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Abstract

Mainly due to the open access movement, the
number of scholarly papers we can freely ac-
cess is drastically increasing. A huge amount
of papers is a promising resource for text min-
ing and machine learning. Given a set of pa-
pers, for example, we can grasp past or cur-
rent trends in a research community. Com-
pared to the trend detection, it is more diffi-
cult to forecast trends in the near future, since
the number of occurrences of some features,
which are major cues for automatic detection,
such as the word frequency, is quite small be-
fore such a trend will emerge. As a first step
toward trend forecasting, this paper is devoted
to finding subtle trends. To do this, the authors
propose an index for keywords, called normal-
ized impact index, and visualize keywords and
their indices as a heat map. The authors have
conducted case studies using some keywords
already known as popular, and we found some
keywords whose frequencies are not so large
but whose indices are large.

1 Introduction

Thanks to the recent open access movement, we
can freely access to a huge amount of papers on
scholarly repositories, such as institutional repos-
itories maintained by academic institutions. Ac-
cording to IRUS-UK,1 there exits about 2M items
on more than 200 repositories in the UK, as of May
2020. According to NII,2 there exist more than
2.4M full-text papers on 734 institutional reposi-
tories in Japan, as of March 2020. In addition to
institutional repositories, we also have disciplinary
repositories, such as arXiv.3

We can also use a global aggregation servie,
which collects papers on repositories. For exam-

1https://irus.jisc.ac.uk/
2https://www.nii.ac.jp/irp/en/archive/

statistic/
3https://arxiv.org/

ple, CORE 4 collects papers from more than one
thousand data providers in about 150 countries, and
provides search APIs, dump files, and search facil-
ity for collected papers (Knoth and Zdrahal, 2012).
The latest dump file provided by CORE contains
123M metadata items, 85.6M abstracts, and 9.8M
full text papers. Some commercial publishers also
began to provide APIs for automatic processing.5

Basically, items on scholarly repositories are
readable PDF files. When research results were
published on paper, research papers were final out-
comes of the researches. In case of digital media,
however, contents of the papers can be an input
for automatic processing. We can find many re-
searches which use scholarly papers as input for
computer algorithms. For example, some entities,
like dataset names, used in papers are automati-
cally extracted (Ikeda and Seguchi, 2017; Ikeda
and Taniguchi, 2019), and papers are used to pre-
dict research impacts of a new given paper (Baba
et al., 2019) and to predict new materials (Tshi-
toyan et al., 2019).

The final goal of our research is to forecast pop-
ular trends in the near future. A typical method
for this is to use a clustering algorithm, which
is unsupervised learning, and divides target items
into groups based on a predefined distance metric.
Some approaches use clustering algorithms to di-
vide words in papers into groups, such as the topic
model (Griffiths and Steyvers, 2004; Bolelli et al.,
2009). Once we introduce a distance metric to data,
a target data item is defined as a point in the space
defined by the metric, and thus we can compare
similarities between any two points. In this sense,
this approach uses an absolute distance. There also
exit relative approaches, like network structures, in
which we know that two items are adjancent. In par-

4https://core.ac.uk/
5https://www.elsevier.com/about/

policies/text-and-data-mining
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ticular, we can naturally construct multiple network
structures from papers, like networks of authors,
citations, words, and their combinations (Duvvuru
et al., 2012; Salatino et al., 2017). However, these
researches assume that there are already a number
of publications (Salatino et al., 2018). In this sense,
these approaches are for topic detection, not for
topic forecast.

In this paper, we try to find small topics as a
first step toward forecasting future topics. To this
end, we propose an index for keywords to mea-
sure their impact, assuming a keyword denotes a
research topic. We use a relative frequency in the
definition of the index to find small topics. As far
as the authors know, the frequency of keywords is
not directly used to detect topics in research papers,
unlike topic or trend detection in general text data.
The authors think that this is because a frequency
based method requires a list of stop words to re-
move unnecessary keywords, but it is too costly to
construct it for each discipline in case of research
papers.

To evaluate the proposed index, we use some
popular keywords in one discipline, and we check
if the proposed indices for them can grasp their
popularity. Using this approach, we do not have to
consider the issue of stop words. In other words, we
try to find some properties among popular topics
with the proposed index. For comparison, we also
show topic detection by absolute frequency and a
standard clustering algorithm.

2 Normalized Impact Index

We assume the range of publication years,
y1, y2, . . . , yN , and let Y = {y1, y2, . . . , yN}. For
y ∈ Y , D(y) denotes the set of papers published
in y.

For a word w and a year y ∈ Y , the normalized
impact index, denoted by h(w, y), is defined as as
follows:

h(w, y) =
f(w, y)

|D(y)|
∑yN

t=y1
f(w, t)

,

where f(w, y) is the number of occurrences (fre-
quencies) of w in D(y).

The proposed index for w and y is a relative
frequency, normalized by both the number of pub-
lications in y and the total frequency of w among
all years. Therefore, we can compare h(w1, y1)
and h(w2, y2).

