datasets
may contain more data and more diverse data
(more citation styles). Synthetic datasets like
GIANT could potentially also advance (deep)
citation parsing, which currently suffers from a
lack of ‘real’ annotated bibliographies at large
scale.

In addition to the above research question, we
aimed to answer the following questions:

2We use the terms ‘citation parsing’, ‘reference parsing’,
and ‘reference-string parsing’ interchangeably.

2. To what extent does citation-parsing (based
on machine learning) depend on the amount of
training data?

3. How important is re-training a citation
parser for the specific data it should be used on?
Or, in other words, how does performance vary if
the test data differs (not) from the training data?

4. Is it important to have many different
fields (author, year, . . . ) for training, even if the
fields are not available in the final data?

2 Related Work

We are aware of eleven datasets (Figure 2) with
annotated reference strings. The most popular ones
are probably Cora and CiteSeer. Researchers also
often use variations of PubMed. Several datasets
are from the same authors, and many datasets in-
clude data from other datasets. For instance, the
Grobid dataset is based on some data from Cora,
PubMed, and others (Lopez, 2020). New data is
continuously added to Grobid’s dataset. As such,
there is not “the one” Grobid dataset. GIANT
(Grennan et al., 2019) is the largest and most di-
verse dataset in terms of citation styles, but GIANT
is, as mentioned, synthetically created.

Cora is one of the most widely used datasets
but has potential shortcomings (Anzaroot and Mc-
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Callum, 2013; Councill et al., 2008; Prasad et al.,
2018). Cora is homogeneous with citation strings
only from Computer Science. It is relatively small
and only has labels for “coarse-grained fields” (An-
zaroot and McCallum, 2013). For example, the
author field does not label each author separately.
Prasad et al. conclude that a “shortcoming of [cita-
tion parsing research] is that the evaluations have
been largely limited to the Cora dataset, which is
[...] unrepresentative of the multilingual, multidis-
ciplinary scholastic reality” (Prasad et al., 2018).

3 Methodology

To compare the effectiveness of synthetic vs. real
bibliographies, we used Grobid. Grobid is the
most effective citation parsing tool (Tkaczyk et al.,
2018a) and the most easy to use tool based on our
experience. Grobid uses conditional random fields
(CRF) as machine learning algorithm. Of course, in
the long-run, it would be good to conduct our exper-
iments with different machine learning algorithms,
particularly deep learning algorithms, but for now
we concentrate on one tool and algorithm. Given
that all major citation-parsing tools – including
Grobid, Cermine and ParsCit – use CRF we con-
sider this sufficient for an initial experiment. Also,
we attempted to re-train Neural ParsCit (Prasad
et al., 2018) but failed doing so, which indicates
that the ease-of-use of the rather new deep-learning
methods is not yet as advanced as the established
citation parsing tools like Grobid.

We trained Grobid, the CRF respectively, on two
datasets. TrainGrobid denotes a model trained on
70% (5,460 instances) of the dataset that Grobid
uses to train its out-of-the box version. We slightly
modified the dataset, i.e. we removed labels for
‘pubPlace’, ‘note’ and ‘institution’ as this informa-
tion is not contained in GIANT, and hence a model
trained on GIANT could not identify these labels3.
TrainGIANT denotes the model trained on a random
sample (5,460 instances) of GIANT’s 991,411,100
labeled reference strings. Our expectation was that
both models would perform similar, or, ideally,
TrainGIANT would even outperform TrainGrobid.

To analyze how the amount of training data
affects performance, we additionally trained

3This is a shortcoming of GIANT. However, the purpose
of our current work is to generally compare ‘real’ vs synthetic
data. Hence, both datasets should be as similar as possible in
terms of available fields to make a fair comparison. Therefore,
we removed all fields that were not present in both datasets.

TrainGIANT, on 1k, 3k, 5k, 10k, 20k, and 40k in-
stances of GIANT.

We evaluated all models on four datasets.
EvalGrobid comprises of the remaining 30% of Gro-
bid’s dataset (2,340 reference strings). EvalCora
denotes the Cora dataset, which comprises, after
some cleaning, of 1,148 labelled reference strings
from the computer science domain. EvalGIANT
comprises of 5,000 random reference strings from
GIANT.

These three evaluation datasets are potentially
not ideal as evaluations are likely biased towards
one of the two trained models. Evaluating the mod-
els on EvalGIANT likely favors TrainGIANT since the
data for both TrainGIANT and EvalGIANT is highly
similar, i.e. it originates from the same dataset.
Similarly, evaluating the models on EvalGrobid
likely favors TrainGrobid as TrainGrobid was trained
on 70% of the original Grobid dataset and this
70% of the data is highly similar to the remaining
30% that we used for the evaluation. Also, the
Cora dataset is somewhat biased, because Grobid’s
dataset contains parts of Cora. We therefore created
another evaluation dataset.

EvalWebPDF is our ‘unbiased’ dataset with 300
manually annotated citation strings from PDFs that
we collected from the Web. To create EvalWebPDF,
we chose twenty different words from the home-
pages of some universities4. Then, we used each
of the twenty words as a search term in Google
Scholar. From each of these searches, we down-
loaded the first four available PDFs. Of each PDF,
we randomly chose four citation strings. This gave
approximately sixteen citation strings for each of
the twenty keywords. In total, we obtained 300
citation strings. We consider this dataset to be a re-
alistic, though relatively small, dataset for citation
parsing in the context of a web-based academic
search engine or recommender system.

We measure performance of all models with pre-
cision, recall, F1 (Micro Average) and F1 (Macro
Average) on both field level and token level. We
only report ‘F1 Macro Average on field level’ as
all metrics led to similar results.

All source code, data (including the WebPDF
dataset), images, and an Excel sheet with all
results (including precision and recall and
token level results) is available on GitHub

4The words were: bone, recommender systems, running,
war, crop, monetary, migration, imprisonment, hubble, obstet-
rics, photonics, carbon, cellulose, evolutionary, revolutionary,
paleobiology, penal, leadership, soil, musicology.
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Figure 2: List of Citation Datasets

Figure 3: F1 of the two models (TrainGrobid and TrainGIANT) on the four evaluation datasets.
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https://github.com/BeelGroup/GIANT-The-1-
Billion-Annotated-Synthetic-Bibliographic-
Reference-String-Dataset/.

4 Results

The models trained on Grobid (TrainGrobid) and
GIANT (TrainGIANT) perform as expected when
evaluated on the three ‘biased’ datasets EvalGrobid,
EvalCora and EvalGIANT (Figure 3). When evaluated
on EvalGrobid, TrainGrobid outperforms TrainGIANT
by 35% with an F1 of 0.93 vs. 0.69. When
evaluated on EvalGIANT, results are almost exactly
the opposite: This time, TrainGIANT outperforms
TrainGrobid by 32% with an F1 of 0.91 vs. 0.69. On
EvalCora, the difference is less strong but still no-
table. TrainGrobid outperforms TrainGIANT by 19%
with an F1 of 0.74 vs. 0.62. This is not surprising
as Grobid’s training data includes some Cora data.

While these results generally might not be sur-
prising, they imply that both synthetic and real data
lead to very similar results and ‘behave’ similarly
when used to train models that are evaluated on
data being (not) similar to the training data.

Also interesting is the evaluation on the WebPDF
dataset. The model trained on synthetic data
(TrainGIANT) and the model trained on real data
(TrainGrobid) perform alike with an F1 of 0.74 each
(Figure 3)5. In other words, synthetic and human-
labelled data perform equally well for training our
machine learning models.

Looking at the data in more detail reveals that
some fields are easier to parse than others (Figure
4). For instance, the ‘date’ field (i.e. year of publi-
cation) has a constantly high F1 across all models
and evaluation datasets (min=0.86; max=1.0). The
‘author’ field also has a high F1 throughout all ex-
periments (min=0.75; max=0.99). In contrast, pars-
ing ‘booktitle’ and ‘publisher’ seems to strongly
benefit from training based on samples similar to
the evaluation data. When evaluation and training
data is highly similar (e.g. TrainGIANT–EvalGIANT
or TrainGrobid–EvalGrobid), F1 is relatively high (typ-
ically above 0.7). If the evaluation data is differ-
ent (e.g. TrainGIANT– EvalGrobid), F1 is low (0.15
and 0.16 for TrainGrobid and TrainGIANT respec-
tively on EvalWebPDF). The difference in F1 for
parsing the book-title is around factor 6.5, with

5All results are based on the Macro Average F1. Looking
at the Micro Average F1 shows a slightly better performance
for TrainGrobid than for TrainGIANT (0.82 vs. 0.80), but the
difference is neither large nor statistically significant (p¡0.05).

an F1 of 0.97 (TrainGrobid) and 0.15 respectively
(TrainGIANT) when evaluated on EvalGrobid.

Similarly, F1 for parsing the book-title on
EvalGIANT differs by around factor 3 with an F1
of 0.75 (TrainGIANT) and 0.27 (TrainGrobid) respec-
tively. While it is well known, and quite intuitive,
that different fields are differently difficult to parse,
we are first to show that field accuracy varies for
different fields differently depending on whether
or not the model was trained on data (not) being
similar to the evaluation data.

In a side experiment, we trained a new model
TrainGrobid+ with additional labels for institution,
note and pubPlace (those we removed for the
other experiments). TrainGrobid+ outperformed
TrainGrobid notably with an F1 of 0.84 vs. 0.74
(+13.5%) when evaluated on EvalWebPDF. This indi-
cates that the more fields are available for training,
the better the parsing of all fields becomes even if
the additional fields are not in the evaluation data.
This finding seems plausible to us and confirms
statements by Anzaroot and McCallum but, to the
best of our knowledge, we are first to quantify the
benefit. It is worth noting that citation parsers do
not always use the same fields (Figure 6). For in-
stance, Cermine extracts relatively few fields, but
is one of few tools extracting the DOI field.

Our assumption that more training data would
generally lead to better parsing performance – and
hence GIANT could be useful for training standard
machine learning algorithms – was not confirmed.
Increasing training data from 1,000 to 10,000 in-
stances improved F1 by 6% on average over the
four evaluation datasets (Figure 5). More precisely,
increasing data from 1,000 to 3,000 instances im-
proved F1, on average, by 2.4%; Increasing from
3,000 to 5,000 instances improved F1 by another
2%; Increasing further to 10,000 instances im-
proved F1 by another 1.6%. However, increasing
to 20,000 or 40,000 instances leads to no notable
improvement, and in some cases even to a decline
in F1 (Figure 5).

5 Summary and Discussion

In summary, both models – one trained on synthetic
data (GIANT) and one trained on ‘real’ human-
annotated reference strings (Grobid) – performed
very similar. On the main evaluation dataset
(WebPDF) both models achieved an F1 of 0.74.
Similarly, if a model was evaluated on data differ-
ent from its training data, F1 was between 0.6 and
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Figure 4: F1 for different fields (title, author, ...), evaluation dataset and training data.
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Figure 5: Performance (F1) of TrainGIANT on the
four evaluation datasets, by the number of training
instances.

0.7. If a model was evaluated on data similar to the
training data, F1 was above 0.9 (+30%). F1 only
increased up to a training size of around 10,000
instances (+6% compared to 1,000 instances). Ad-
ditional fields (e.g. pubplace) in the training data
increased F1 notably (+13.5%), even if these addi-
tional fields were not in the evaluation data.

These results lead us to the following conclu-
sions.

First, there seems to be little benefit in using syn-
thetic data (e.g. GIANT (Grennan et al., 2019)) for
training traditional machine learning models (i.e.
conditional random fields). The existing datasets
with a few thousand training instances seem suffi-
cient.

Second, citation parsers should, if possible, be
(re)trained on data that is similar to the data that
should actually be parsed. Such a re-training in-
creased performance by around 30% in our ex-
periments. This finding may also explain why
researchers often report excellent performance of
their tools and approaches with e.g. F1’s of over
0.9. These researchers typically evaluate their mod-
els on data highly similar to the training data. This
might be considered a realistic scenario for those
cases when re-training is possible. However, re-

Figure 6: The approach and extracted fields of six
popular open-source citation parsing tools

porting such results creates unrealistic expectations
for scenarios without the option to re-train, i.e. for
users who just want to use a citation parser like
Grobid out-of-the-box. Therefore, we propose that
future evaluations of citation parsing algorithms
should be conducted on at least two datasets: One
dataset that is similar to the training dataset, and
one out-of-sample dataset that differs from the
training data.

Third, citation parsers should be trained with as
many labelled field types as possible, even if these
fields will not be in the data that should be parsed.
Such a fine-grained training improved F1 by 13.5%
in our experiments.

Fourth, having ten times as much training data
(10,000 vs. 1,000) improved the parsing perfor-
mance by 6%, without notable improvements be-
yond 10,000 instances. Annotating a few thousand
instances should be feasible for many scenarios.
Hence, businesses and organizations who want the
maximum accuracy should annotate their own data
for training as this likely will lead to large increases
in accuracy (+30%, see conclusion 3).

Fifth, given how similar synthetic and tradition-
ally annotated data perform, synthetic data likely is
suitable to train deep neural networks for citation
parsing. This, of course, has yet to be empirically
to be shown. However, if our assumption holds
true, deep citation parsers could greatly benefit
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from synthetic data like GIANT.
For the future, we see the need to extend our ex-

periments to different machine learning algorithms
and datasets (e.g. unarXive (Saier and Färber,
2020) or CORE (Knoth and Zdrahal, 2012)). It
would also be interesting to analyze if and to what
extend synthetic data could improve related dis-
ciplines. This may include citation-string match-
ing, i.e. analyzing whether two different reference
strings refer to the same document (Ghavimi et al.,
2019), or the extraction of mathematical formulae
(Greiner-Petter et al., 2020) or titles (Lipinski et al.,
2013) from scientific articles.
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Abstract
Effectiveness of a recommendation in an In-
formation Retrieval (IR) system is determined
by relevancy scores of retrieved results. Term
weighting is responsible for computing the rel-
evance scores and consequently differentiat-
ing between the terms in a document. How-
ever, current term weighting formula like TF-
IDF weigh terms only based on term frequency
and inverse document frequency irrespective
of other important factors. This results in un-
certainty in cases when both TF and IDF val-
ues are same for more than one document,
hence resulting in same term weight values. In
this paper, we propose a modification of TF-
IDF and other term-weighting schemes that
weights terms additionally based on the re-
cency of a term, i.e. the metric based on the
year the term occurred for the first time and
the document frequency. We modified the term
weighting schemes TF-IDF, BM25 and Uni-
versal Sentence Encoder (USE) to additionally
consider the recency of a term and evaluated
them on three datasets. Our modified TF-IDF
outperformed the standard TF-IDF on all three
datasets; the modified USE outperformed the
standard USE on two of the three datasets; the
modified BM25 did not outperform the stan-
dard BM25 term-weighting scheme.

1 Introduction

Term Weighting is one of the most crucial tasks in
information retrieval and recommender systems. It
is method of quantifying terms in a document to
determine the importance of the words in the docu-
ment and the corpus (El-Khair, 2009). Apart from
recommendation engine and information retrieval,
term weighting is effective in many scenarios such
as text mining, text classification, duplicate image
detection (Chum et al., 2008), document clustering,
and even in medical science research. In text cate-
gorization and data mining, efficient. term weight-
ing brings a considerable boost in effectiveness

(Domeniconi et al., 2015). Several term weighting
approaches are used in different applications basi-
cally derived from the frequency and distribution
of words in documents (Domeniconi et al., 2015).

TF-IDF is one of the classic term weighting ap-
proaches, that is most frequently used and was
found to be used, for instance, by 83% of text-
based research paper recommender systems (Beel
et al., 2017). TF-IDF as the name suggests, is made
up of two parts, term frequency (TF) and inverse
document frequency (IDF). TF gives the number of
times a term occurs in a document. The basis is that
the more frequently a term occurs, the more it is im-
portant for the context of the document (Beel et al.,
2017). IDF is computed as the inverse frequency
of documents containing the searched term. The
idea behind this is that a rare term should be given
higher importance as compared to frequently oc-
curring terms such as articles, pronouns, etc. There
have been numerous researches on TF-IDF, and
many extensions and alternatives are suggested.
Some other term weighting models used are BM25,
LM Dirichlet, Divergence from independence, etc.
Text and sentence embedding models such as Uni-
versal Sentence Encoder (USE) (Cer et al., 2018),
Google’s BERT, InferSent, etc are also used in text
classification tasks. These different approaches de-
pend on the type, size of corpus, types of queries,
and they use different term metrics to determine
the effectiveness of term in a document and corpus.

