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Abstract

Recent work has shown that pre-trained lan-

guage models such as BERT improve robust-

ness to spurious correlations in the dataset.

Intrigued by these results, we find that the

key to their success is generalization from a

small amount of counterexamples where the

spurious correlations do not hold. When such

minority examples are scarce, pre-trained mod-

els perform as poorly as models trained from

scratch. In the case of extreme minority, we

propose to use multi-task learning (MTL) to

improve generalization. Our experiments on

natural language inference and paraphrase

identification show that MTL with the right

auxiliary tasks significantly improves perfor-

mance on challenging examples without hurt-

ing the in-distribution performance. Further,

we show that the gain from MTL mainly comes

from improved generalization from the minor-

ity examples. Our results highlight the impor-

tance of data diversity for overcoming spurious

correlations.1

1 Introduction

A key challenge in building robust NLP models

is the gap between limited linguistic variations in

the training data and the diversity in real-world

languages. Thus models trained on a specific

dataset are likely to rely on spurious correlations:

prediction rules that work for the majority

examples but do not hold in general. For example,

in natural language inference (NLI) tasks, previous

work has found that models learned on notable

benchmarks achieve high accuracy by associating

∗Most work was done during first author’s internship and

last author’s work at Amazon AI.
1Code is available at https://github.com/lifu-

tu/Study-NLP-Robustness.

high word overlap between the premise and the

hypothesis with entailment (Dasgupta et al., 2018;

McCoy et al., 2019). Consequently, these models

perform poorly on the so-called challenging or

adversarial datasets, where such correlations no

longer hold (Glockner et al., 2018; McCoy et al.,

2019; Nie et al., 2019; Zhang et al., 2019). This

issue has also been referred to as annotation arti-

facts (Gururangan et al., 2018), dataset bias (He

et al., 2019; Clark et al., 2019), and group shift

(Oren et al., 2019; Sagawa et al., 2020) in the

literature.

Most current methods rely on prior knowledge

of spurious correlations in the dataset and tend to

suffer from a trade-off between in-distribution

accuracy on the independent and identically

distributed (i.i.d.) test set and robust accuracy2 on

the challenging dataset. Nevertheless, recent em-

pirical results have suggested that self-supervised

pre-training improves robust accuracy, while not

using any task-specific knowledge nor incurring

in-distribution accuracy drop (Hendrycks et al.,

2019, 2020).

In this paper, we aim to investigate how and

when pre-trained language models such as BERT

improve performance on challenging datasets. Our

key finding is that pre-trained models are more

robust to spurious correlations because they can gen-

eralize from a minority of training examples that

counter the spurious pattern, e.g., non-entailment

examples with high premise-hypothesis word

overlap. Specifically, removing these counterex-

amples from the training set significantly hurts

their performance on the challenging datasets.

In addition, larger model size, more pre-training

data, and longer fine-tuning further improve robust

accuracy. Nevertheless, pre-trained models still

suffer from spurious correlations when there are

too few counterexamples. In the case of extreme

2We use the term ‘‘robust accuracy’’ from now on to refer

to the accuracy on challenging datasets.
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Dataset Size Heuristic Input Label

Natural language inference

Train MNLI 393k
high word overlap P: The doctor mentioned the manager who ran.

entailment
⇒ entailment H: The doctor mentioned the manager.

high word overlap P: The actors who advised the manager saw the tourists.
Test HANS 30k

; entailment H: The manager saw the tourists.
non-entailment

Paraphrase Identification

Train QQP 364k
same bag-of-words S1: Bangkok vs Shanghai?

paraphrase
⇒ paraphrase S2: Shanghai vs Bangkok?

same bag-of-words S1: Are all dogs smart or can some be dumb?
Test PAWSQQP 677

; paraphrase S2: Are all dogs dumb or can some be smart?
non-paraphrase

Table 1: Representative examples from the training datasets (MNLI and QQP) and the challenging/test datasets

(HANS and PAWSQQP). Overlaping text spans are highlighted for NLI examples and swapped words are

highlighted for paraphrase identification examples. The word overlap-based heuristic that works for typical

training examples fails on the test data.

minority, we empirically show that multi-task

learning (MTL) improves robust accuracy by

improving generalization from the minority exam-

ples, even though preivous work has suggested

that MTL has limited advantage in i.i.d. settings

(Søgaard and Goldberg, 2016; Hashimoto et al.,

2017).

This work sheds light on the effectiveness of

pre-training on robustness to spurious correlations.

Our results highlight the importance of data

diversity (even if the variations are imbalanced).