To understand the meaning of the index, let us
assume that |D(y)| = 1 tentatively. Then we

can treat h(w, y) as a probability since we have∑
y h(w, y) = 1. So, when we depict this in-

dex as a bar chart for some w whose height is
h(w, yi), the total area of the bars for w is nor-
malized to 1. Therefore, we can compare any two
words w1 and w2, in the view point of their trends.

When we consider trends of keywords, it is natu-
ral to see temporal changes of the index from some
reference year y1, that is,

h(w, y)− h(w, y1), (1)

where y > y1 for y ∈ Y − {y1}. For some y(6=
y1), if h(w, y) − h(w, y1) > 0 (resp. < 0), then
the relative usage of w in y becomes larger (resp.
smaller) than that in y1. This leads to a heat map
of the proposed index for keywords.

3 Case Study

In this section, we apply the proposed index to a
real dataset to confirm its efficacy. As described in
Section 1, a frequency based method suffers from
the issue of stop words. To avoid the issue, we
check the values of the proposed index for some
keywords the authors selected from some specific
field. These keywords are already known as popu-
lar topics. Therefore, it means that we only check
positive examples.

Since the proposed index is defined with relative
frequencies, we show the result of topic detection
with absolute frequencies for comparison (see Sec-
tion 3.2). Then, we apply a clustering algorithm to
our dataset in Section 3.3, to confirm that a cluster-
ing algorithm for keywords can find large topics,
not small ones as described in Section 1.

3.1 Dataset
We use a set of abstracts, not the whole papers,
from 2000 to 2018, obtained by searching “plasma
chemical vapor deposition” at Web of Science. The
number of abstracts we obtained is 69,384.

In addition to stop words of English, we also
removed tokens starting or ending with special
symbols, such as “[” and “+”. Then we converted
capital letters to lower-case ones.

3.2 Topic Detection by Frequency
As the first case study, we check if a method based
on frequency can find a potentially popular topic.

Figure 1 contains four graphs, showing the num-
bers of papers found by queries at Web of Sci-
ence. One common line is contained in all graphs



in Figure 1, which is the number of papers found
by “plasma chemical vapor deposition”. In other

Figure 1: Each graph shows the change of the num-
ber of papers found by the corresponding query with
“plasma chemical vapor deposition”, such as “nitride
plasma chemical vapor deposition”, as the publication
year advances (some data originally from Fig. 6 and 7
in (Iwase et al., 2019)).

words, this line shows the year-by-year changes of
the number of papers containing this query. We
call the line for this query the base line of this field.

Each of the other lines shows the number of
papers found by “plasma chemical vapor deposi-
tion” plus the corresponding keyword. For exam-
ple, the red line in the top graph is obtained by
“oxide plasma chemical vapor deposition”. These
searches are search within the original query, and
thus these lines are below the base line. One of the
authors chose these additional keywords, based on
the heat map in Figure 2 in addition to his expertise.
Basically, they are known to be popular topics.

In the four graphs, an upper graph contains key-
words whose frequencies are larger. In the top
graph of “nitride”, “carbon”, “oxide”, and “amor-
phous silicon”, we see that these keywords are large
topics in this field and the shapes of graphs are sim-
ilar to the base line. Compared to the top graph, the
second one contains smaller topics, but they have
emerged in early 90s, and increased its publications
steadily.

Compared to the two top graphs, keywords for
the other two graphs are relatively new topics, and
thus the numbers of papers containing these top-
ics are much smaller. In particular, the number of
the papers about “2D material”, meaning 2 dimen-
sional materials, is quite small. In spite of its small

frequency, this topic has potential to be big in this
field because “2D material” is a more conceptual
word than “graphene”, which is a 2D material, and
the Nobel Prize was awarded to researchers studied
graphene in 2010.

Therefore, methods based on the frequency of
a keyword can not find such a trend at very early
stages.

3.3 Topic Detection by Clustering

Next, we consider a clustering algorithm as a
method to find research topics.

For a clustering algorithm, we used Non-
negative Matrix Factorization (NMF), which de-
composes a given matrix V into two matri-
ces WH , where all emelements in those matrices
are required to be non-negative (Lee and Seung,
1999).

Using the set of abstracts, we can construct a
term-document matrix V , where wij is the fre-
quency for the ith term in the jth document, that
is the jth document dj has w1j , w2j , . . . as its ele-
ments.

Let D and V be the number of documents and
one of vocabularies, respectively. Then, the size
of V is D × V . When we apply NMF to V , we
have to specify a parameter K, which defines the
sizes of two matrices: D ×K and K × V for W
and H .

We can see W as a weight matrix and H as a
base matrix, and an original document is expressed
as a weighted linear combination of base elements.
In this expression, we can see that a base matrix
consits of K base vectors.

Table 1 shows the top 10 keywords with largest
weights for each base vector, where we set K =
10. There exist K topics, each of which has 10
keywords with the top 10 largest weights in the
topic.