In case of information retrieval task, there are
certain limitations in standard term weighting ap-
proaches. Analyzing the simple approach of TF-
IDF, that weights term based on the frequency
distribution in the corpus. The real issue in this
method is the assumption that frequency distribu-
tion remains constant with time, without contem-
plating the diverse contexts for different terms. In
short periods, this holds, however, over longer time
this assumption fails. For example, consider two

36



terms, ”COVID19” and ”neural networks”, that
have different origin years. Now, there are probably
fewer documents containing the term ”COVID19”
than documents containing the term ”neural net-
works”, simply because ”COVID19” is a relatively
new term, while ”neural networks” is a term be-
ing used since decades. However, they would be
weighted similarly without considering the differ-
ence in the origins. The issue that terms have tem-
poral distributions of frequency, not just space dis-
tribution is unaccounted when using the standard
term weighting methodologies.

Considering this uncertainty in term weighting,
we suggest a time-normalized term weighting ap-
proach, which reflects the age of a term. As the
vocabulary changes over time, our intuition is to
identify a term’s age based on its first usage and cur-
rent year and distinguish between the documents
based on the age of the terms used. Hence, we pro-
pose to weigh terms not only on their frequency dis-
tributions but also temporal distributions. Further-
more, we demonstrate the significance of adding a
time-based feature by comparing our method with
state-of-the-art baseline models, that is, TF-IDF,
BM25 and USE embedding. Experimental results
show substantial improvements over the baseline
models for similar recommendations.

2 Related Work

TF-IDF is a relatively old approach and there have
been many studies comparing the results of TF-IDF
with other states of the art term weighting schemes.
Also, different researches have suggested novel
variants and enhancing algorithms solving various
issues. For instance, (Beel et al., 2017) points out
the lack of personalization in classic TF-IDF. The
authors have highlighted the issue of access to the
document corpus for calculating IDF and another
issue of ignoring the information from the user’s
document collection for recommendations and user
modelling. Thus, a novel term weighting is sug-
gested, that does not require the document corpus
and uses the user’s document collection for user
modelling.

In another paper, (Domeniconi et al., 2015)
points out the problem of using IDF in text classi-
fication. The basic idea behind IDF is that a term
occurring frequently has negligible distinguishing
power, however, in the case of text classification,
this might not be true, because, highly frequent
terms in different documents of the same category

can be helpful in text classification. Hence, the
authors suggested a supervised learning approach
to calculate IDF excluding the category under con-
sideration.

(Park et al., 2005) suggests a novel approach to
term weighting based on the term positions along
with the TF and IDF terms. The authors studied the
term patterns that occur in the documents using the
wavelet transform method. The paper also suggests
that the documents are ranked more relevant if the
query terms are close to each other.

Utilizing temporal feature has also proved to be
an efficient way for recommenders and time nor-
malized recommendations are certainly receiving
growing application in recent times (Campos et al.,
2014). One of the researches (Kacem et al., 2014),
suggests usage of time-normalized term weighting
for user modelling. The authors have used the time
of social/web search of terms to form the short and
long-term contexts and further creating a user pro-
file based on the same. The comparative study of
this algorithm with the standard TF-IDF suggests a
significant improvement in results centered on the
time normalized user models. Considering this re-
search of temporal context’s effect on term weights,
we propose a Time Normalized TF-IDF algorithm
for information retrieval and recommender system,
discussed and implemented in this paper.

3 Time Normalized Term Weighting

In a classic term weighting approach, the terms are
weighted irrespective of the different contexts or
usage or recency. In this paper, we try to empha-
size on the importance of term recency in relevant
results retrieval. The premise for this algorithm
is that, if a term is devised newly then there are
probably a lesser number of documents containing
the term compared to the term which is being used
for a longer duration of time. In this algorithm, we
introduce a time factor along with the regular TF-
IDF values. This time-based factor is formulated
from the origin year of the word and the document
frequency of the term giving the metric as docu-
ments per year. For a given term w in document
dεD, where D is the document corpus D with size
N , term-age is calculated as:

tw,D = log(dfw,D/(ydiff + 1))1, (1)

1This is an updated formula with an added 1 in the de-
nominator, for our experiments, we used the older version of
formula
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where ydiff is calculated as :

ydiff = ycurrent − yorigin (2)

where yorigin is the year of first usage of the word
and Ycurrent is the present year. This current year
remains constant in the calculations, giving us the
sort of age for the word. We take the logarithm of
the terms to normalize the value, since this can go
to a large number based on the size of the corpus.
Also, we take up the absolute value of log, so that
we don’t have negative weight values. The yorigin
can be traced from multiple places depending on
the problem statement. For example, if a research
paper recommender is being developed, the origin
year can be retrieved as the year of first occurrence
of the term in the recommendation corpus. Or in
case of web search, time of first search of the term
can be used. Likewise, for some instances the terms
can be traced to their etymology and the year of
first occurrence can be fetched. Now the updated
formula for term weight calculation for tTF-IDF is
given as:

wtw,d = tw,D ∗ tfw,d ∗ log(
N

dfw,d
) (3)

where t(w,D) is the time-factor calculated value in
equation (1) tf(w, d) is the number of times term w
occurs in a document d, and df(w,D) is the number
of documents in which w appears in D.

Likewise, in case of time normalized BM25
(tBM25) model, the term age, t(w,D) is multiplied
to the classic BM25 formula for the time normal-
ized model. For USE embedding approach, cosine
similarity is used to calculate the term weights.
In the time normalized model, we multiply the
term age factor, t(w,D) with the cosine similarity
function to get the updated time normalized USE
(tUSE) model.

Now, assume that a term is new and occurs in
reasonable number of documents, then the value
of t(w,D) will be large and hence the term weight
will be large. Similarly, if the term is being used for
many years and is occurring in many documents, it
will relatively reduce the value of the time-factor,
thus giving it low importance.

A caution which needs to be taken while imple-
menting this algorithm is to check for more com-
monly occurring non relevant terms which are nor-
malized by using IDF should not get boosted. This
can be taken care of while calculating the value of
yorigin, and such terms can be ignored so they don’t

boost up the term weights based on non-relevant
terms.

4 Implementation

4.1 Data
4.1.1 TREC Washington Post Corpus (Post,

2018)
This collection contains 608,180 news articles and
blog posts, along with 50 queries from TREC –
2018 news background linking task (Soboroff et al.,
2018), and expected set of results. For the pur-
pose of testing our hypothesis, we use a sample
of 20909 documents with approximately 2400
relevant documents. However, this has been done
only for time-based index due to scalability and
resource constraints. And the term age is still cal-
culated considering the entire corpus and does not
affect the algorithmic logic. The relevant fields in
this dataset are id, URL, title, author, and article
text.

4.1.2 Web Answer Passage(WebAP) Dataset
(Keikha et al., 2014, 2015)

This collection contains 8027 articles from the web,
which are answers to 82 TREC queries. The dataset
contains the following fields: unique document id,
target question id, and passage. The results contain
50 relevant documents, given as question id, doc-
ument number and relevance as ranked from 1 to
50.

4.1.3 CiteULike Dataset (Wang et al., 2013)
This dataset is collected from CiteULike and
Google Scholar and contains 17013 documents
with the following fields: document id, title of the
research paper, and abstract. We are given another
file in this dataset, that contains the referenced ar-
ticles for every document. We have randomly se-
lected 116 test topics having exactly 10 citations to
be used as our ground truth.

4.2 Architecture/Methodology
We implemented text-based recommendation sys-
tems using the data mentioned in the last section.
This is implemented using TF-IDF, BM25 and USE
embedding models. Further, we devised an algo-
rithm to calculate t(w,D) as described earlier. And
scoring is done using customized plugins. Finally,
we compare the results of different algorithms us-
ing the evaluation metrics described later.

The first index is created with the same mapping
structure as given in the input dataset files. For
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the second index, we add a time normalized term
weight parameter as a payload to the terms while
indexing the documents. A third index is created us-
ing the time normalized index for USE embedding
model. In this index, we calculate the term vectors
using the pre-trained TensorFlow model (Cer et al.,
2018) and store it in a 512-length vector field. This
methodology remains the same for all the datasets.
Following steps are used for calculations of term
age:

• Consider the article text of the document and
fetch the origin year for every word from ety-
monline.com

• Calculate the difference in number of years
from the year of first occurrence, to the current
year. We have assumed the base year for our
corpus to be 2017(TREC News), 2015(Web
AP) and 2019(CiteULike) since that is the
year of latest publications. This has been done
for uniform term weighting across the corpus.

• Now the term weight is calculated using the
formula given in section 3.

An important part to note is, that every term is
not given a term weight, this happens if the ori-
gin year of the term is not traceable, or the terms
are most frequently used such as articles, or prepo-
sitions. We have used the following evaluation
metrics to evaluate the significance of retrieved
results:

• Precision @10: We have calculated the pre-
cision value for top 10 fetched results on the
given set of input queries and take an average
of the results for comparison.

• Recall: For calculating the recall, we have
considered the queries having less than 100
results, in case of TREC news. And then re-
call is calculated as the number of relevant
retrieved document divided by the number of
relevant documents present in the index. For
other datasets, since the number of relevant
results is fixed, so the value of precision and
recall remains the same.

• F1 Score: Since F1 score uses both the preci-
sion and recall values, so for calculating the
precision scores, we have used the same re-
sults from the recall measure and used a fixed

denominator as the number of retrieved results.
Formula used for F1 score is given as:

F1 = 2 ∗ Precision ∗Recal
Precision+Recall

(4)

• Normalized Discounted Cumulative Gain:
DCG is calculated at specific rank position
p, given by

DCGp =
p∑

i=1

reli/ log2(i+ 1) (5)

where, reli is the relevance score of a docu-
ment at position i. And NDCG is calculated
by considering the DCG of ideal order along
with the DCG values and is given by

nDCGp = DCGp/IDCGp (6)

5 Results and Discussion

In 2 out of 3 algorithms, our term-recency modifi-
cation improved the performance notably. When
measured by p@10, tTF-IDF outperformed TF-IDF
by an average 47% and tUSE outperformed USE
in 2 of the 3 datasets by 14.3% but performed 50%
worse in the other dataset (Figure 1). The time nor-
malized BM25 version, however, performed 32%
worse than BM25. NDCG@10 leads to similar
results (Figure 2). For CiteULike dataset, NDCG
cannot be calculated, since there is no ranking spec-
ified for the citations.

Figure 1: P@10 comparison

On closer analysis of the BM25 model, we see
27 out of 50 queries gave better or almost similar
results in case of time normalized model when
compared to the classic approach. These results
are also promising and need to be worked upon for
better results in the future work.

For calculating the recall and F1 scores, we fetch
the top 100 results for the given query sets. For
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Figure 2: NDCG@10 comparison

Figure 3: Precision, Recall, F1@100 scores for TREC
News

uniformity in the metric calculation, we compute
the precision scores as well. The result metrics
are shown in Figure 3. We see a 150% improve-
ment in the tTF-IDF model over TF-IDF and a 31%
improvement in tUSE model over the USE model.
Recall and F1 scores for WebAP and CiteULike
would be same as precision scores since the num-
ber of relevant results in dataset remains the same,
so they are not shown.

Analyzing the tUSE model in WebAP dataset,
we see it does not perform well against the USE
model. One of the possible reasons for this might
be the size of the corpus used, that is, TREC news
corpus has approximately 600k documents while
Web AP dataset has just 6k documents, which is
100 times less than the former dataset. However,
this is an inference based on the results retrieved
and has not been verified. There might be other
possible reasons, such as the size of documents,
size of queries used, number of proper nouns in the
queries, etc. Or probably term age might not be
a relevant metric for this dataset. These possible
reasons still need to be analyzed before affirming
out a conclusion on these contrasting results.

6 Conclusion

In this paper, we proposed a novel algorithm for
term weighting. The presented approach shows

the significance of temporal distribution along with
existing space distribution of terms. We suggest
the scheming of a term recency parameter based
on the origin of the word and the usage in the doc-
ument corpus. This factor is used along with the
standard weighting values (such as TF and IDF)
for relevance scoring in the information retrieval
system. The algorithm is tested on a news dataset,
with queries trying to find links with the documents,
Web answer retrieval dataset and research papers
citations dataset. We have also extended the al-
gorithm to other text embedding models that are
BM25 and USE.

Experiments conducted on the IR system show
that term-recency based TF-IDF and tUSE model
outperforms the classic TF-IDF and classic USE
algorithms with a significant margin when mea-
sured in terms of average precision, recall, F1 and
NDCG. It has set up a strong premise for our ongo-
ing research on ways to improve recommendation
effectiveness. Future works for this can be to find
ways to improve the time-based BM25 model and
testing the algorithm’s performance in other tasks
such as text classification, and user modelling. Fur-
thermore, we also plan to test different normaliza-
tion factors for calculating the term age and then
using it in the scoring algorithm.
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Abstract

Mainly due to the open access movement, the
number of scholarly papers we can freely ac-
cess is drastically increasing. A huge amount
of papers is a promising resource for text min-
ing and machine learning. Given a set of pa-
pers, for example, we can grasp past or cur-
rent trends in a research community. Com-
pared to the trend detection, it is more diffi-
cult to forecast trends in the near future, since
the number of occurrences of some features,
which are major cues for automatic detection,
such as the word frequency, is quite small be-
fore such a trend will emerge. As a first step
toward trend forecasting, this paper is devoted
to finding subtle trends. To do this, the authors
propose an index for keywords, called normal-
ized impact index, and visualize keywords and
their indices as a heat map. The authors have
conducted case studies using some keywords
already known as popular, and we found some
keywords whose frequencies are not so large
but whose indices are large.

1 Introduction

Thanks to the recent open access movement, we
can freely access to a huge amount of papers on
scholarly repositories, such as institutional repos-
itories maintained by academic institutions. Ac-
cording to IRUS-UK,1 there exits about 2M items
on more than 200 repositories in the UK, as of May
2020. According to NII,2 there exist more than
2.4M full-text papers on 734 institutional reposi-
tories in Japan, as of March 2020. In addition to
institutional repositories, we also have disciplinary
repositories, such as arXiv.3

We can also use a global aggregation servie,
which collects papers on repositories. For exam-

1https://irus.jisc.ac.uk/
2https://www.nii.ac.jp/irp/en/archive/

statistic/
3https://arxiv.org/

ple, CORE 4 collects papers from more than one
thousand data providers in about 150 countries, and
provides search APIs, dump files, and search facil-
ity for collected papers (Knoth and Zdrahal, 2012).
The latest dump file provided by CORE contains
123M metadata items, 85.6M abstracts, and 9.8M
full text papers. Some commercial publishers also
began to provide APIs for automatic processing.5

Basically, items on scholarly repositories are
readable PDF files. When research results were
published on paper, research papers were final out-
comes of the researches. In case of digital media,
however, contents of the papers can be an input
for automatic processing. We can find many re-
searches which use scholarly papers as input for
computer algorithms. For example, some entities,
like dataset names, used in papers are automati-
cally extracted (Ikeda and Seguchi, 2017; Ikeda
and Taniguchi, 2019), and papers are used to pre-
dict research impacts of a new given paper (Baba
et al., 2019) and to predict new materials (Tshi-
toyan et al., 2019).

The final goal of our research is to forecast pop-
ular trends in the near future. A typical method
for this is to use a clustering algorithm, which
is unsupervised learning, and divides target items
into groups based on a predefined distance metric.
Some approaches use clustering algorithms to di-
vide words in papers into groups, such as the topic
model (Griffiths and Steyvers, 2004; Bolelli et al.,
2009). Once we introduce a distance metric to data,
a target data item is defined as a point in the space
defined by the metric, and thus we can compare
similarities between any two points. In this sense,
this approach uses an absolute distance. There also
exit relative approaches, like network structures, in
which we know that two items are adjancent. In par-

4https://core.ac.uk/
5https://www.elsevier.com/about/

policies/text-and-data-mining
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ticular, we can naturally construct multiple network
structures from papers, like networks of authors,
citations, words, and their combinations (Duvvuru
et al., 2012; Salatino et al., 2017). However, these
researches assume that there are already a number
of publications (Salatino et al., 2018). In this sense,
these approaches are for topic detection, not for
topic forecast.

In this paper, we try to find small topics as a
first step toward forecasting future topics. To this
end, we propose an index for keywords to mea-
sure their impact, assuming a keyword denotes a
research topic. We use a relative frequency in the
definition of the index to find small topics. As far
as the authors know, the frequency of keywords is
not directly used to detect topics in research papers,
unlike topic or trend detection in general text data.
The authors think that this is because a frequency
based method requires a list of stop words to re-
move unnecessary keywords, but it is too costly to
construct it for each discipline in case of research
papers.

To evaluate the proposed index, we use some
popular keywords in one discipline, and we check
if the proposed indices for them can grasp their
popularity. Using this approach, we do not have to
consider the issue of stop words. In other words, we
try to find some properties among popular topics
with the proposed index. For comparison, we also
show topic detection by absolute frequency and a
standard clustering algorithm.