The improvement from MTL also suggests that

traditional techniques that improve generalization

in the i.i.d. setting can also improve out-of-

distribution generalization through the minority

examples.

2 Challenging Datasets

In a typical supervised learning setting, we test

the model on held-out examples drawn from the

same distribution as the training data, i.e., the in-

distribution or i.i.d. test set. To evaluate if the

model latches onto known spurious correlations,

challenging examples are drawn from a different

distribution where such correlations do not hold. In

practice, these examples are usually adapted from

the in-distribution examples to counter known

spurious correlations on notable benchmarks.

Poor performance on the challenging dataset is

considered an indicator of a problematic model

that relies on spurious correlations between inputs

and labels. Our goal is to develop robust models

that have good performance on both the i.i.d. test

set and the challenging test set.

2.1 Datasets

We focus on two natural language understanding

tasks, NLI and paraphrase identification (PI).

Both have large-scale benchmarking datasets with

around 400k examples. Although recent models

have achieved near-human performance on these

benchmarks,3 the challenging datasets exploiting

spurious correlations bring down the performance

of state-of-the-art models below random guessing.

We summarize the datasets used for our analysis

in Table 1.

NLI. Given a premise sentence and a hypothesis

sentence, the task is to predict whether the hy-

pothesis is entailed by, neutral with, or contradicts

the premise. MultiNLI (MNLI) (Williams et al.,

2017) is the most widely used benchmark for NLI,

and it is also the most thoroughly studied in terms

of spurious correlations. It was collected using the

same crowdsourcing protocol as its predecessor

SNLI (Bowman et al., 2015) but covers more

domains. Recently, McCoy et al. (2019) exploit

high word overlap between the premise and the

hypothesis for entailment examples to construct

a challenging dataset called HANS. They use

syntactic rules to generate non-entailment (neutral

or contradicting) examples with high premise-

hypothesis overlap. The dataset is further split

into three categories depending on the rules

used: lexical overlap, subsequence,

and constituent.

3See the leaderboard at https://gluebenchmark.

com.

622

https://gluebenchmark.com
https://gluebenchmark.com


Trained on MNLI Trained on QQP

In-distribution Challenging In-distribution Challenging

Model MNLI-m HANS QQP PAWSQQP

Non pre-trained baselines

BERTscratch 67.9 (0.5) 49.9 (0.2) 83.0 (0.7) 40.6 (1.9)

ESIM 78.1a 49.1a 85.3b 38.9b

pre-trained models

BERTBASE(prior) 84.0c 53.8c 90.5d 33.5d

BERTBASE(ours) 84.5 (0.1) 62.5 (3.4) 90.8 (0.3) 36.1 (0.8)

BERTLARGE 86.2 (0.2) 71.4 (0.6) 91.3 (0.3) 40.1 (1.8)

RoBERTaBASE 87.4 (0.2) 74.1 (0.9) 91.5 (0.2) 42.6 (1.9)

RoBERTaLARGE 89.1 (0.1) 77.1 (1.6) 89.0 (3.1) 39.5 (4.8)

Table 2: Accuracies (with standard deviation) on the in-distribution datasets, MNLI-matched (MNLI-m)

and QQP dev sets, as well as the challenging datasets, HANS and PAWSQQP. Pre-trained transformers

improve accuracies on both the in-distribution and challenging datasets over non pre-trained models,

except on PAWSQQP. Our models, fine-tuned for more epochs, further improve prior results on the

challenging data. Results taken from prior work: a He et al. (2019), b Zhang et al. (2019), c McCoy

et al. (2019), d Zhang et al. (2019).

PI. Given two sentences, the task is to predict

whether they are paraphrases or not. On Quora

Question Pairs (QQP) (Iyer et al., 2017), one of

the largest PI dataset, Zhang et al. (2019) show

that very few non-paraphrase pairs have high word

overlap. They then created a challenging datasets

called PAWS that contains sentence pairs with

high word overlap but different meanings through

word swapping and back-translation. In addition

to PAWSQQP, which is created from sentences in

QQP, they also released PAWSWiki, created from

Wikipedia sentences.

3 Pre-training Improve Robust Accuracy

Recent results have shown that pre-trained models

appear to improve performance on challenging

examples over models trained from scratch

(Yaghoobzadeh et al., 2019; He et al., 2019;

Kaushik et al., 2020). In this section, we confirm

this observation by thorough experiments on

different pre-trained models and motivate our

inquiries.