From this table, we can find many major topics
in this field. For example, the first cluster contains
“chemical vapor deposition”, and the second and
10th ones “carbon nanotubes” and “thin film”, re-
spectively, both of which are major materials used
in this field. However, we can not find minor topics
from this decomposition.

3.4 Topic Detection by the Proposed Index
and Heat Map

In this section, we detect topics using the normal-
ized impact index and its visualization.



No. The top 10 keywords with largest weights in a topic
1 deposition, chemical, vapor, rate, process, high, gas, using, PECVD, pressure
2 carbon, growth, nanotubes, CNTs, field, emission, electron, catalyst, grown, chemical
3 silicon, layer, solar, amorphous, cells, layers, chemical, cell, nitride, high
4 films, deposited, thin, properties, spectroscopy, optical, amorphous, content, using, x-ray
5 surface, surfaces, roughness, layer, chemical, contact, treatment, energy, morphology, atomic
6 plasma, power, gas, density, treatment, enhanced, using, pressure, hydrogen, discharge
7 C, degrees, temperature, annealing, growth, substrate, temperatures, si, low, rights
8 diamond, growth, microwave, substrate, CVD, high, nucleation, quality, substrates, grown
9 coatings, coating, properties, DLC, chemical, using, deposited, wear, elsevier, reserved

10 film, thin, thickness, substrate, deposited, stress, structure, dielectric, nm, ratio

Table 1: The top 10 keywords with largest weights in a topic found by NMF.

Figure 2 shows a heat map, defined by (1), for
keywords in our dataset. One column corresponds

Figure 2: The heat map shows values of (1) for each
keyword extracted from our dataset, where one column
corresponds to one keyword, and a cell in the column
indicates the value of (1).

to one keyword, and each row to one year. We
only show the left and right parts of the heat map
because the original figure is too wide since there
are many keywords.

Each cell shows the difference between the nor-
malized impact index of that year and the reference
year, 2000, for some word. That is, it shows the
value of (1), where blue (resp. red) cells are pos-
itive (resp. negative) values, meaning the relative
frequency of the corresponding year for the word
is larger (resp. smaller) than that of the reference
year.

Figure 3 shows temporal changes of the pro-
posed indices for some selected keywords, some
of which appear in Figure 1 and the other ones are
chosen from the heat map.

“graphene”, “2D”, “nanotube”, “low-k” (low di-
electric constant), “h-BN” (hexagonal boron ni-
tride), and “GaAs” are names of materials, and
“interconnect” and “fuel” are the keywords of the
plasma chemical vapor deposition (CVD for short)
applications, where “interconnect” refers as inter-
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Figure 3: The graph shows the temporal change of the
proposed index for some keywords, such as “low-k”.

connect in semiconductor devices and “fuel” as
fuel cells.

For interconnect, the proposed index was neg-
ative and decreased from 2000. Plasma CVD as
interconnect process technology has been losing
interest. The proposed index for fuel increases
continuously and there was temporary booming in
2000 and 2015.

Both “nonotube” and “low-k” appeared in the
third graph of Figure 1. From this graph, we can
see sharp rises of their frequencies. However, from
the proposed index for these keywords, we can not
say these topics are actively examined in papers.

As shown in Figure 1, “2D” has its small fre-
quency although it has potential to be a big trend
because unique characteristics of 2D materials have
been found then the research of 2D materials seems



to become active as the trigger of the graphene No-
bel Prize. On the other hand, the proposed index
for “2D” rises sharply in Figure 3.

The index for “h-BN” has negative values until
2012, which seems to have lost the interest of re-
searchers, but after that it increases rapidly. In fact,
“h-BN” has been studied as a 2D semiconductor ma-
terial recently. In this sense, “h-BN” can be seen
as a 2D material family, and so it is convincing the
sharp rise for “h-BN”.

4 Conclusion

In this paper, we have introduced an index to find
keywords, which express small topics, using rela-
tive frequencies. As visualization, the difference of
the proposed index from the reference year, 2000
in this paper, is depicted as a heat map. There-
fore, we can easily find subtle topics even if their
absolute frequencies are not so large. We have con-
ducted case studies using the proposed index, and
confirmed that some keywords, which are already
known as popular, show sharp rises of the proposed
index.

As described in Section 3, we have only checked
popular keywords. So it is an important future
work to check all keywords whose values of the
proposed index.

Even if we find some keywords with high values
of the proposed index, you might want to check
their absolute frequencies. Therefore, it is also
important to develop a visualization tool which
enables to check both the absolute frequency and
the proposed index. Similarly, it is an important
future work for the tool to introduce a grouping
facility, which groups a different keywords in a
hierarchical way, and then we can grasp transitions
of topics with flexible granularity with the tool. To
do so, we can use some vocabulary system, like
one in (Salatino et al., 2019), or word embeddings
to measure the distances between two keywords.
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