2 Normalized Impact Index

We assume the range of publication years,
y1, y2, . . . , yN , and let Y = {y1, y2, . . . , yN}. For
y ∈ Y , D(y) denotes the set of papers published
in y.

For a word w and a year y ∈ Y , the normalized
impact index, denoted by h(w, y), is defined as as
follows:

h(w, y) =
f(w, y)

|D(y)|∑yN
t=y1

f(w, t)
,

where f(w, y) is the number of occurrences (fre-
quencies) of w in D(y).

The proposed index for w and y is a relative
frequency, normalized by both the number of pub-
lications in y and the total frequency of w among
all years. Therefore, we can compare h(w1, y1)
and h(w2, y2).

To understand the meaning of the index, let us
assume that |D(y)| = 1 tentatively. Then we

can treat h(w, y) as a probability since we have∑
y h(w, y) = 1. So, when we depict this in-

dex as a bar chart for some w whose height is
h(w, yi), the total area of the bars for w is nor-
malized to 1. Therefore, we can compare any two
words w1 and w2, in the view point of their trends.

When we consider trends of keywords, it is natu-
ral to see temporal changes of the index from some
reference year y1, that is,

h(w, y)− h(w, y1), (1)

where y > y1 for y ∈ Y − {y1}. For some y(6=
y1), if h(w, y) − h(w, y1) > 0 (resp. < 0), then
the relative usage of w in y becomes larger (resp.
smaller) than that in y1. This leads to a heat map
of the proposed index for keywords.

3 Case Study

In this section, we apply the proposed index to a
real dataset to confirm its efficacy. As described in
Section 1, a frequency based method suffers from
the issue of stop words. To avoid the issue, we
check the values of the proposed index for some
keywords the authors selected from some specific
field. These keywords are already known as popu-
lar topics. Therefore, it means that we only check
positive examples.

Since the proposed index is defined with relative
frequencies, we show the result of topic detection
with absolute frequencies for comparison (see Sec-
tion 3.2). Then, we apply a clustering algorithm to
our dataset in Section 3.3, to confirm that a cluster-
ing algorithm for keywords can find large topics,
not small ones as described in Section 1.

3.1 Dataset
We use a set of abstracts, not the whole papers,
from 2000 to 2018, obtained by searching “plasma
chemical vapor deposition” at Web of Science. The
number of abstracts we obtained is 69,384.

In addition to stop words of English, we also
removed tokens starting or ending with special
symbols, such as “[” and “+”. Then we converted
capital letters to lower-case ones.

3.2 Topic Detection by Frequency
As the first case study, we check if a method based
on frequency can find a potentially popular topic.

Figure 1 contains four graphs, showing the num-
bers of papers found by queries at Web of Sci-
ence. One common line is contained in all graphs
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in Figure 1, which is the number of papers found
by “plasma chemical vapor deposition”. In other

Figure 1: Each graph shows the change of the num-
ber of papers found by the corresponding query with
“plasma chemical vapor deposition”, such as “nitride
plasma chemical vapor deposition”, as the publication
year advances (some data originally from Fig. 6 and 7
in (Iwase et al., 2019)).

words, this line shows the year-by-year changes of
the number of papers containing this query. We
call the line for this query the base line of this field.

Each of the other lines shows the number of
papers found by “plasma chemical vapor deposi-
tion” plus the corresponding keyword. For exam-
ple, the red line in the top graph is obtained by
“oxide plasma chemical vapor deposition”. These
searches are search within the original query, and
thus these lines are below the base line. One of the
authors chose these additional keywords, based on
the heat map in Figure 2 in addition to his expertise.
Basically, they are known to be popular topics.

In the four graphs, an upper graph contains key-
words whose frequencies are larger. In the top
graph of “nitride”, “carbon”, “oxide”, and “amor-
phous silicon”, we see that these keywords are large
topics in this field and the shapes of graphs are sim-
ilar to the base line. Compared to the top graph, the
second one contains smaller topics, but they have
emerged in early 90s, and increased its publications
steadily.

Compared to the two top graphs, keywords for
the other two graphs are relatively new topics, and
thus the numbers of papers containing these top-
ics are much smaller. In particular, the number of
the papers about “2D material”, meaning 2 dimen-
sional materials, is quite small. In spite of its small

frequency, this topic has potential to be big in this
field because “2D material” is a more conceptual
word than “graphene”, which is a 2D material, and
the Nobel Prize was awarded to researchers studied
graphene in 2010.

Therefore, methods based on the frequency of
a keyword can not find such a trend at very early
stages.

3.3 Topic Detection by Clustering

Next, we consider a clustering algorithm as a
method to find research topics.

For a clustering algorithm, we used Non-
negative Matrix Factorization (NMF), which de-
composes a given matrix V into two matri-
ces WH , where all emelements in those matrices
are required to be non-negative (Lee and Seung,
1999).

Using the set of abstracts, we can construct a
term-document matrix V , where wij is the fre-
quency for the ith term in the jth document, that
is the jth document dj has w1j , w2j , . . . as its ele-
ments.

Let D and V be the number of documents and
one of vocabularies, respectively. Then, the size
of V is D × V . When we apply NMF to V , we
have to specify a parameter K, which defines the
sizes of two matrices: D ×K and K × V for W
and H .

We can see W as a weight matrix and H as a
base matrix, and an original document is expressed
as a weighted linear combination of base elements.
In this expression, we can see that a base matrix
consits of K base vectors.

Table 1 shows the top 10 keywords with largest
weights for each base vector, where we set K =
10. There exist K topics, each of which has 10
keywords with the top 10 largest weights in the
topic.

From this table, we can find many major topics
in this field. For example, the first cluster contains
“chemical vapor deposition”, and the second and
10th ones “carbon nanotubes” and “thin film”, re-
spectively, both of which are major materials used
in this field. However, we can not find minor topics
from this decomposition.

3.4 Topic Detection by the Proposed Index
and Heat Map

In this section, we detect topics using the normal-
ized impact index and its visualization.
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No. The top 10 keywords with largest weights in a topic
1 deposition, chemical, vapor, rate, process, high, gas, using, PECVD, pressure
2 carbon, growth, nanotubes, CNTs, field, emission, electron, catalyst, grown, chemical
3 silicon, layer, solar, amorphous, cells, layers, chemical, cell, nitride, high
4 films, deposited, thin, properties, spectroscopy, optical, amorphous, content, using, x-ray
5 surface, surfaces, roughness, layer, chemical, contact, treatment, energy, morphology, atomic
6 plasma, power, gas, density, treatment, enhanced, using, pressure, hydrogen, discharge
7 C, degrees, temperature, annealing, growth, substrate, temperatures, si, low, rights
8 diamond, growth, microwave, substrate, CVD, high, nucleation, quality, substrates, grown
9 coatings, coating, properties, DLC, chemical, using, deposited, wear, elsevier, reserved

10 film, thin, thickness, substrate, deposited, stress, structure, dielectric, nm, ratio

Table 1: The top 10 keywords with largest weights in a topic found by NMF.

Figure 2 shows a heat map, defined by (1), for
keywords in our dataset. One column corresponds

Figure 2: The heat map shows values of (1) for each
keyword extracted from our dataset, where one column
corresponds to one keyword, and a cell in the column
indicates the value of (1).

to one keyword, and each row to one year. We
only show the left and right parts of the heat map
because the original figure is too wide since there
are many keywords.

Each cell shows the difference between the nor-
malized impact index of that year and the reference
year, 2000, for some word. That is, it shows the
value of (1), where blue (resp. red) cells are pos-
itive (resp. negative) values, meaning the relative
frequency of the corresponding year for the word
is larger (resp. smaller) than that of the reference
year.

Figure 3 shows temporal changes of the pro-
posed indices for some selected keywords, some
of which appear in Figure 1 and the other ones are
chosen from the heat map.

“graphene”, “2D”, “nanotube”, “low-k” (low di-
electric constant), “h-BN” (hexagonal boron ni-
tride), and “GaAs” are names of materials, and
“interconnect” and “fuel” are the keywords of the
plasma chemical vapor deposition (CVD for short)
applications, where “interconnect” refers as inter-
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Figure 3: The graph shows the temporal change of the
proposed index for some keywords, such as “low-k”.

connect in semiconductor devices and “fuel” as
fuel cells.

For interconnect, the proposed index was neg-
ative and decreased from 2000. Plasma CVD as
interconnect process technology has been losing
interest. The proposed index for fuel increases
continuously and there was temporary booming in
2000 and 2015.

Both “nonotube” and “low-k” appeared in the
third graph of Figure 1. From this graph, we can
see sharp rises of their frequencies. However, from
the proposed index for these keywords, we can not
say these topics are actively examined in papers.

As shown in Figure 1, “2D” has its small fre-
quency although it has potential to be a big trend
because unique characteristics of 2D materials have
been found then the research of 2D materials seems
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to become active as the trigger of the graphene No-
bel Prize. On the other hand, the proposed index
for “2D” rises sharply in Figure 3.

The index for “h-BN” has negative values until
2012, which seems to have lost the interest of re-
searchers, but after that it increases rapidly. In fact,
“h-BN” has been studied as a 2D semiconductor ma-
terial recently. In this sense, “h-BN” can be seen
as a 2D material family, and so it is convincing the
sharp rise for “h-BN”.

4 Conclusion

In this paper, we have introduced an index to find
keywords, which express small topics, using rela-
tive frequencies. As visualization, the difference of
the proposed index from the reference year, 2000
in this paper, is depicted as a heat map. There-
fore, we can easily find subtle topics even if their
absolute frequencies are not so large. We have con-
ducted case studies using the proposed index, and
confirmed that some keywords, which are already
known as popular, show sharp rises of the proposed
index.

As described in Section 3, we have only checked
popular keywords. So it is an important future
work to check all keywords whose values of the
proposed index.

Even if we find some keywords with high values
of the proposed index, you might want to check
their absolute frequencies. Therefore, it is also
important to develop a visualization tool which
enables to check both the absolute frequency and
the proposed index. Similarly, it is an important
future work for the tool to introduce a grouping
facility, which groups a different keywords in a
hierarchical way, and then we can grasp transitions
of topics with flexible granularity with the tool. To
do so, we can use some vocabulary system, like
one in (Salatino et al., 2019), or word embeddings
to measure the distances between two keywords.
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Abstract

In this paper, we conduct a comprehensive
comparison of well-known embeddings’ ca-
pability in capturing the hierarchical Physics
knowledge. Several key findings are:
(i) Poincaré embeddings do outperform if
trained on PhySH, but it fails if trained on
co-occurrence pairs which are extracted from
raw text. (ii) No algorithm can properly
learn hierarchies from the more realistic case
of co-occurrence pairs, which contains more
noisy relations other than hierarchical rela-
tions. (iii) Our statistic analysis of Poincaré
embedding’s representation of PhySH shows
successful hierarchical representation share
two characteristics: firstly, upper-level terms
have a smaller semantic distance to root; sec-
ondly, upper-level hypernym-hyponym pairs
should be further apart than lower-level hyper-
nym-hyponym pairs.

1 Introduction

Concept hierarchy or taxonomy1 is highly orga-
nized and expertly curated hierarchical hypernym-
hyponym sets. How to effectively represent these
terms with the hierarchical relation is the main hur-
dle for automatically taxonomy construction and
other downstream applications.

Though embeddings have been taken for granted
in most NLP pipelines, none of the previous work
has fully explored which embeddings can capture
hierarchical scientific knowledge. Even though
Poincaré embedding is proved to have a better abil-
ity to capture hierarchical relations, it is learned
based on existing WordNet hypernym-hyponym
pairs. It is never been tested in the scientific domain.
In this paper, we conduct a comprehensive compar-
ison of well-known embeddings’ performance in
reconstructing Physical Subject Headings (PhySH)
from raw APS datasets.

1In this paper, we use taxonomy and concept hierarchy as
equal term.

Our main contributions are mainly three-fold:
Firstly, for the first time, we compare mainstream
embeddings’ capability to represent and reconstruct
Physical Subject Headings (PhySH) both from raw
text and PhySH. Secondly, our experiment shows
Poincaré embedding is not sufficient for taxon-
omy induction from raw text. Thirdly, we explore
the characteristics of successful representation of
PhySH, which might be the inspiration for better
taxonomy construction algorithms.

2 Related Work

Representations for Concept Hierarchy. Rep-
resentations for concept hierarchy has been re-
ceiving quite growing interests in recent years
(Kozareva et al., 2008; Carlson et al., 2010; Shen
et al., 2018). It is the basis of automaticly taxon-
omy construction. In the survey study of (Wang
et al., 2017), there are Pattern-based (Hearst, 1992;
Wu et al., 2012; Kozareva and Hovy, 2010) meth-
ods and distributional (Navigli and Velardi, 2004;
Luu et al., 2014; Padó and Lapata, 2003; Baroni
and Lenci, 2010; Nguyen et al., 2017) methods
use hand-crafted rule-based, co-occurrence fea-
tures,syntactic features or graph features to learn
representations of hierarchical pairs. They also
apply pretrained neural laguage models such as
Word2Vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014).

Recently, Poincaré embedding (Nickel and Kiela,
2017) is proposed to better represent hierarchical re-
lations. Following works like (Law et al., 2019) use
Lorentzian distance to replace the Poincaré metric,
(Dhingra et al., 2018) extends Poincaré embedding
to apply in raw text with re-parameterization tech-
nique, (Leimeister and Wilson, 2019) and (Tifrea
et al., 2019) introduce hyperbolic embeddings in
word embeddings like Skipgram and GloVe. Ef-
fectively in reconstructing WordNet though, the
Poincaré embedding is not quite perfect yet (De Sa
et al., 2018). It has only been tested on WordNet re-
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Figure 1: Evaluation Pipeline

construction and Hyperlex entailment (Nickel and
Kiela, 2017). Whether it is an effective tool in rep-
resenting hierarchical relations from raw domain
text need to be further explored.

Embeddings Analysis. With the fast pacing of
text representation technology, it is also important
to revisit existing embedding methods for differ-
ent downstream tasks. Several previous works
have explicitly done this work based on their
unique perspectives.Gladkova et al. (2016) ex-
plores GloVe’s ability to encode different mor-
phological and semantic relations. (Zuccon et al.,
2015) analyze word embeddings for information
retrieval. Nooralahzadeh et al. (2019) compared
COW and Skipgram by using Gensim implementa-
tion (Řehůřek and Sojka, 2010) with several differ-
ent hyper-parameters settings and different domain
corpus. Sanchez and Riedel (2017) explored differ-
ent datasets in evaluation hypernyms identification
by using GloVe. (Lastra-DÃ az et al., 2019) sur-
veys main word embeddings for word similarity.

Despite the above-mentioned work, there is still
a missing part describing which embedding is the
optimal choice for taxonomy induction. In this pa-
per, we design our evaluation pipeline to choose
the optimal embedding scheme for taxonomy learn-
ing and construction. In our paper, we consider
two perspectives to represent and construct concept
hierarchy: (i) Learn and construct from raw texts
by word embeddings; (ii) Learn and construct from
extracted co-occurrence pairs from raw texts by
graph embeddings and Poincaré embeddings.

3 Method

In our pipeline (Figure 1), we follow three steps:
raw text and PhySH preprocessing; learn various
embeddings with different hyperparameters; evalu-
ate embeddings by reconstructing PhySH.