Models. We compare pre-trained models of

different sizes and using different amounts of pre-

training data. Specifically, we use the BERTBASE

(110M parameters) and BERTLARGE (340M

parameters) models implemented in GluonNLP

(Guo et al., 2020) pre-trained on 16GB of text

(Devlin et al., 2019).4 To investigate the effect

of size of the pre-training data, we also experiment

with the RoBERTaBASE and RoBERTaLARGE

models (Liu et al., 2019d),5 which have the same

architecture as BERT but were trained on ten

times as much text (about 160GB). To ablate the

effect of pre-training, we also include a BERTBASE

model with random initialization, BERTscratch.

Fine-Tuning. We fine-tuned all models for 20

epochs and selected the best model based on

the in-distribution dev set. We used the Adam

optimizer with a learning rate of 2e-5, L2 weight

decay of 0.01, and batch sizes of 32 and 16 for

base and large models, respectively. Weights

of BERTscratch and the last layer (classifier) of

pre-trained models are initialized from a normal

distribution with zero mean and 0.02 variance.

All experiments are run with 5 random seeds and

the average values are reported.

Observations and Inquiries. In Table 2, we

show results for NLI and PI, respectively. As

4 The book corpus wiki en uncased model from

https://gluon-nlp.mxnet.io/model zoo/bert/

index.html.
5The openwebtext ccnews stories books

casedmodel from https://gluon-nlp.mxnet.io/

model zoo/bert/index.html.
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Figure 1: Accuracy on the in-distribution data (MNLI dev and QQP dev) and the challenging data (HANS and

PAWSQQP) after each fine-tuning epoch using BERTBASE. The performance plateaus on the in-distribution data

quickly around epoch 3, although, accuracy on the challenging data keeps increasing.

expected, they improve performance on in-

distribution test sets significantly.6 On the chal-

lenging datasets, we make two key observations.

First, although pre-trained models improve

the performance on challenging datasets, the

improvement is not consistent across datasets.

Specifically, the improvement on PAWSQQP are

less promising than HANS. Whereas larger

models (large vs. base) and more training

data (RoBERTa vs. BERT) yield a further im-

provement of 5 to 10 accuracy points on HANS,

the improvement on PAWSQQP is marginal.

Second, even though three to four epochs of

fine-tuning is typically sufficient for in-distribu-

tion data, we observe that longer fine-tuning

improves results on challenging examples signi-

ficantly (see BERTBASE ours vs. prior in Table 2).

As shown in Figure 1, although the accuracy

on MNLI and QQP dev sets saturate after three

epochs, the performance on the corresponding

challenging datasets keeps increasing until around

the tenth epoch, with more than 30% improvement.

The above observations motivate us to ask the

following questions:

1. How do pre-trained models generalize to

out-of-distribution data?

2. When do they generalize well given the

inconsistent improvements?

3. What role does longer fine-tuning play?

6 The lower performance of RoBERTaLARGE compared

with RoBERTaBASE is partly due with its high variance in

our experiments.

We provide empirical answers to these questions

in the next section and show that the answers are

all related to a small number of counterexamples

in the training data.

4 Generalization from Minority

Examples

4.1 Pre-training Improves Robustness to

Data Imbalance

One common impression is that the diversity in

large amounts of pre-training data allows pre-

trained models to generalize better to out-of-

distribution data. Here we show that although

pre-training improves generalization, they do not

enable extrapolation to unseen patterns. Instead,

they generalize better from minority patterns in

the training set.

Importantly, we notice that examples in HANS

and PAWS are not completely uncovered by the

training data, but belong to the minority groups.7

For example, in MNLI, there are 727 HANS-like

non-entailment examples where all words in the

hypothesis also occur in the premise; in QQP, there

are 247 PAWS-like non-paraphrase examples

where the two sentences have the same bag of

words. We refer to these examples that counter

the spurious correlations as minority examples.

We hypothesize that pre-trained models are more

robust to group imbalance, thus generalizing well

from the minority groups.

7Following Sagawa et al. (2020), we loosely define group

as a distribution of examples with similar patterns, e.g., high

premise-hypothesis overlap and non-entailment.

624



Figure 2: Accuracy on HANS when a small fraction of training data is removed. Removing non-entailment

examples with high premise-hypothesis overlap significantly hurt performance compared with removing examples

uniformly at random.

To verify our hypothesis, we remove minority

examples during training and observe their effect

on robust accuracy. Specifically, for NLI we

sort non-entailment (contradiction and neutral)

examples in MNLI by their premise-hypothesis

overlap, which is defined as the percentage of

hypothesis words that also appear in the premise.

We then remove increasing amounts of these

examples in the sorted order.