We evaluate the following embeddings:

Model Name Metric Dimensions
5 10 20 50 100 200

W
or

d
E

m
be

dd
in

gs GloVe
mean rank 2168·30 2568·93 2237·33 2142·94 2188·83 2271·32
MAP 0·18 0·05 0·06 0·07 0·06 0·06

COW
mean rank 2883·64 3196·44 2937·09 3162·85 1894·02 3096·82
MAP 0·69 0·63 0·70 0·63 0·72 0·64

Skipgram
mean rank 2595·87 3939·61 3091·23 2732·08 3683·61 2893·45
MAP 0·68 0·60 0·67 0·68 0·63 0·70

fastText
mean rank 2461·97 3004·28 2903·78 3391·16 3456·85 2493·87
MAP 0·67 0·67 0·69 0·66 0·59 0·65

G
ra

ph
E

m
be

dd
in

gs

deepWalk
mean rank 244·03 469·47 624·21 726·95 780·47 811·30
MAP 0·18 0·05 0·06 0·05 0·05 0·05

GF
mean rank 1189·78 1003·12 916·56 825·82 682·73 629·40
MAP 0·01 0·01 0·01 0·01 0·02 0·03

GraRep
mean rank 676·07 944·67 849·28 813·40 828·20 840·75
MAP 0·05 0·01 0·02 0·03 0·03 0·03

HOPE
mean rank - 749·61 776·90 803·42 838·26 874·51
MAP - 0·12 0·11 0·10 0·08 0·06

LINE
mean rank 387·65 360·36 459·23 432·79 423·59 425·38
MAP 0·07 0·06 0·06 0·05 0·06 0·08

node2vec
mean rank 490·53 458·11 462·65 459·00 453·37 450·80
MAP 0·02 0·03 0·04 0·04 0·04 0·04

SDNE
mean rank 917·78 836·11 823·17 960·99 931·31 991·00
MAP 0·04 0·10 0·10 0·02 0·04 0·02

Po
in

ca
ré

E
m

be
dd

in
gs

Pioncare
Gensim

mean rank 765·08 734·58 747·20 750·99 739·38 745·25
MAP 0·03 0·03 0·03 0·03 0·03 0·03

Pioncare
Cpp

mean rank 438·84 428·82 441·85 449·64 452·56 457·11
MAP 0·06 0·09 0·09 0·09 0·09 0·09

Pioncare
Numpy

mean rank 935·95 880·16 861·51 874·15 892·52 879·84
MAP 0·01 0·02 0·02 0·02 0·02 0·02

Pioncare
Pytorch

mean rank 1169·85 1151·57 1167·01 1164·53 1169·49 1165·13
MAP 0·08 0·08 0·08 0·08 0·08 0·08

Pioncare
GloVe

mean rank 1268·48 1263·33 1250·31 1169·00 1165·30 1003·67
MAP 0·01 0·01 0·01 0·03 0·04 0·06

Table 1: PhySH reconstruction from APS datasets,
with word embeddings trained on raw text, graph
embeddings and Poincaré embeddings trained on co-
occurrence of PhySH terms in raw text. We only in-
clude each embedding’s optimal result in the table.

• Word embeddings: CBOW and Skipgram
(Mikolov et al., 2013), fastText (Joulin et al.,
2017), GloVe(Pennington et al., 2014)2.

• Graph embeddings: deepWalk (Perozzi et al.,
2014), node2vec (Grover and Leskovec,
2016), LINE (Tang et al., 2015), LLE (Roweis
and Saul, 2000), HOPE (Ou et al., 2016),
GF(Ahmed et al., 2013), SDNE(Wang et al.,
2016)3.

• Poincaré embeddings: Poincaré-gensim4,
Poincaré-cpp 5, Poincaré-pytorch6, Poincaré-
numpy7, Poincaré-glove8 (Tifrea et al., 2019).

.
Word embeddings are trained on title and ab-

stract of APS publications. The PhySH terms’ em-
bedding vectors will be extracted for taxonomy

2CBOW, Skipgram and fastText are trained by
https://github.com/NIHOPA/word2vec_pipeline. GloVe is
trained by https://github.com/stanfordnlp/GloVe

3Graph embeddings are implemented by OpenNE
repositery https://github.com/thunlp/OpenNE

4https://radimrehurek.com/gensim/models/poincare.html
5https://github.com/TatsuyaShirakawa/poincare-

embedding.git
6https://github.com/facebookresearch/poincare-

embeddings
7https://github.com/nishnik/poincare_embeddings.git
8https://github.com/alex-tifrea/poincare_glove
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Model Name Metric Dimensions
5 10 20 50 100 200

G
ra

ph
E

m
be

dd
in

gs
deepWalk

mean rank 357·26 496·36 546·02 537·64 525·74 519·82
MAP 0·22 0·19 0·21 0·22 0·22 0·23

GF
mean rank 277·24 125·89 50·67 8·90 2·93 9·79
MAP 0·10 0·35 0·58 0·65 0·66 0·66

GraRep
mean rank - 78·87 34·45 22·19 13·45 82·18
MAP - 0·49 0·53 0·56 0·58 0·57

HOPE
mean rank - 561·03 758·32 691·95 615·45 515·47
MAP - 0·64 0·47 0·43 0·43 0·45

LINE
mean rank 489·49 344·14 141·35 34·32 15·84 10·00
MAP 0·04 0·07 0·23 0·52 0·60 0·62

node2vec
mean rank 265·65 264·94 265·69 264·81 269·52 265·20
MAP 0·33 0·34 0·35 0·35 0·34 0·35

SDNE
mean rank 72·58 33·18 478·27 517·55 512·10 492·46
MAP 0·37 0·54 0·12 0·04 0·02 0·02

Po
in

ca
ré

E
m

be
dd

in
gs

Pioncare
Gensim

mean rank 8·08 6·58 7·04 7·43 6·63 6·20
MAP 0·61 0·61 0·62 0·61 0·62 0·61

Pioncare
Cpp

mean rank 12·04 11·74 8·12 6·75 8·17 6·95
MAP 0·61 0·61 0·62 0·62 0·62 0·62

Pioncare
Numpy

mean rank 382·52 291·56 272·80 232·12 249·01 247·75
MAP 0·46 0·53 0·56 0·58 0·58 0·59

Pioncare
Pytorch

mean rank 3·83 3·22 2·88 2·61 2·80 2·82
MAP 0·93 0·94 0·94 0·94 0·94 0·94

Table 2: PhySH reconstruction from PhySH hypernym-
hyponym pairs. Since there is no context infomation,
word embeddings are not applicable here.

reconstruction. Graph embeddings and Poincaré
embeddings are trained on the co-occurrence of
PhySH terms in each of APS publications. As
with (Nickel and Kiela, 2017), we also train graph
embeddings and Poincaré embeddings on PhySH
hypernym-hyponym pairs.

Taxonomy Reconstruction: We follow (Nickel
and Kiela, 2017) to reconstruct taxonomy based
on embedding vectors. For each embedding vec-
tor in Poincaré disk space, which is denoted as
Bd = {x ∈ Rd, ‖x‖2 ≤ 1}. The norm of each
vector can measure the radius of each vector, while
the hyperbolic distance can measure the closeness
of two vectors. The closest two are assigned as
hypernym-hyponym pairs. The hyperbolic distance
of two vector points u, v ∈ Bd is calculated follow
as (Nickel and Kiela, 2017).

dH(u, v) = arcosh

(
1 + 2 ∗ ‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)

(1)

The distance could only tell how semantically
close are the node pairs (u, v). But which one is
the parent node is not answered. One property
that makes hyperbolic space outstanding for the
hierarchical structure is that the hyperbolic disc
area and circle length grow exponentially with its
radius. Node with the smaller norm is the higher-
level term.

4 Evaluation and Results

4.1 Evaluation Datasets
APS (American Physical Society) has made avail-
able their publications data for researchers with the
total number of 661, 209 articles and citations and
dates back to 18939. We utilize the article metadata
datasets. PhySH (Physics Subject Headings) is the
Physics concept hierarchy. It is used to organize
publications of APS. It is open-source on Github10.
APS metadata datasets only contain title field, we
retrieve abstract from Web of Sciences database11.

4.2 Evaluation Metrics
mean rank and MAP metrics are used to measure
taxonomy reconstruction performance. mean rank
is calculated for each node’s distance of ground
truth children against all other nodes. MAP is the
mean average precision at the threshold of each
correctly retrieved child.

mean_rank(u) =
sp(u)

sp(u) + lp(u)
∈ [0, 1] (2)

lp(u) is the furthest length from node u to its
descendants. sp(u) is the shortest length from node
u to root node. The optimal embedding should
score a low mean rank and a high MAP.

4.3 PhySH Reconstruction Evaluation
PhySH Reconstruction From Raw Text. In
this experiment, we extract co-occurrence of
PhySH terms in each APS publication. The graph
embeddings are trained on the co-occurrence graph.
Poincaré embeddings are trained on the noisy co-
occurrence pairs. Word embeddings are trained on
APS publication raw texts. PhySH terms’ represen-
tation vectors are extracted from word vectors in
the postprocessing step.

Table 1 is the performance of PhySH recon-
struction by learning representation from raw APS
datasets12. None of the embeddings get the best re-
sult in both metrics. Word embeddings like CBOW
achieve better MAP, while graph embeddings like
deepWalk outperform in mean rank. Poincaré em-
beddings did not show any superior. Learn PhySH

9https://journals.aps.org/datasets
10https://github.com/physh-org/PhySH
11Web of Science is a commercial database of Clarivate An-

alytics, it can be accessed by most universities and institutions
12We experiment each embedding with different hyperpa-

rameters by grid search, we present the optimal performance
of each embedding in the tables.

50



Figure 2: Norm of Poincaré embedding vector at dif-
ferent taxonomy levels

Figure 3: Distance of Poincaré embedding vector ac-
cross different taxonomy levels

from noisy co-occurrence pairs are much more
complicated than the mammal tree of the Word-
Net described in the origin paper(Nickel and Kiela,
2017). We can conclude Poincaré embeddings are
not sufficient for learning and representing from
the co-occurrence pairs.

PhySH Reconstruction From PhySH. Table 2
is the performance of PhySH reconstruction by
learning representation from PhySH hypernym-
hyponym pairs. The graph embeddings are trained
on the PhySH hypernym-hyponym graph. Poincaré
embeddings are trained on the PhySH hypernym-
hyponym pairs.

In this experiment, Poincaré’s official implemen-
tation Poincaré-Pytorch wins with far better results
than other algorithms. This is because Poincaré
is trained with the loss function designed to learn
hierarchies, while graph embeddings are trained to
learn from neighbors and global graph structure.
However, GF at dimension 100 and LINE at dimen-
sion 200 also get very good performance.

4.4 The Hierarchical Characteristics of
PhySH Poincaré embedding

If we understand the successful representation char-
acteristics of taxonomy hierarchical relations, it

will be the help of taxonomy construction. We will
analyze what are the hierarchical characteristics of
PhySH preserved by Poincaré embeddings in this
section.

In Figure 2, we visualize how the norm value
varies in different PhySH level. There is a clear
pattern from taxonomy level 2 to level 6: lower-
level terms have bigger norm values. It means
lower terms are further from the root term. The
pace of the decrease of the norm in lower levels
seems to decelerate, which needs to be further vali-
dated. However, the norm of level 1 terms is rather
distributed, which we think is the points where
Poincaré embedding fails.

In Figure 3, we compare the distance of terms
over different PhySH levels. The ancestor nodes
are further than parent nodes. For each node, its
distance to the child is smaller than the distance to
parent, and the distance to the child is nearly half as
the distance to parent. These patterns are important
for a successful representation of taxonomy.

5 Conclusion and Future Work

we compare word embeddings, graph embeddings,
and Poincaré embeddings by reconstructing PhySH.
We consider two scenario case: reconstructing from
raw texts and reconstructing from existing PhySH.
The experiment shows even though Poincaré em-
beddings far outweigh other embeddings in recon-
structing PhySH from PhySH, it is also not compe-
tent as other embeddings in reconstructing PhySH
from raw APS texts.

We further demystify what is the success of
Poincaré embeddings in reconstructing PhySH
from PhySH. The future work would be how to
design a powerful taxonomy induction algorithm
which could benifit from the characteristics of our
paper.
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Abstract

We describe our participation in two tasks or-
ganized by WOSP 2020, consisting of classify-
ing the context of a citation (e.g., background,
motivational, extension) and whether a citation
is influential in the work (or not). Classifying
the context of an article citation or its influ-
ence/importance in an automated way presents
a challenge for machine learning algorithms
due to the shortage of information and inher-
ently ambiguity of the task. Its solution, on
the other hand, may allow enhanced bibliomet-
ric studies. Several text representations have
already been proposed in the literature, but
their combination has been underexploited in
the two tasks described above. Our solution
relies exactly on combining different, poten-
tially complementary, text representations in
order to enhance the final obtained results. We
evaluate the combination of various strategies
for text representation, achieving the best re-
sults with a combination of TF-IDF (capturing
statistical information), LDA (capturing topi-
cal information) and Glove word embeddings
(capturing contextual information) for the task
of classifying the context of the citation. Our
solution ranked first in the task of classifying
the citation context and third in classifying its
influence.

1 Introduction

Data science is becoming more and more popular
with its largest data community being Kaggle1, a
platform that hosts several data mining and ma-
chine learning tasks and challenges. In 2020, the
8th International Workshop on Mining Scientific
Publication (WOSP)2, through Kaggle, promoted
two challenges consisting of: 1) classifying the con-
text of a citation in one of the six existing classes
(e.g., background, motivational, extension) and 2)

1http://www.kaggle.com
2https://wosp.core.ac.uk/jcdl2020

a binary task where the goal is to identify the im-
portance of a citation for a given work. The com-
petition overview was presented by Kunnath et al.
(2020) (N. Kunnath, 2020).

An example of the citation context taken from
the dataset is:“In the future we are planning to
experiment with different ways of calculating relat-
edness of the sequences to the descriptions, such
as with computing similarity of embeddings cre-
ated from the text fragments using approaches like
Doc2Vec (#AUTHOR TAG and Mikolov, 2014)”,
where #AUTHOR TAG tag means the quote being
classified. In this case, for the context classifica-
tion challenge, this citation belongs to the Future
class, and for the influence classification task, this
citation is considered influential.

For the sake of the defined classification tasks,
the citation text can be represented in several ways
(e.g. TF-IDF, word embeddings, text graph), each
representation capturing or focusing on a differ-
ent aspect of the task. For instance, the traditional
TF-IDF representation captures statistical aspects
of the text and the specificity of certain words in
the collection (IDF component). Topic modeling
strategies such as LDA identify patterns of recur-
rent topics (i.e., clusters of words) in the text. Word
embeddings are vectorial representations of words,
sentences and whole documents aimed at capturing
word co-occurrence patterns and contextual infor-
mation.

Our main hypothesis here is that these different
sources of information are somewhat complemen-
tary and, when combined, have the potential to
enhance classification effectiveness. By exploring
such ideas, we were able to reached the first place
in the multiclass classification task promoted by
WOSP and third in the binary influence classifi-
cation task, with further improvements after the
closing of the challenge, as we shall see.

In the competition there are two types of scores:
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1) the public score, calculated based on 50% of
the test data and 2) the private score, based on the
results of the other 50% and only displayed after
the closing of the challenge. Using a combination
of TF-IDF, LDA and Glove embedding represen-
tations, as aforementioned, along with a Passive-
Aggressive classifier (Crammer et al., 2006), our fi-
nal result improved by 3.62% the scores of the best
isolated representation in the public score, while
for the private score this difference was up 6.91%.
For the task of assessing the importance of the ci-
tation, we obtained an improvement of 1.39% for
the public score and 3.07% for the private one, by
adding a feature that identifies that the author of
the quote is the same author who is making the
citation.

To guarantee the reproducibility of our solution,
all the code is available on github34 and we create
an image through the docker with the entire process
configured.

2 Related Work

Some papers addressed the problem of classifying
the citation for context and influence. Jurgens et al.
(2018) (Jurgens et al., 2018) aimed at classifying
the context of a citation, similarly to the challenge,
into six possible classes. To train the model, they
used structural information from the text, lexical,
grammatical, etc. In that work, specific terms have
higher weights in relation to the others, for exam-
ple, “we extend” have more importance in the clas-
sification of the context “Extends”. Unlike their
work, we exploit only information from titles and
the context of the citation with combinations of
representations.

In Valenzuela et al. (2015) (Valenzuela et al.,
2015), if the citation is connected to related works
or is used for comparison between methods, the
author considers it as an incidental citation. If the
cited method is used in the work or the current
work is an extension of the cited one, the citation is
considered important. These are the two possibili-
ties in the challenge of the influential classification
competition. In that work, the authors used 12 fea-
tures, among them, the citation count per section,
similarity between abstracts, etc.

Pride et al. (2017) (Pride and Knoth, 2017) also
dealt with the binary task of classifying an influen-

3https://github.com/claudiovaliense/
wosp_2020_3c-shared-task-purpose

4https://github.com/claudiovaliense/
wosp_2020_3c-shared-task-influence

tial citation. In that work, the authors expose the
problem of extracting data from pdf when there is
no structured data. Their work analyzed the fea-
tures of previous works and the impacts of adding
specific features to the model. Unlike Valenzuela
and Pride’s works, we do not use any information
other than the titles and context of the citation, data
provided through the Kaggle.

3 Methodology

In this section we present our methodology, con-
sisting of of applying preprocessing to the data,
creating different representations to explore the im-
portance of individual words (TF-IDF), group sim-
ilar concepts shared by terms (LDA) and explore
the semantics and context of terms (Glove). After
this step, we join (concatenate) the representations
to train the classifier, aiming to predict the class of
the test set.

The dataset contains eight fields, for each docu-
ment we combine fields Citing Paper Title, Cited
Paper Title and Citation Context (hereafter called
citation text or simply citation (Cit)) on a single
line, separated by space. We use this file as input
to the data preprocessing algorithm, which consists
of: 1) turning the text into lowercase, 2) removing
accents from words and 3) applying a parser that re-
places specific strings with tags fixes, for example,
number by “parserNumber”.

After preprocessing the citation text, we initially
use the TF-IDF (Luhn, 1957) representation. It
exploits both, unigrams and bigrams. where the
bigram is the combination of the current term and
the next one. In more details, TF quantifies the
frequency of the terms (unigrams or bigrams) and
the IDF measures their inverse frequency of doc-
ument, giving higher weights to terms that occur
less frequently in documents (higher discriminative
power).

Another representation we use is the Latent
Dirichlet Allocation (LDA) with online variational
Bayes algorithm (LDA) (Hoffman et al., 2010). It
groups terms into similar concepts called topics.
Topics are learned as a probability distribution on
the words that occur in each document, using as
input the original TF-IDF representation. For each
document, a score is associated with each topic and
a citations may be seen as a combination of topics
with different likelihoods.

We tested some values for the hyperparameter
that defines the number of topics in the dataset.
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We tested 6, 10, 50 and 100 topics. The one that
produced the best results in the training data was
6 topics. That is, the algorithm creates 6 groups of
words in the training and at the moment it receives a
new test citation Citi, it assigns a score (likelihood)
to each of the groups for Citi.

The last exploited representation was Glove em-
beddings (Pennington et al., 2014), an unsuper-
vised learning algorithm to obtain vector represen-
tations for words. For each term t present in a cita-
tion cit, we average (pool) their respective Glove
vectors to create a representation for the whole
citation.

Each textual representation generates a number
of features for each citation. In TF-IDF, this num-
ber corresponds to the amount of unique terms
existent in the entire dataset. For LDA, this is the
number of defined topics, in our case 6. For the
Glove embeddings we use the vector representation
with 300 dimensions, thus generating 300 features
for each citation. Figure 1a presents the features for
each citation citi, where m represents the number
of citations and n, l and g the number of features
generated by each representation.

Finally, to combine the representations, we use
a simple concatenation of all available representa-
tions (Feature Union5) resulting in a single vector,
as shown in Figure 1b.

TF-IDF

Cit 1
x11 x12 x1n...

2
x21 x22 x2n...

m
xm1 xm2 xmn

...

...
...

......

LDA

y11 y12 y1l...

y21 y22 y2l...

ym1 ym2 yml
...

...
...

...

Glove

z11 z12 z1g...

z21 z22 z2g...

zm1 zm2 zmg
...

...
...

...

Cit

Cit

(a) Representations.

Cit 1
x11 x12 x1n... y11 y12 y1l... z11 z12 z1g...

TF-IDF LDA Glove

Cit 2
x21 x22 x2n... y21 y22 y2l... z21 z22 z2g...

Cit m
xm1 xm2 xmn

... ym1 ym2 yml
... zm1 zm2 zmg

...

...

(b) Feature Union.

Figure 1: Combining Representations.

4 Experiment

The dataset was created based on the methodology
developed by Pride et al. (2019) (Pride et al., 2019).
By means of an automatic system, authors (or ex-
ternal evaluators) can select to which group the

5https://scikit-learn.org/stable/
modules/generated/sklearn.pipeline.
FeatureUnion.html

citations are most related to (context) and whether
the citation is described as central to the work.

Based on this methodology, 3000 citations with
defined classes were made available through the
Kaggle for training along with 1000 test citations
that should be classified according to the defined
classes. Table 1 describes the training data, with:
Number of citations (|D|), Median of the amount
of term (M(T)), Number of classes (|C|), Number
of citations of the largest (Max(C)) and smallest
(Min(C)) class. Note that the dataset is very unbal-
anced – the largest class has 1648 citations while
the smallest contains only 62.

Table 1: Dataset Metadata.

Name |D| M(T) |C| Max(C) Min(C)

Context 3000 55.00 6 1648 62
Influence 3000 55.00 2 1568 1432

4.1 Classification and Parameter Tuning

Among the classifiers we tested, Passive Aggres-
sive, Stochastic Gradient Descent (SGD) and Lin-
ear SVM presented the best results in prelimi-
nary experiments and were selected to be used
in the challenge. For each of them we opti-
mized the hyperparameter through stratified cross-
validation (10 folds) in the training set. For the
Passive-Aggressive and Linear SVM classifiers,
we evaluated the C parameter varying among
[10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104]
and for SGD we vary the alpha parameter among
[10−5, 10−4, 10−3, 10−2, 10−1]. We used a po-
tency of 10 to avoid overfitting the classifier.

Table 2 shows the result of the process of tun-
ing the parameters with the cross-validation pro-
cedure. We present the parameters that obtained
the highest scores in cross-validation, the macro F1
score, in parentheses, the standard deviation and
the time in seconds spent by each classifier. As can
be seen, Linear SVM is about 5 times slower than
Passive-Aggressive, while there is a statistical tie
in the final (training) result. Since we would need
to test many alternatives and configurations in our
trials, we decided to choose Passive-Aggressive as
the final classifier for the challenge. The Passive-
Aggressive algorithms are a family of algorithms
for large-scale learning not requiring a learning
rate (Crammer et al., 2006). However, contrary to
the Perceptron, they include a regularization param-
eter C.
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Table 2: Result of classifiers in the evaluation.

Classifier Best Parameter Macro-F1 Time (s)

PA C [100] 0.1846 (0.044) 94.36
SGD alpha [10−4] 0.1740 (0.033) 21.38
SVM C [100] 0.1953 (0.049) 486.75

4.2 Result

In the Kaggle challenge, the evaluation was based
on Macro-F1, probably due to the high skewness
of the Context task. For each new submission the
score is calculated based on 50% of the test data
(public score). The results of the other 50% (private
score) were only displayed at the closing of the
challenge. The final result of the competition was
based on the private score. Table 3 presents the
results of the individual representations as well
as their combinations, considering the public and
private scores.

For the classification of topics, the strategy that
presented the best results used the combination of
the three aforementioned representations – TF-IDF,
LDA and GLOVE. Notice that in this task, the
performance of TF-IDF is already high, better than
LDA and Glove.

In the classification of influential citations, TF-
IDF alone produces the best results. Combina-
tions of representations using LDA, Glove or both,
showed a reduction in the final score. In this task,
the effectiveness of both LDA and Glove are far
from TF-IDF, about 50% less effective. We hy-
pothesize that the concatenation of the representa-
tions produce a very high dimensional space that,
along with the not so good performance of LDA
and Glove, exacerbates issues of noise and overfit-
ting in this binary task. We will further investigate
this in future work. After the submission deadline,
we added a feature that captured whether the au-
thor being cited is the same author of the article that
quotes, this feature has improved the final result
(tfidf+same author).

We should stress that the excellent performance
of TF-IDF alone is consistent with recent results
that show that TF-IDF, when coupled with a strong,
properly tuned classifier, is still one of the best text
representations, better than certain word embed-
dings for classification tasks, (Cunha et al., 2020).

5 Conclusion

In this paper we described our participation in the
citation classification tasks organized by WOSP

Table 3: Kaggle Score

Method Public Private Task

tfidf 0.19829 0.19425 Context
lda 0.12923 0.15826 Context
glove 0.12047 0.11489 Context
tfidf+lda 0.19124 0.19572 Context
tfidf+glove 0.19945 0.20037 Context
tfidf+lda+glove 0.20548 0.20560 Context
tfidf 0.59108 0.54747 Influence
lda 0.30458 0.32249 Influence
glove 0.30458 0.32249 Influence
tfidf+lda 0.32707 0.36156 Influence
tfidf+glove 0.30458 0.32249 Influence
tfidf+lda+glove 0.30458 0.32249 Influence
tfidf+same author 0.59932 0.56431 Influence

2020. We focused on evaluating combinations
of textual representations – statistical information
with TF-IDF, topical with LDA, and contextual
and co-occurence information with Glove word
embeddings – and the impact of each one on the
final result. Our solution relied on exploring multi-
ple, potentially complementary, representations to
add their benefits as they potentially capture differ-
ent textual aspects. We use the Passive-aggressive
classifier, the best and faster in a preliminary evalu-
ation for the task, optimizing its hyperparameters
through stratified folded cross validation within the
training set. TF-IDF demonstrated to be a very
powerful representation when used with a strong,
properly tuned classifier, confirming recent results
that it may better than certain alternatives (e.g., em-
beddings) for specific tasks (Cunha et al., 2020).
But its combination with other representations in-
deed did help to improve results, as initially hy-
pothesized. Overall, our solution achieved very
good results, reaching the first place in the task
of classifying the context of a citation and third
in the classification of influential citations (with
post-deadline improvements).

As future work, we intend to evaluate combi-
nations with new representations, e.g., MetaFea-
tures (Canuto et al., 2018; Canuto et al., 2016,
2019) and Cluwords (Viegas et al., 2018, 2019,
2020). Due to the shortage of information, enhanc-
ing citation data with automatic tagging informa-
tion (Belém et al., 2019, 2014, 2011) seems as a
promising strategy to obtain more data.
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Antônio Pereira, Leonardo C. da Rocha, and Mar-
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Abstract
We present our team Scubed’s approach in
the 3C Citation Context Classification Task,
Subtask A, citation context purpose classifica-
tion. Our approach relies on text based fea-
tures transformed via tf-idf features followed
by training a variety of models which are capa-
ble of capturing non-linear features. Our best
model on the leaderboard is a multi-layer per-
ceptron which also performs best during our
rerun. Our submission code for replicating ex-
periments is at: https://github.com/nap
sternxg/Citation Context Classific

ation.

1 Introduction

The number of research papers has increased ex-
ponentially in recent years. In order to efficiently
access this scientific resource, we need automated
solutions for extracting information from these
records. Citations in research papers are impor-
tant for multiple reasons e.g. comparing novelty
(Mishra and Torvik, 2016), expertise (Mishra et al.,
2018a), and self-citation patterns (Mishra et al.,
2018b). For people new to the field, they are an
important resource to increase their knowledge
whereas for experts in the field they act as useful
pointers to summarize the paper. Citations are also
used to measure various indexes which showcase
the influence and reach of the researchers in their
field. However, these indexes give equal weight to
each citation. It has been established that all cita-
tions are not equal (N. Kunnath et al., 2020; Mishra
et al., 2018b). In many cases, cited papers are used
as examples. Often, they are not influential to the
paper itself.

In this paper we describe our team, Scubed’s
entry for the citation context purpose classification
shared task (N. Kunnath et al., 2020). This work
aims to develop models that can identify the pur-
pose of citations in the research papers, and hence

can then be used to produce better indexes and
make research more easily accessible to everyone.

1.1 Related Work

There has been a significant amount of work done
in this area to better understand the significance
of citations in a paper (N. Kunnath et al., 2020).
As the number of research papers increase with
time, the algorithms for suggesting research papers
become more and more important. These algo-
rithms are a deciding factor for lots of measures
of a researcher’s influence in a field. The no. of
citations of a paper are important for deciding mea-
sures such as h-index (Hirsch, 2005) and g-index
(Egghe, 2006). These are influential measures for
describing the significance of a researcher in a field.
Scholars have argued that all of the citations in a
paper should not have the same weight while de-
termining the impact and reach of a paper. Moras
et. al (Moravcsik and Murugesan, 1975) showed,
that many references in research papers are redun-
dant and quite often share little context with the
citing paper. There have been many techniques for
classifying citations as influential. However, one
of the strongest baseline for this task is the prior
citation count of the cited paper. Works of (Chu-
bin and Moitra, 1975) show the effectiveness of
citation count in determining influence. The work
of (Zhu et al., 2015) points out suitable features
for this task. They evaluated the performance of
5 classes of features, count, position, similarity,
context and miscellaneous. They determined that
counting the number of times a citation is refer-
enced in a paper is the best estimator to determine
the influence of a citation. (Hou et al., 2011) also
showed that the count of a citation in a research pa-
per is a simple and effective technique to assign its
scientific contribution and influence. (Nazir et al.,
2020) applied SVM, Random Forests and Kernel
Linear Regression classifiers to identify important
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and non-important citations. They used citation
count and similarity scores using tf-idf features to
train their models. Their results show that these
techniques produce an improved precision score of
0.84 in these tasks.

2 Task and Data Description

This paper focuses on the WOSP 3C shared sub-
task B. In this sub-task, we were required to classify
the citation context in research papers on the basis
of their influence and purpose in the paper. For this
shared task we used the ACL-ARC dataset(Jurgens
et al., 2018) . The dataset consisted of 3000 la-
beled data-points annotated using the ACT plat-
form (Pride et al., 2019). The data provided con-
tains the following fields:

• Unique Identifier
• COREID of Citing Paper
• Citing Paper Title
• Citing Paper Author
• Cited Paper Title
• Cited Paper Author
• Citation Context
• Citation Class Label
• Citation Influence Label

To identify the citation being considered a #AU-
THORTAG is placed in the citation. For this task
the Citation Class Label field was ignored. This
was a multi-label classification task, where the fol-
lowing target labels were used :

• BACKGROUND
• COMPARES CONTRASTS
• EXTENSION
• FUTURE
• MOTIVATION
• USES

To evaluate the models the macro-F1 score was
used on the test data. The final score that was used
to rank was not the public score but a different sub-
set of data that was not visible to the participating
teams. The teams were advised to make submis-
sions that would perform the best overall and not
just on the public subset.

3 Methodology

We utilize a simple approach based on text classifi-
cation baseline methods. For the original submis-
sion we utilized a limited set of models. However,

we trained additional models to conduct exhaus-
tive evaluation for this paper. Below, we describe
our workflow for pre-processing, feature extraction,
and model-training.

3.1 Pre-Processing and Feature Extraction
The data provided was in raw text format which
is not suitable for making predictions directly. In
order to make useful predictions, it has to be first
converted into numerical vector form that our mod-
els can process. The raw data consisted of columns
having different attributes for which different fea-
ture extraction techniques had to be applied. For
example, the citing and cited title consisted of a
titles of the research papers whereas the citation
context consisted of a description of the citation
context. In order to efficiently process each col-
umn separately we used the ColumnTransformer
module from the scikit-learn library (Pedregosa
et al., 2011). Each of the column contained text
data. To extract useful features from this text data
we used the TfidfVectorizer from the scikit-learn
(Pedregosa et al., 2011) library on each column.
This generates the term frequency inverse docu-
ment frequency(tf-idf ) score for each of the texts
in each column. The tf-idf score is a normalized
count for the words occurring in the corpus. This
type of feature however does not account for the
position and inter-dependence of words. The tf-idf
score is calculated as follows:

tf − idf(t, d) = tf(t, d) ∗ idf(t) (1)

idf(t) = log

(
1 + n

1 + df(t)

)
+ 1 (2)

In the above equations, tf stands for term fre-
quency which refers to the number of times a term
t occurs in a document d. The n in (2) refers to the
total number of documents present in the document
set. (Df(t)) refers to the document frequency which
calculates the number of documents in the docu-
ment set that contain the term t. The tf-idf score is
a better feature compared to the count of words in
a sentence. The tf-idf score down weights uninfor-
mative words like pronouns compared to more rare
but informative words present in the document.

In the end we ended up using two version of text
features for our models:

1. Citing Context only (v1): uses only features
extracted from citation context column. Our
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hypothesis here is that citation context should
have the highest signal for identifying how the
citation is used.

2. All features (v2): uses features extracted
from citation context as well as citing and
cited title column. Our hypothesis here is that
using the combination of features from both
citing and cited paper should improve the sig-
nal for identifying how the citation is used.
However, we are also aware that this may also
increase the proportion of noisy features.

3.2 Prediction Models

For this shared task we were allowed to submit a
maximum of 5 models for evaluation on test data
1. Our goal was to investigate usage of the most
simple models based on proven linear and non-
linear models which are faster and easier to train
and deploy compared to the recent more powerful
but resource hungry deep learning models. The
following models were submitted for evaluation:

• Logistic Regression Classifier (LR): A sim-
ple logistic regression model trained on the
tf-idf features of 3 columns.

• Random Forest (RF): Random Forest model
with 100 trees in the forest and boot-strapping
trained on the tf-idf features.

• Gradient Boosting Classifier (GBT): A gra-
dient boosted classifier with 100 boosting
stages trained on the tf-idf features.

• Multi-layer Perceptron Classifier (MLP):
A 1 hidden layer multi-layer perceptron clas-
sifier with 100 nodes and Relu activation, op-
timized using Adam optimizer with a learning
rate of 0.001 and momentum of 0.99.

• Multi-layer Perceptron Classifier (MLP-
3): A 3 hidden layer multi-layer perceptron
classifier with 256, 256, and 128 nodes in the
first, second and third layers with Relu activa-
tion optimized using Adam optimizer with a
learning rate of 0.001 and momentum of 0.99.

All the models were trained using the scikit-learn
library.

4 Results

Table 1 shows the the public and private leader
board scores for each of our submissions for this

1https://www.kaggle.com/c/3c-shared-task-
influence/rules

task. Our MLP (v2) model performed best on the
leader-board while similar to the top performing
model (within 0.02 F1 score).