As shown in Figure 2, all models have

significantly worse accuracy on HANS as more

counterexamples are removed, while maintaining

the original accuracy when the same amounts

of random training examples are removed. With

6.4% of counterexamples removed, the perfor-

mance of most pretrained models is near-random,

as poor as non-pretrained models. Interestingly,

larger models with more pre-training data

(RoBERTaLARGE) appear to be slightly more

robust with increased level of imbalance.

Takeaway. These results reveal that pre-training

improves robust accuracy by improving the i.i.d.

accuracy on minority groups, highlighting the

importance of increasing data diversity when

creating benchmarks. Further, pre-trained models

still suffer from suprious correlations when the

minority examples are scarce. To enable extra-

polation, we might need additional inductive bias

(Nye et al., 2019) or new learning algorithms

(Arjovsky et al., 2019).

4.2 Minority Patterns Require Varying

Amounts of Training Data

Given that pre-trained models generalize better

from minority examples, why do we not see similar

improvement on PAWSQQP even though QQP

also contains counterexamples? Unlike HANS

examples that are generated from a handful of

Figure 3: Learning curves of models trained on HANS

and PAWSQQP. Accuracy on PAWSQQP increases

slowly, whereas all models quickly reach 100% accu-

racy on HANS.

templates, PAWS examples are generated by

swapping words in a sentence followed by human

inspection. They often require recognizing nuance

syntactic differences between two sentences with

a small edit distance. For example, compare

‘‘What’s classy if you’re poor, but trashy if you’re

rich?’’ and ‘‘What’s classy if you’re rich, but

trashy if you’re poor?’.’ Therefore, we posit

that more samples are needed to reach good

performance on PAWS-like examples.

To test the hypothesis, we plot learning curves

by fine-tuning pre-trained models on the challeng-

ing datasets directly (Liu et al., 2019b). Specifi-

cally, we take 11,990 training examples from

PAWSQQP, and randomly sample the same number

of training examples from HANS;8 the rest is used

as dev/test set for evaluation. In Figure 3, we see

that all models reach 100% accuracy rapidly on

HANS. However, on PAWS, accuracy increases

slowly and the models struggle to reach around

90% accuracy even with the full training set. This

suggests that the amount of minority examples in

QQP might not be sufficient for reliably estimating

the model parameters.

8HANS has more examples in total (30,000), therefore

we sub-sample it to control for the data size.
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Figure 4: Accuracy of BERTBASE and RoBERTaBASE on PAWSQQP decreases with increasing sentence length and

parse tree height.

Figure 5: The average losses and accuracies of the examples in the training and dev set when fine-tuning BERTBASE

on MNLI. We show plots for the whole training set and the minority examples separately. The minority examples

are non-entailment examples with at least 80% premise-hypothesis overlap. Accuracy of minority examples takes

longer to plateau.

To have a qualitative understanding of why

PAWS examples are difficult to learn, we compare

sentence length and constituency parse tree height

of examples in HANS and PAWS.9 We find that

PAWS contains longer and syntactically more

complex sentences, with an average length of 20.7

words and parse tree height of 11.4, compared

to 9.2 and 7.5 on HANS. Figure 4 shows that

the accuracy of BERTBASE and RoBERTaBASE on

PAWSQQP decreases as the example length and

the parse tree height increase.

Takeaway. We have shown that the inconsistent

improvement on different challenging datasets

result from the same mechanism: Pre-trained

models improve robust accuracy by generalizing

from minority examples, although, perhaps unsur-

9We use the off-the-shelf constituency parser from

Stanford CoreNLP (Manning et al., 2014). For each example,

we compute the maximum length (number of words) and

parse tree height of the two sentences.

prisingly, different minority patterns may require

varying amounts of training data. This also poses

a potential challenge in using data augmentation

to tackle spurious correlations.

4.3 Minority Examples Require Longer

Fine-Tuning

In the previous section, we have shown in

Figure 1 that longer fine-tuning improves accuracy

on challenging examples, even though the in-

distribution accuracy saturates pretty quickly. To

understand the result from the perspective of

minority examples, we compare the loss on all

examples and the minority examples during fine-

tuning. Figure 5 shows the loss and accuracy

at each epoch on all examples and HANS-like

examples in MNLI separately.

First, we see that the training loss of minority

examples decreases more slowly than the average
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loss, taking more than 15 epochs to reach near-

zero loss. Second, the dev accuracy curves show

that the accuracy of minority examples plateaus

later, around epoch 10, whereas the average

accuracy stops increasing around epoch 5. In

addition, it appears that BERT does not overfit

with additional fine-tuning based on the accuracy

curves.10 Similary, a concurrent work (Zhang

et al., 2020) has found that longer fine-tuning

improves few-sample performance.