Table 1: Results for the Purpose Sub-task. 4* implies
that according to the leader board our entry is better
than the 4th position entry. The non-highlighted rank-
ings are made on the basis of the leader board private
scores visible to us.

S.No Model Private Public Rank

1 GBT 0.144 0.150 4*
2 RF2 0.144 0.142 4*
3 MLPC 0.182 0.176 3

6 Best 0.206 - 1

4.1 Replication model performance after
leader board submission

After the final leader board ranking, we decided
to replicate the model performance on the actual
test set provided to us by the shared task organizers.
Our evaluation scores may not match with the sub-
mitted solutions as the model changes on each run
and we did not record the random seed for the orig-
inal submission. This analysis was conducted to
generate comparable results for all models across
the training and test sets (see table 2), and to further
inspect the performance of the model on each label
(see table 3).

First, table 2 shows the evaluation scores of all
the models on the test set. One consistent pattern
emerges, v1 models which use only the citation con-
text text as its feature, consistently perform much
better than v2 models. Next, the best v1 as well as
v2 models are MLP and MLP-3. It appears that in-
clusion of extra features leads to over-fitting which
is also evident from the training evaluation scores.

Table 2: Model evaluation scores on the test data on
retraining models after leader board ranking.

model v1 v2

test train test train

lr 0.135 0.296 0.120 0.281
rf 0.140 0.954 0.136 0.958
gbt 0.151 0.719 0.148 0.770
mlp-3 0.186 0.995 0.177 1.000
mlp 0.187 0.995 0.185 1.000

Second, in table 3 we investigate the per label
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evaluation (in terms of F1 score) for each of the
models. For both v1 and v2 features almost all
models show similar performance on all labels.
All models perform best on the Background la-
bel which is also the most frequent label. Overall,
it appears that these baseline models are quite good
at learning this task compared to other submissions,
while being fast and easy to implement.

5 Discussion

Our results show that tradition tf-idf features give
good performance for this shared task resulting
in a strong baseline to compare against. Simple
machine learning models like logistic regression,
random forests, and gradient boosted trees perform
well for this task but are superseeded by multi-layer
prerceptron models. Furthermore, the citation con-
text contains the maximum signal for predicting
citation usage. We were able to achieve one of the
top performances in the task within the number
of submissions required in the task. Due to the
small dataset, multiple submissions increase the
likelihood of the models to over-fit to the test set.
Furthermore, our methods show that deep learning
methods (e.g. mlp and mlp-3) do give significant
advantage over simpler machine learning methods.
The minor loss in performance is acceptable com-
pared to the increased speed and low computation
of simple machine learning models.

Further analysis reveals that MLP based models
are indeed over-fitting to the training data as shown
by near perfect F1-score on the training data (see
2). Additionally, GBT models consistently achieve
much better performance on the test set compared
to other models, including RF model which was
our best entry on the leader board. Furthermore,
the highest performing label is the Influential label.
All models (except LR) perform the worse on the
Incidental when using all text features but when
only using citation context, the label performance
is similar across labels.

6 Conclusion

Our team ’Scubed’ submitted 3 models for the ci-
tation context classification based on purpose task.
Out of the submitted models the multi-layer per-
ceptron classifier performed the best on the test set
achieving third position in this task. This model
gave a private score of 0.18146 on the test set. We
were able to achieve competitive results under min-
imum trials using fast and computationally cheap

machine learning models.
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Abstract

We present our team Scubed’s approach in
the 3C Citation Context Classification Task,
Subtask B, citation context influence classifi-
cation. Our approach relies on text based fea-
tures transformed via tf-idf features followed
by training a variety of simple models result-
ing in a strong baseline. Our best model on the
leaderboard is a random forest classifier using
only the citation context text. A replication of
our analysis finds logistic regression and gra-
dient boosted tree classifier to be the best per-
forming model. Our submission code can be
found at: https://github.com/napster
nxg/Citation Context Classificatio

n.

1 Introduction

The number of research papers has increased ex-
ponentially in recent years. In order to efficiently
access this scientific resource, we need automated
solutions for extracting information from these
records. Citations in research papers are impor-
tant for multiple reasons e.g. comparing novelty
(Mishra and Torvik, 2016), expertise (Mishra et al.,
2018a), and self-citation patterns (Mishra et al.,
2018b). For people new to the field, they are a way
to increase knowledge whereas for experts in the
field they act as useful pointers to summarize the
paper. Citations are also used to measure various
indexes which showcase the influence and reach
of the researchers in their field. However, these in-
dexes give equal weight to each citation. It has been
established that all citations are not equal (N. Kun-
nath et al., 2020; Mishra et al., 2018b). In many
cases, cited papers are used as examples or are not
influential to the paper itself.

In this paper we describe our team, Scubed’s en-
try for the citation context influence classification
shared task (N. Kunnath et al., 2020). This work

aims to develop models that can identify the influ-
ence of citations in the research papers, and hence
can then be used to produce better indexes and
make research more easily accessible to everyone.

1.1 Related Work

There has been a significant amount of work done
in this area previously to better understand the sig-
nificance of the citations in a paper (N. Kunnath
et al., 2020). As the number of research papers
increase with time, the algorithms for suggesting
research papers become more and more important.
These algorithms are a deciding factor for lots of
measures of a researcher’s influence in a field. The
no. of citations of a paper are important for de-
ciding measures such as h-index (Hirsch, 2005)
and g-index (Egghe, 2006). These are influential
measures for describing the significance of a re-
searcher in a field. Scholars have argued that all of
the citations in a paper should not have the same
weight while determining the impact and reach of
a paper. Moras et. al (Moravcsik and Murugesan,
1975) showed, that many references in research
papers are redundant and quite often share little
context with the citing paper. There have been
many techniques for classifying citations as influ-
ential. However, one of the strongest baseline for
this task is the prior citation count of the cited pa-
per. Works of (Chubin and Moitra, 1975) show
the effectiveness of citation count in determining
influence. The work of (Zhu et al., 2015) points
out suitable features for this task. They evaluated
the performance of 5 classes of features, count, po-
sition, similarity, context and miscellaneous. They
determined that counting the number of times a ci-
tation is referenced in a paper is the best estimator
to determine the influence of a citation. (Hou et al.,
2011) also showed that the count of a citation in a
research paper is a simple and effective technique
to assign its scientific contribution and influence.
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(Nazir et al., 2020) applied SVM, Random Forests
and Kernel Linear Regression classifiers to identify
important and non-important citations. They used
citation count and similarity scores using tf-idf fea-
tures to train their models. Their results show that
these techniques produce an improved precision
score of 0.84 in these tasks.

2 Task and Data Description

This paper focuses on the WOSP 3C shared sub-
task B (N. Kunnath et al., 2020). In this sub-task,
we were required to classify the citation context
in research papers on the basis of their influence
and purpose in the paper. For this shared task we
used the ACL-ARC dataset(Jurgens et al., 2018) .
The dataset consisted of 3000 labeled data-points
annotated using the ACT platform (Pride et al.,
2019). The data provided contains the following
fields:

• Unique Identifier
• COREID of Citing Paper
• Citing Paper Title
• Citing Paper Author
• Cited Paper Title
• Cited Paper Author
• Citation Context
• Citation Class Label
• Citation Influence Label

To identify the citation being considered a #AU-
THORTAG is placed in the citation. For this task
the Citation Class Label field was ignored. This
was a binary classification task, where the follow-
ing target labels were used :

• INCIDENTAL
• INFLUENTIAL

To evaluate the models the macro-F1 score was
used on the test data. The final score that was used
to rank was not the public score but a different sub-
set of data that was not visible to the participating
teams. The teams were advised to make submis-
sions that would perform the best overall and not
just on the public subset.

3 Methodology

We utilize a simple approach based on text classifi-
cation baseline methods. For the original submis-
sion we utilized a limited set of models. However,

we trained additional models to conduct exhaus-
tive evaluation for this paper. Below, we describe
our workflow for pre-processing, feature extraction,
and model-training.

3.1 Pre-Processing and Feature Extraction
The data provided was in raw text format which
is not suitable for making predictions directly. In
order to make useful predictions, it has to be first
converted into numerical vector form that our mod-
els can process. The raw data consisted of columns
having different attributes for which different fea-
ture extraction techniques had to be applied. For
example, the citing and cited title consisted of a
titles of the research papers whereas the citation
context consisted of a description of the citation
context. In order to efficiently process each col-
umn separately we used the ColumnTransformer
module from the scikit-learn library (Pedregosa
et al., 2011). Each of the column contained text
data. To extract useful features from this text data
we used the TfidfVectorizer from the scikit-learn
(Pedregosa et al., 2011) library on each column.
This generates the term frequency inverse docu-
ment frequency(tf-idf ) score for each of the texts
in each column. The tf-idf score is a normalized
count for the words occurring in the corpus. This
type of feature however does not account for the
position and inter-dependence of words. The tf-idf
score is calculated as follows:

tf − idf(t, d) = tf(t, d) ∗ idf(t) (1)

idf(t) = log

(
1 + n

1 + df(t)

)
+ 1 (2)

In the above equations, tf stands for term fre-
quency which refers to the number of times a term
t occurs in a document d. The n in (2) refers to the
total number of documents present in the document
set. (Df(t)) refers to the document frequency which
calculates the number of documents in the docu-
ment set that contain the term t. The tf-idf score is
a better feature compared to the count of words in
a sentence. The tf-idf score down weights uninfor-
mative words like pronouns compared to more rare
but informative words present in the document.

In the end we ended up using two version of text
features for our models:

1. Citing Context only (v1): uses only features
extracted from citation context column. Our
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hypothesis here is that citation context should
have the highest signal for identifying how the
citation is used.

2. All features (v2): uses features extracted
from citation context as well as citing and
cited title column. Our hypothesis here is that
using the combination of features from both
citing and cited paper should improve the sig-
nal for identifying how the citation is used.
However, we are also aware that this may also
increase the proportion of noisy features.

3.2 Prediction Models

For this shared task we were allowed to submit a
maximum of 5 models for evaluation on test data
1. Our goal was to investigate usage of the most
simple models based on proven linear and non-
linear models which are faster and easier to train
and deploy compared to the recent more powerful
but resource hungry deep learning models. The
following models were submitted for evaluation:

• Logistic Regression Classifier (LR): A sim-
ple logistic regression model trained on the
tf-idf features of 3 columns.

• Random Forest (RF): Random Forest model
with 100 trees in the forest and boot-strapping
trained on the tf-idf features.

• Gradient Boosting Classifier (GBT): A gra-
dient boosted classifier with 100 boosting
stages trained on the tf-idf features.

• Multi-layer Perceptron Classifier (MLP):
A 1 hidden layer multi-layer perceptron clas-
sifier with 100 nodes and Relu activation, op-
timized using Adam optimizer with a learning
rate of 0.001 and momentum of 0.99.

• Multi-layer Perceptron Classifier (MLP-
3): A 3 hidden layer multi-layer perceptron
classifier with 256, 256, and 128 nodes in the
first, second and third layers with Relu activa-
tion optimized using Adam optimizer with a
learning rate of 0.001 and momentum of 0.99.

All the models were trained using the scikit-learn
library.

4 Results

Table 1 shows the the public and private leader
board scores for each of our submissions for this

1https://www.kaggle.com/c/3c-shared-task-
influence/rules

task. Our RF (v1) model performed best on the
leader-board while being quite similar to the top
performing model (within 0.003 F1 score).

Table 1: Results for the Influence Sub-task. The overall
best model used 116 submissions on the test data while
we only utilized max 5 submissions as specified by the
competition.

S.No Model Private Public Rank

1 LR (v2) 0.323 0.305 -
2 GBT (v2) 0.524 0.565 5
3 RF (v1) 0.552 0.591 2
4 MLP-3 (v2) 0.482 0.516 -

6 Best 0.556 0.576 1

4.1 Replication model performance after
leader board submission

After the final leader board ranking, we decided
to replicate the model performance on the actual
test set provided to us by the shared task organizers.
Our evaluation scores may not match with the sub-
mitted solutions as the model changes on each run
and we did not record the random seed for the orig-
inal submission. This analysis was conducted to
generate comparable results for all models across
the training and test sets (see table 2), and to further
inspect the performance of the model on each label
(see table 3 and 4).

First, table 2 shows the evaluation scores of all
the models on the test set. One consistent pattern
emerges, v1 models which use only the citation con-
text text as its feature, consistently perform much
better than v2 models. Next, the best v1 models
are RF and LR. However, for v2, the best models is
GBT which has consistent performance across v1
and v2. It appears that inclusion of extra features
leads to over-fitting which is also evident from the
training evaluation scores. Finally, the LR model
(which is a linear model compared to all the other
non-linear models) has the highest drop in evalu-
ation score from v1 to v2, this may indicate that
the linear model suffers more with the inclusion of
noisy features.

Second, in table 3 we investigate the per label
evaluation (in terms of F1 score) for each of the
models. For both v1 and v2 features almost all mod-
els show similar performance on both labels. The
only exception is the LR model which has 0.0 F1
score on Influential label for v2 features. Overall,
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Table 2: Model evaluation scores (macro F1) on the test
data on retraining models after leader board ranking.

model v1 v2

test train test train

mlp 0.523 0.992 0.494 1.000
mlp-3 0.524 0.994 0.496 1.000
gbt 0.535 0.770 0.537 0.804
rf 0.550 0.976 0.492 0.985
lr 0.551 0.830 0.314 0.343

it appears that these baseline models are quite good
at learning this task compared to other submissions,
while being fast and easy to implement.

Finally, in table 4 we list the top features for
each class as identified based on the coefficients of
the LR v2 model. Since, this is a binary classifica-
tion task the model only learns a single coefficient
for each feature. Hence, coefficients with negative
values indicate features more important for the In-
cidental class while the coefficients with positive
values indicate features more important for the In-
cidental class. The top features for influential label
appear to be presence of words like first, while for
incidental label it is including. The word first is a
strong indicator of the citing paper being influential
by being the first to introduce a concept. This phe-
nomenon has also been observed in case of (Mishra
and Torvik, 2016) which showed that novel papers
(papers which were among the first to introduce a
concept) are slightly more cited.

5 Discussion

Our results show that tradition tf-idf features give
good performance for this shared task resulting
in a strong baseline to compare against. Simple
machine learning models like logistic regression,
random forests, and gradient boosted trees perform
well for this task compared to other submissions.
Furthermore, the citation context contains the max-
imum signal for predicting citation influence. We
were able to achieve one of the top performances in
the task within the number of submissions required
in the task. Due to the small dataset, multiple sub-
missions increase the likelihood of the models to
over-fit to the test set. Furthermore, our methods
show that deep learning methods (e.g. mlp and
mlp-3) do not give significant advantage over sim-
pler machine learning methods. The minor loss
in performance is acceptable compared to the in-

creased speed and low computation of simple ma-
chine learning models.

Further analysis reveals that MLP based models
are indeed over-fitting to the training data as shown
by near perfect F1-score on the training data (see
2). Additionally, GBT models consistently achieve
much better performance on the test set compared
to other models, including RF model which was
our best entry on the leader board. Furthermore,
the highest performing label is the Influential label.
All models (except LR) perform the worse on the
Incidental when using all text features but when
only using citation context, the label performance
is similar across labels.

6 Conclusion

Our team ’Scubed’ submitted 5 models for the cita-
tion context classification based on influence task.
Out of the submitted models the random forest clas-
sifier performed the best on the test set achieving
second position in this task. It achieved a private
score of 0.55204 on the test set which was not
only 0.003 behind the best performing model. We
were able to achieve competitive results under min-
imum trials using fast and computationally cheap
machine learning models.
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Table 3: Per label model evaluation on the test data.

model INCIDENTAL INFLUENTIAL accuracy macro avg weighted avg
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mlp 0.487 0.559 0.526 0.523 0.526
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Table 4: Top features in the LR (v1) model
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4 and -0.624 of 0.631
5 amp -0.623 cessation 0.620
6 academic -0.608 us 0.575
7 impact -0.580 avh 0.518
8 13 -0.544 virus 0.513
9 research -0.495 temperature 0.510
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Abstract

Identification of the purpose and influence
of citation is significant in assessing the im-
pact of a publication. ’3C’ Citation Con-
text Classification Task in Workshop on Min-
ing Scientific Publication is a shared task to
address the aforementioned problems. This
working note describes the submissions of Am-
rita CEN NLP team to the shared task. We
used various supervised learning algorithms
for the for classification of sentences encoded
into a vector of dimension 300 generated using
Word2vec model.

1 Introduction

The number of publications in the scientific domain
increased exponentially recently, which allows re-
searchers to look for various literature to extend
their research. One method of finding the more rele-
vant literature is to check the number of citations. A
publication with more citation generally has more
influence in the research community. Such publica-
tions typically give significant insight into specific
problems. To test whether a paper is relevant for
a particular domain, one should analyse the con-
text in which it is written. It is equally important
to identify the context of the citations also. This
information, as well as the citation count, give a
better understanding of a publication in a particular
domain. In (Pride and Knoth, 2017), David Pride
and Petr Knoth proposed an automatic method for
identifying the citations with influence. In addition
to it, identification of the purpose of a citation is
also an essential task.

This paper describes the submission of Am-
rita CEN NLP team in ’3C’ Citation Context Clas-
sification Task a part of Workshop on Mining Scien-
tific Publications (WOSP) 2020 (N. Kunnath et al.,
2020). This shared task consisted of two subtasks.
The goal of Subtask-A was to identify the purpose

of the citations. The Subtask-B intended to clas-
sify the classification based on their importance
into either influential or incidental. We used ma-
chine learning-based models for identifying the
purpose and influence of the citations according to
the context. The Word2Vec (Mikolov et al., 2013b),
(Mikolov et al., 2013a) algorithm was used to con-
vert the words into vectors by capturing the con-
texts of words in the given corpus. We employed
various classification algorithms with varying di-
mensions of word vectors for the aforementioned
tasks. The Random Forest classifier (Liaw et al.,
2002), (Premjith et al., 2019a), (Premjith et al.,
2019b) with a word vector of size 300 achieved the
best performance with 5-fold cross-validation.

The organization of the paper as follows: Sec-
tion 2 gives an brief description on the related re-
search, which will be followed by a description of
the dataset in the Section 3. The next section dis-
cusses the steps involved in designing the machine
learning model and the paper concludes with the
Conclusion section.

2 Related Works

The number of research works reported for the clas-
sification of scientific literature according to the
context in which it is written are limited despite
it’s significance. S. Teufel et al. (Teufel et al.,
2006) proposed an annotation scheme along with
a classification model for the categorization of the
citations. They considered 12 classes for annota-
tion. The machine learning model was trained over
2829 citation instances collected from 116 articles.
They used IBK algorithm for classification with
hand-engineered features like cue phrases. D. Ju-
rgens (Jurgens et al., 2018) used feature such as
pattern-based features, topic-based features, and
prototypical argument features to classify the doc-
uments into 6 classes. The authors used Random
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Forest algorithm for classification. A. Cohan et al.
(Cohan et al., 2019) used Glove and ELMO word
embedding features and Bidirectional LSTM with
attention models for classifying the citations.

3 Dataset description

The training and test datasets used for Subtask-A
and Subtask-B were the same. The training data
and test data contained 3000 and 1000 sentences,
respectively. The Subtask-A was a multiclass prob-
lem with six classes in it. The distribution of the
data for this task was highly uneven. In the dataset,
54.93% of the data belong to the BACKGROUND
category, whereas the share of the FUTURE cate-
gory was mere 2.07%. The Subtask-B was a binary
classification problem, and the data set for this task
contained evenly distributed class labels.

4 Dataset description

The training and test datasets used for Subtask-A
and Subtask-B were the same. The training data
and test data contained 3000 and 1000 sentences,
respectively. The Subtask-A was a multi-class prob-
lem with six classes in it. The distribution of the
data for this task was highly uneven. In the dataset,
54.93% of the data belong to the BACKGROUND
category, whereas the share of the FUTURE cate-
gory was mere 2.07%. The Subtask-B was a binary
classification problem, and the data set for this task
contained evenly distributed class labels.

5 System description

Amrita CEN NLP team participated in both the
subtasks. We used machine learning algorithms
for both tasks. The implementation pipeline is as
follows,

1. Preprocessing

2. Feature representation

3. Classification and Result analysis

5.1 Preprocessing

The first step in preprocessing was to remove the
unwanted characters. Therefore, we removed all
the characters other than alphabets and digits from
the text. It is followed by converting all the char-
acters into lower case. From this text, all the stop
words were removed.

5.2 Feature representation

This work utilized the Word2Vec algorithm for rep-
resenting the words as vectors. Initially, the pre-
trained model, namely ”word2vec-google-news-
300” was used for generating the word vectors.
But the pre-trained model didn’t yield any good
results with classification algorithms. Therefore,
we decided to construct the vector representation
out of the training and testing data. The input data
for Word2Vec was constructed by combining both
training and test data. We experimented with differ-
ent embedding dimensions with Continuous Bag-
of-Words training approach. The context window
size was set to 5. The minimum number of oc-
currence of each word to be considered for word
vector generation was assigned to 1 to make sure
that all the words in the corpus will find a represen-
tation. The embedding dimensions considered for
the experiment were 50, 100 and 300.

The sentence vector was constructed by taking
the linear combination of the word vectors, where
the coefficients were assigned to one.

5.3 Method

We used machine learning algorithms such as Deci-
sion Tree, Random Forest, K-Nearest Neighbor
(KNN), AdaBoost, and Logistic Regression for
classification, and analyzed their performance. The
ultimate goal of the classification algorithms is to
find the optimal parameters, which depends on the
proper tuning of the hyper-parameters. To find
the optimal set of hyper-parameters for a classifier
for each subtask, we utilized GridSearchCV() de-
fined in the scikit-learn Python package (Pedregosa
et al., 2011). This function finds the best combina-
tion of hyper-parameters by implementing 5-fold
cross-validation. This process was repeated for
each classifier with different word embedding di-
mension. Table 1 shows the hyper-parameters used
for tuning all the classifiers and the optimal parame-
ters obtained after the hyper-parameter tuning. The
first value in the third column represents the op-
timal hyper-parameter values used for Subtask-A,
and the second value is used for Subtask-B. The
best estimator was used for training the data and
fixed the performance by again cross-validating
with 5-folds. The imbalance in the dataset used for
Subtask-A may cause the classifier to predict the
class labels for test data biased towards the BACK-
GROUND class because of its percentage of share
in the dataset.
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Classifier Parameter Parameter
value

Optimal
value

Decision
Tree

Splitting
criterion

gini, en-
tropy

entropy,
gini

Splitter best, ran-
dom

random,
ran-
dom

Random
Forest

# Estima-
tors

50,100,150 100,
50

Splitting
criterion

gini, en-
tropy

gini,
gini

Maximum
features

auto, sqrt,
log2

sqrt,
log2

KNN # Neig-
bours

3,5,7 7, 5

Weights uniform,
distance

uniform,
uni-
form

Algorithm auto,
ball tree,
kd tree,
brute

auto,
auto

Adaboost Learning
rate

0.01, 0.1,
1, 10, 100

0.01,
0.1

Algorithm SAMME,
SAMME.R

SAMME,
SAMME

Logistic
Regres-
sion

Penalty l1, l2,
elas-
ticnet,
none

l1 , l1

C 0.01, 0.1,
1, 10, 100

0.01 ,
0.01

Solver newton-
cg, lbfgs,
liblinear,
sag, saga

liblinear
, saga

Multi class auto, ovr,
multino-
mial

auto ,
auto

Table 1: Set of hyperparameters used for training the
classifiers

Classifier Embedding dimension
50 100 300

Decision Tree 36.76 33.49 35.63
Random Forest 47.73 48.56 54.93

KNN 48.76 48.13 50.00
Adaboost 54.93 54.93 54.93

Logistic Regression 54.93 54.93 54.93

Table 2: Cross-validated results for identifying the pur-
pose of citations

Classifier Embedding dimension
50 100 300

Decision Tree 49.87 50.03 49.63
Random Forest 48.07 48.77 54.83

KNN 50.23 49.27 52.26
Adaboost 52.26 52.27 50.33

Logistic Regression 52.37 52.40 53.03

Table 3: Cross-validated results for identifying citation
influence

The performances of the cross-validated mod-
els were evaluated using the accuracy score. The
evaluation scores of identifying the purpose and in-
fluence of citations are given in Table 2 and Table
3

5.4 Result Analysis
From the Tables 2 and 3, it is clear that the feature
vector with dimension 300 achieved the highest
accuracy in both the tasks. For the Subtask-A, Ad-
aBoost, Random Forest and Logistic Regression
obtained the maximum classification accuracy of
54.93%. For the Subtask-B, Random Forest at-
tained the highest accuracy of 54.83%. Therefore,
we decided to submit the Random Forest model for
both the shared tasks.

Performance of the models with test data was
evaluated using F1-score (macro). Tables 4 and
5 show the public and private macro F1-scores.
For identifying the purpose of citation, the Deci-
sion Tree algorithm achieved the highest public
F1-score of 0.2071, whereas Logistic Regression
obtained the private highest F1-score of 0.1953.
Random Forest reported the highest public as well
as private F1-scores for identifying he citation in-
fluence task.

6 Conclusion

This working note reports the submission of the
team Amrita CEN NLP for both Subtask-A and
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Classifier Public Private
Decision Tree 0.2071 0.1673

Random Forest 0.1780 0.1398
KNN 0.1662 0.1356

Adaboost 0.1205 0.1149
Logistic Regression 0.1731 0.1953

Table 4: Public and private F1-score (macro) for identi-
fying the purpose of citations with best classifier

Table 5: Public and private F1-score (macro) for identi-
fying citation influence

Classifier Public Private
Decision Tree 0.4757 0.4760

Random Forest 0.4894 0.5153
KNN 0.4639 0.4377

Adaboost 0.3046 0.3224
Logistic Regression 0.3125 0.3258

Subtask-B. We experimented with different clas-
sifiers and different word embedding dimensions
for identifying the best model for the classification.
The cross-validated results showed that Random
Forest classifier with 300 dimension Word2Vec fea-
tures achieved the highest accuracy for both shared
tasks.
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Abstract

The 3C Citation Context Classification task is
the first shared task addressing citation con-
text classification. The two subtasks, A and B,
associated with this shared task, involves the
classification of citations based on their pur-
pose and influence, respectively. Both tasks
use a portion of the new ACT dataset, devel-
oped by the researchers at The Open Univer-
sity, UK. The tasks were hosted on Kaggle,
and the participated systems were evaluated
using the macro f-score. Three teams partici-
pated in subtask A and four teams participated
in subtask B. The best performing systems ob-
tained an overall score of 0.2056 for subtask A
and 0.5556 for subtask B, outperforming the
simple majority class baseline models, which
scored 0.11489 and 0.32249, respectively. In
this paper we provide a report specifying the
shared task, the dataset used, a short descrip-
tion of the participating systems and the fi-
nal results obtained by the teams based on
the evaluation criteria. The shared task has
been organised as part of the 8th International
Workshop on Mining Scientific Publications
(WOSP 2020) workshop.

1 Introduction

Citation analysis for research evaluation has been a
subject of interest for the past several decades. The
conventional one dimensional perspective of cita-
tion analysis, based on the pure citation frequency,
which treats all citations equally, has endured a lot
of criticism way back [Moravcsik and Murugesan,
1975, Kaplan, 1965]. Subsequently, researchers
have emphasised the need for developing new meth-
ods that consider the different aspects of the citing
sentences. One such qualitative way for measuring
the scientific impact is to analyse the citation con-
text for discovering the author’s reason for citing

a paper. The text containing the reference to the
cited document, the citation context, has proved to
be a valuable signal for characterising the citation
intent [Teufel et al., 2006]. The increase in the
accessibility of the scientific publications, as well
as the availability of full text of the research doc-
uments, from various services like CORE [Knoth
and Zdrahal, 2012] facilitates the possibility of ex-
ploring citation contexts, thereby further extending
the bibliometric studies for research assessment
[Pride and Knoth, 2017].

Understanding the intent of citation has an essen-
tial role in measuring the scientific impact of the
research papers. The possibility of knowing why a
citation is included in one’s work and how influen-
tial it is offers an excellent measure for evaluating
the impact of a scientific publication. Previous
approaches for citation context classification em-
ployed a variety of annotation schemes ranging
from low to high granularity. Due to the lack of
standard methods and annotation schemes, a com-
parison of the earlier systems is practically difficult.
Earlier systems used datasets with very limited size
and this is probably because of the difficulties in
manually annotating the citation contexts. Besides,
most of the research on citation context classifica-
tion is not extensive enough and mainly reduced to
specific domains of application, for instance, com-
puter science and biomedical fields. This raises
questions related to the generalisability of the pre-
sented models.

The 3C Shared task aims to create a platform en-
couraging researchers to participate in research in
this area so that we can more reliably measure the
performance of methods that have been tried in this
area, establish the state-of-the-art and understand
what works and what doesn’t. Two subtasks associ-
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ated with this shared task provide the participating
teams the possibility to explore the new Academic
Citation Typing (ACT) dataset [Pride et al., 2019,
Pride and Knoth, 2020] for analysing the citation
context and classify the associated citations based
on their purpose (subtask A) and influence (subtask
B). A total of four teams participated in subtask A,
and five teams participated in the subtask B. We
used Kaggle InClass competitions1 for organising
this shared task and the participating systems were
evaluated using the macro f-score.

This overview paper presents the 2020 3C
Shared Task organisation. Section 2 describes the
related work; Section 3 discusses the shared task
setup, the data used, the baselines, followed by task
evaluation in Section 4. Section 5 summarises the
participating system description. Section 6 and 7
presents the results and the conclusion.

2 Related Work

Several supervised machine learning based frame-
works that inspect the language used in scientific
discourse have been developed in the past to cat-
egorise citations based on their context. [Teufel
et al., 2006] used an annotation scheme with 12 cat-
egories and applied machine learning techniques
on 2,829 citation contexts from 116 articles, us-
ing linguistic features including the cue phrases.
These 12 classes belonged to four top-level cate-
gories; citations explicitly mentioning weakness,
citations that compares or contrasts, citations which
agrees or uses or is compatible with the citing
work and finally a neural class. A more fine-
grained classification scheme introduced by Jur-
gens et.al [Jurgens et al., 2018] contains six cate-
gories and 1,941 instances from papers in Computa-
tional Linguistics(ACL-ARC dataset). The authors
applied three novel features: pattern-based, topic-
based and prototypical argument-based features be-
sides the structural, lexical and grammatical, field
and usage features.

The above mentioned approaches all used hand-
engineered features for classification. [Cohan
et al., 2019] proposed a neural multi-task learn-
ing method using non-contextualised (GloVe) and
contextualised word embeddings (ELMo) along
with BiLSTM and attention mechanism for citation
intent classification. To achieve multi-task learning,
the authors used two auxiliary tasks to aid the main

1https://www.kaggle.com/c/about/
inclass

classification task. The new dataset (SciCite) [Co-
han et al., 2019] contains 11,020 instances belong-
ing to Computer Science and Medicine domains
and only three citation categories. A pre-trained
model using 1.14M papers from Semantic Scholar2,
called SciBERT [Beltagy et al., 2019], was released
in 2019 and achieved a macro f-score of nearly 85%
with fine-tuning using the SciCite dataset.

Figure 1: Subtask A data distribution

3 The 3C Shared Task

To address the limitations of citation context clas-
sification from the previous studies, we introduce
a unified task to compare different citation classi-
fication methods on the same dataset. The shared
task for the citation context classification, called,
the ”3C Shared Task”, is organised as part of the
International Workshop on Mining Scientific Pub-
lications (WOSP), 20203, collocated with the Joint
Conference on Digital Libraries (JCDL) 20204. As
organisers, we believe, this shared task will provide
the opportunity for comparing different classifica-
tion systems and help progress the state-of-the-art.
The competing systems in the 3C shared task will
serve as a standard benchmark for future research
in this direction.

3.1 Task Definition

The 3C shared task is a classification challenge,
where each citation context is categorised based on
its purpose and influence. The following are the
output categories associated to the two subtasks
respectively.

2https://www.semanticscholar.org/
3https://wosp.core.ac.uk/jcdl2020/

index.html
4https://2020.jcdl.org/
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unique id CC10
core id 158977742
citing title Ontology-Based Recommendation of Editorial Products
citing author Thiviyan Thanapalasingam
cited title Ontological user profiling in recommender systems
cited author Middleton
citation context The main advantages of these solutions are i) the ability to ex-

ploit the domain knowledge for improving the user modelling
process, ii) the ability to share and reuse system knowledge, and
iii) the alleviation of the cold-start and data sparsity problems
[16,#AUTHOR TAG].

citation class label BACKGROUND
citation influence label INCIDENTAL

Table 1: ACT data format

• Subtask A: Multiclass classification of ci-
tation contexts based on purpose with cat-
egories - BACKGROUND, USES, COM-
PARES CONTRASTS, MOTIVATION, EX-
TENSION, and FUTURE.

• Subtask B: Binary classification of cita-
tions into INCIDENTAL or INFLUENTIAL
classes, i.e. a task for identifying the impor-
tance of a citation.

The shared task was managed and evaluated us-
ing the Kaggle InClass competitions, an easy to set
up, free self-service platform for hosting Data Sci-
ence challenges, with notebook support for GPU
and code sharing. The ability to maintain a leader-
board, which allows the participants to view re-
sults immediately after submission, built-in evalua-
tion metrics and automated submission scoring are
some of the features offered by Kaggle.

Both subtasks were organised as separate com-
petitions in Kaggle. The shared task homepage
for subtask A can be found at https://www.

kaggle.com/c/3c-shared-task-purpose/. The
following url correspond to the competition page
for the subtask B, https://www.kaggle.com/c/
3c-shared-task-influence/. The task partici-
pants were required to:

• Develop methods to classify the citations
based on its purpose or influence and submit
the results via Kaggle

• Document and submit their method for classi-
fying the citations as a short paper

• Provide source code for each method

The competitions lasted 43 days, starting from
May 11, 2020 till June 22, 2020.

Figure 2: Subtask B data distribution

3.2 Dataset

The previous studies on citation classification sys-
tems used datasets that were annotated by domain
experts and independent annotators, making the
evaluation process relatively slow and expensive.
Existing datasets in the field are, as a result, also
confined to a specific domain, mainly computer sci-
ence and biomedical domains, because this is the
domain in which the annotators can could label the
instances. The citation contexts need not always
contain explicit signals that express the author’s
motivation for citing a paper. Since interpreting
the citation intent is difficult for an independent an-
notator, authors themselves are in a better position
to report their motivations in citing a paper [Pride
and Knoth, 2020]. [Pride et al., 2019] used this
strategy; asking authors to annotate their papers

77



for tagging citations based on their purpose and
influence. The new dataset, called the ACT dataset
is the largest multi-disciplinary dataset of its type
in existence with annotations for 11,233 citations
annotated by 883 authors [Pride and Knoth, 2020].

Table 1 illustrates a sample instance from the
ACT dataset. Each citation context in the dataset
contains the label, ”#AUTHOR TAG”, which rep-
resents the citation that is being considered. The
citing title and citing author corresponds to the
details of the document with the citation con-
text. The dataset also has information about the
cited paper (tile and author details) corresponding
to the #AUTHOR TAG. The citation class label
represents the purpose category and the cita-
tion influence label corresponds to the binary class
based on how influential the citation is.

The participants were provided with a labeled
training dataset in the csv format with 3,000 in-
stances, annotated using the ACT platform. Since
Kaggle InClass competitions doesn’t allow hosting
more than one task using the same interface, sepa-
rate competitions had to be created. Also, we had
to split the dataset into two, based on the citation
class label and the citation influence label. We also
converted the categorical labels to numeric values.
The citation class labels corresponds to values be-
tween 0 and 5, where each value represents the
following categories:

0 - BACKGROUND

1 - COMPARES CONTRASTS

2 - EXTENSION

3 - FUTURE

4 - MOTIVATION

5 - USES
Similarly, the citation influence labels were rep-

resented with values 0 or 1, as follows:

0 - INCIDENTAL

1 - INFLUENTIAL
Figure 1 illustrates the data distribution for Sub-

task A. The dataset is highly imbalanced with
nearly 55% of the instances belonging to the
BACKGROUND class in the training set. The
FUTURE class has the lowest number of instances
with just 62 and 15 instances in the training and the
test dataset, respectively. The number of instances
of INCIDENTAL and INFLUENTIAL classes used
for Subtask B is shown in Figure 2. The dataset
is relatively less skewed for Subtask B, with the
number of instances associated with the inciden-

tal class (1,568) being higher than the influential
class (1,432) for the training set. For both tasks,
we ensured that the data distribution of categories
in training set to be nearly the same as the test set.
Besides the ACT dataset, participants were also
encouraged to use external datasets, like the ACL-
ARC [Jurgens et al., 2018], which is compatible
with our dataset, for training, provided, the teams
mention this while describing the systems.

3.3 The Baseline

We made an initial submission based on a sim-
ple majority class prediction as a baseline entry
for both subtasks. For Subtasks A and B, the ma-
jority class corresponds to the categories, BACK-
GROUND and INCIDENTAL, respectively. As the
competition proceeded, we also made a submission
based on the BERT model [Devlin et al., 2018].
We used the pre-trained model, scibert-scivocab-
uncased5, pretrained on a sample of 1.14M multi-
domain papers from the Semantic Scholar [Beltagy
et al., 2019]. The 3,000 training instances were
then used for fine-tuning, to obtain the task-specific
results. The rational here has been to test how a
state-of-the-art method, recently reported in [Co-
han et al., 2019] performs compared to the methods
submitted by the participants.

4 Evaluation

The evaluation was based on the test set of 1,000 ex-
amples. The test dataset was partitioned into public
and private sets in Kaggle. 50% of the test set was
used for the initial evaluation, and the evaluation re-
sults against it appeared on the public leaderboard
as the competition progressed. The rest of the data,
which is the private partition on the test file, was
used for the final scoring. The private leaderboard
was visible only to the shared task organisers dur-
ing the competition period.

We used macro f-score for evaluating the sub-
missions.

F1−macro =
1

n

n∑

i=1

2×Pi ×Ri

Pi+Ri
(1)

where Pi and Ri denotes the precision and recall for
class i and n represents the number of classes. We
chose macro f-score in light of the disproportionate
distribution of output categories in our dataset and
to encourage the task participants to focus on the

5https://github.com/allenai/scibert
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Team Name Run ID Leaderboard
Public Private

UFMG 5 0.21460 0.20560
scibert 0.17966 0.19026
Scubed 3 0.17599 0.18146
Amrita CEN NLP 2 0.11981 0.12542
majority class baseline 0.12047 0.11489

Table 2: Public and private leaderboard macro f1-
scores for citation context classification based on pur-
pose (Subtask A)

detection of the minority classes, which are partic-
ularly crucial for advancing the field of research
metrics beyond just counting citations.

The submission file, in csv format, contains the
unique id followed by the citation class label for
Subtask A or citation influence label for Subtask
B. We encouraged team submissions in Kaggle
and did not set any restrictions on the team size.
The limit on the number of submissions per day
was set to 20. All teams were allowed to submit a
maximum of 5 runs to the competition for the final
evaluation for each of the tasks. The best submitted
system will be used by kaggle for final scoring on
the private leaderboard.

5 Participating System Description

This section presents the overview of the systems
used by the participated teams, UFMG, Paul Lar-
museau, Scubed and Amrita CEN NLP in the 3C
shared task. Except for Paul Larmuseau, rest of
the teams participated in both the tasks. The teams
that participated in both tasks used the same ap-
proach while making submissions to Subtask A
and Subtask B.

5.1 UFMG

Team UFMG6 explores the possibility of enhanc-
ing the results by using a combined text represen-
tations for capturing the statistical, topical and the
contextual information. For this, they chose Term
Frequency-Inverse Document Frequency (TF.IDF)
for word representation (upto bigrams), Latent
Dirichlet Allocation (LDA) for topic extraction
from citation context and finally GloVe embed-
dings7 to obtain the word vector representation
for capturing the word co-occurrences. The team

610.6084/m9.figshare.12638807
7https://nlp.stanford.edu/projects/

glove/

Team Name Run ID Leaderboard
Public Private

Paul Larmuseau 1 0.57556 0.55565
Scubed 3 0.59108 0.55204
UFMG 1 0.59108 0.54747
Amrita CEN NLP 2 0.48937 0.51534
scibert 0.54747 0.50012
majority class baseline 0.30458 0.32249

Table 3: Public and private leaderboard macro f1-
scores for citation context classification based on influ-
ence (Subtask B)

obtained the highest score of 0.2056 for subtask
A by combining the above mentioned word rep-
resentations for the passive aggressive classifier,
an incremental learning mechanism. However, for
Subtask B, UFMG obtained the best overall score
of 0.54747, finishing as third on the leaderboard,
just by using a single feature, TF.IDF. Furthermore,
by using additional feature like self citation along
with the TF.IDF, the team claims to have obtained
a 3.1 % improvement in the final score for Subtask
B [Valiense de Andrade and Goncalvesh, 2020].

5.2 Scubed
The team Scubed8 applied TF.IDF on the columns,
citing title, cited title and the citation context in the
dataset. They used off-the-shelf machine learning
based models, including Logistic Regression (LR),
Random Forest (RF), Gradient Boosting Classifier
(GBT) and two variants of the Multi-Layer Percep-
tron (MLP) classifiers. For Subtask A, the best
performing model using MLP obtained a private
score of 0.18146 and the team finished third. How-
ever, for the binary classification task, RF achieved
the best score and the team finished second on the
leaderboard with a macro f-score of 0.55204. The
team also reports a per category model evaluation
using the truth labels of the test set [Mishra and
Mishra, 2020a,b].

5.3 Paul Larmuseau
The best system in the subtask B was that of Paul
Larmuseau9. The team used a combined TF.IDF
weighting and fasttext embedding, consisting of 1
million word vectors trained on Wikipedia 201710.
Another important feature used by the team was

810.6084/m9.figshare.12638846
910.6084/m9.figshare.12638840

10https://fasttext.cc/docs/en/
english-vectors.html
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the cosine similarity, calculated between the citing
title and a combination of cited title and the citation
context. As part of the pre-processing step, they
also experimented with feature scaling (based on
the maximum absolute values) and dimensionality
reduction (single value decomposition regression)
techniques. The team experimented with different
approaches and obtained the highest private score
of 0.55566 using LR, finishing first in Subtask B
[Larmuseau, 2020].

5.4 Amrita CEN NLP

The team Amrita CEN NLP11 used Word2Vec for
extracting the contextual information and feature
representation. In order to built the vocabulary,
the team used the shared task training and the test
dataset. The team experimented with different
classifiers like LR, Decision Tree (DT), k-Nearest
Neighbour (k-NN), LR and Ada Boost. A cost
sensitive learning approach for assigning separate
weights was used for Subtask A, to address the
class imbalance issue. The best score for both sub-
tasks was achieved using RF [B and K.P, 2020].

6 Results

Table 2 shows the public and the private macro f-
scores obtained by the teams for Subtask A. The
highest public and private macro f-score was ob-
tained by the team, UFMG. The submission based
on scibert model scored the second best result with
a private score of 0.19026. This was followed by
the teams scubed and Amrita CEN NLP in the third
and fourth positions. All the teams substantially
outperformed the majority class baseline classifier.
Since the dataset for purpose classification task was
highly skewed, with the majority of the classes be-
longing to the BACKGROUND class and the fact
that we used macro f-score for evaluating the sys-
tems, all the systems submitted for this task scored
less when compared to the Subtask B.

The results for the final evaluation of systems
submitted for Subtask B is shown in Table 3.
The highest performing system, submitted by Paul
Larmuseau achieved a private macro f score of
0.55565, ranking as first for Subtask B. How-
ever, two other systems submitted by the teams
Scubed and UFMG obtained an even higher score
of 0.59108 on the public data. The deep learning
based language model scibert achieved lesser score

1110.6084/m9.figshare.12638849

compared to the rest of the submissions using sim-
pler machine learning model for this binary clas-
sification task. Not surprisingly, the systems sub-
mitted to Subtask B achieved better results when
compared to the other task, because of the lesser
number of categories and less skewness in the data
distribution.

Figure 3: Confusion Matrix for subtask A

7 Discussion

The 3C Shared task is the first open competition
for citation context classification. This shared task
could be considered as a new benchmark for these
tasks as we release both the data and the source
code of all the submitted systems. All the teams
that participated in this shared task used simple
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Run ID Team Field Model Features Public Private
Used Score Score

1

UFMG citation context
Passive

TF.IDF 0.19829 0.19425
2

Aggressive

LDA 0.12923 0.15826
3 GloVe 0.12047 0.11489
4 TF.IDF+LDA 0.19124 0.19572
5 TF.IDF+GloVe 0.19945 0.20037
6 TF.IDF+LDA+GloVe 0.21460 0.20560
1

Scubed
citing title, GBT TF.IDF 0.15001 0.14381

2 cited title, RF TF.IDF 0.14262 0.15826
3 citation context MLPC TF.IDF 0.17599 0.18146
1

Amrita CEN NLP citation context

DT Word2Vec 0.20709* 0.16732*

2 RF Word2Vec 0.11981 0.12542
3 kNN Word2Vec 0.16623* 0.13563*

4 Adaboost Word2Vec 0.12047* 0.11489*

5 LR Word2Vec 0.17309* 0.19530*

* Post-Evaluation Results

Table 4: Overall Result (Subtask A)

Run ID Team Field Model Features Public Private
Used Score Score

1
Paul Larmuseau

cited title,
LR TF.IDF 0.57556 0.55565

2
citing title,

LR fasttext + TF.IDF 0.54726 * 0.60333 *
citation context

1

UFMG citation context
Passive

TF.IDF 0.59108 0.54747
2

Aggressive

LDA 0.30458 0.32249
3 GloVe 0.30458 0.32249
4 TF.IDF+LDA 0.32707 0.36156
5 TF.IDF+GloVe 0.30458 0.32249
6 TF.IDF+LDA+GloVe 0.30458 0.32249
7 TF.IDF+self citation 0.57556 * 0.55565 *

1

Scubed
citing title,

LR TF.IDF 0.30458 0.32249
2

cited title,
GBT TF.IDF 0.56473 0.52351

3
citation context

RF TF.IDF 0.59108 0.55204
4 MLP-3 TF.IDF 0.51589 0.48187
1

Amrita CEN NLP citation context

DT Word2Vec 0.47565 0.47596
2 RF Word2Vec 0.48937 0.51534
3 kNN Word2Vec 0.46386 0.43769
4 Adaboost Word2Vec 0.30458 0.32249
5 LR Word2Vec 0.31250 0.32579

* Post-Evaluation Results

Table 5: Overall Result (Subtask B)
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machine learning-based classifiers, including logis-
tic regression, random forest, and multi-layer per-
ceptron. One of the teams experimented with the
online learning technique for faster computation.
As with feature representation, the conventional
approach used by the majority of the teams was
TF.IDF. The prospect of employing word vectors
developed using Wikipedia, the shared task dataset
and the use of pre-trained embeddings like GloVe
were explored by the teams.

Figure 3 shows the confusion matrix for the best
systems submitted by the teams Scubed, UFMG,
and Amrita CEN NLP for the subtask A. The
most successfully classified category is BACK-
GROUND. The winning team, UFMG, classified
nearly 80% of the BACKGROUND class instances
correctly. The number of true positives for the mi-
nority class FUTURE is zero, which implies that
none of the above mentioned teams could success-
fully categorise the instances to this class. The
imbalanced nature of the subtask A dataset sig-
nificantly affects the performance of the systems
submitted by teams, which is one of the challeng-
ing aspects as far as citation function classification
task is concerned.

Tables 4 and 5 displays the public and private
scores obtained by teams for the different systems
they submitted for subtask A and subtask B respec-
tively. All the teams for both tasks used the data
field, citation context as the main source of seman-
tic information for feature extraction, and classifi-
cation. Two teams also examined citing title and
the cited title fields for extracting useful features.
Since Kaggle allows late submissions for the hosted
competitions, the participants can still submit re-
sults to get better scores, although this will not be
visible on the public and the private leaderboard.
Both the tables also contain the post-evaluation
results obtained by some of the teams.

The current deep learning based state-of-the-art
language models like scibert could not achieve bet-
ter results on our dataset, and as the leaderboard
indicates, such sophisticated models are beaten by
more simpler methods, that are significantly less
computationally expensive on this task. One pos-
sible reason for this could be the lesser number of
training instances we provided to the participants.

8 Conclusion

Citations, which act as a connection between the
cited and the citing articles, cannot be treated

equally and serve different purposes. Traditional
citation analysis based on mere citation counts
take into consideration just the quantitative fac-
tors. Analysing the citation context for classifying
citations based on their function and influence has
many applications and the most important being
its implementation in the research quality evalua-
tion. One of the greatest challenges faced in the
citation context analysis for identifying the citation
function and its influence is the absence of multi-
disciplinary datasets and unavailability of medium
to fine grained schemes which sufficiently captures
information for citation classification [Hernández-
Alvarez and Gómez, 2015]. Although previous
works on the problem of citation context classifi-
cation exist, lack of shared datasets, common con-
ventions and annotation schemes caused the bench-
marking of systems on the same tasks difficult.

The 3C Shared task constitutes the first system-
atic effort to a) compare different methods on the
same data, b) on the same classification taxonomy
across two previously reported tasks, and c) on
multi-disciplinary data. We propose the unifying
framework of the 3C shared task to be used as a
standardised benchmark for this task, as we make
all the submitted systems to this shared task, pub-
licly available. We believe this will allow future
comparison of participating systems head-to-head
on the same data and task. The results obtained
by the teams indicate the relevance of the simple
machine learning based models over complex deep
learning based approaches. The winning team for
the subtask A, UFMG obtained an overall score
of 0.19425. The team, Paul Larmuseau finished
at first position on the leaderboard with a macro f
score of 0.55565 for subtask B.
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