Takeaway. Although longer fine-tuning does

not help in-distribution accuracy, we find that it

improves performance on the minority groups.

This suggests that selecting models or early

stopping based on the i.i.d. dev set performance

is insufficient, and we need new model selection

criteria for robustness.

5 Improve Generalization Through

Multi-task Learning

Our results on minority examples show that

increasing the number of counterexamples to

spurious correlations helps to improve model

robustness. Then, an obvious solution is data

augmentation; in fact, both McCoy et al. (2019)

and Zhang et al. (2019) show that adding a

small number of challenging examples to the

training set significantly improves performance

on HANS and PAWS. However, these methods

often require task-specific knowledge on spurious

correlations and heavy use of rules to generate

the counterexamples. Instead of adding examples

with specific patterns, we investigate the effect of

aggregating generic data from various sources

through MTL. It has been shown that MTL

reduces the sample complexity of individual tasks

compared to single-task learning (Caruana, 1997;

Baxter, 2000; Maurer et al., 2016), thus it may

further improve the generalization capability of

pre-trained models, especially on the minority

groups.

5.1 Multi-task Learning

We learn from datasets from different sources

jointly, where one is the target dataset to be

10 We find that the average accuracy stays almost the

same while the dev loss is increasing. Guo et al. (2017) had

similar observations. One possible explanation is that the

model prediction becomes less confident (hence larger log

loss), but the argmax prediction is correct.

evaluated on, and the rest are auxiliary datasets.

The target dataset and the auxiliary dataset can

belong to either the same task, e.g., MNLI and

SNLI, or different but related tasks, e.g., MNLI

and QQP.

All datasets share the representation given

by the pre-trained model, and we use separate

linear classification layers for each dataset. The

learning objective is a weighted sum of average

losses on each dataset. We set the weight to be

1 for all datasets, equivalent to sampling examples

from each dataset proportional to its size.11 During

training, we sample mini-batches from each data-

set sequentially and use the same optimization

hyperparameters as in single-task fine-tuning

(Section 3) except for smaller batch sizes due

to memory constraints.12

Auxiliary Datasets. We consider NLI and PI

as related tasks because they both require under-

standing and comparing the meaning of two

sentences. Therefore, we use both benchmark

datasets and challenging datasets for NLI and PI

as our auxiliary datasets. The hope is that bench-

mark data from related tasks help transfer

useful knowledge across tasks, thus improving

generalization on minority examples, and the

challenging datasets countering specific spurious

correlations further improve generalization on the

corresponding minority examples. We analyze the

contribution of the two types of auxiliary data in

Section 5.2. The MTL training set up is shown

in Table 4.13 Details on the auxiliary datasets are

described in Section 2.1.

5.2 Results

MTL Improves Robust Accuracy. Our main

MTL results are shown in Table 3. MTL increases

accuracies on the challenging datasets across tasks

without hurting the in-distribution performance,

11 Prior work has shown that the mixing weights may

impact the final results in MTL, especially when there is a

risk of overfitting to low-resource tasks (Raffel et al., 2019).

Given the relatively large dataset sizes in our experiments

(Table 4), we did not see significant change in the results

when varying the mixing weights.
12The minibatch size of the target dataset is 16. For the

auxiliary dataset, it is proportional to the dataset size and not

larger than 16, such that the total number of examples in a

batch is at most 32.
13 For MNLI, we did not include other PI datasets such as

STS-B (Cer et al., 2017) and MPRC (Dolan and Brockett,

2005) because their sizes (3.7k and 7k) are too small compared

with QQP and other auxiliary tasks.
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Task = MNLI Task = QQP

In-distribution Challenging In-distribution Challenging Challenging

Model Algo. MNLI-m HANS QQP PAWSQQP PAWSWiki

BERTBASE
STL 84.5 (0.1) 62.5 (0.2) 90.8 (0.3) 36.1 (0.8) 46.9 (0.3)

MTL 83.7 (0.3) 68.2 (1.8) 91.3 (.07) 45.9 (2.1) 52.0 (1.9)

RoBERTaBASE
STL 87.4 (0.2) 74.1 (0.9) 91.5 (0.2) 42.6 (1.9) 49.6 (1.9)

MTL 86.4 (0.2) 72.8 (2.4) 91.7 (.04) 51.7 (1.2) 57.7 (1.5)

Table 3: Comparison between models fine-tuned with multi-task (MTL) and single-task (STL)

learning. MTL improves robust accuracy on challenging datasets. We ran t-tests for the mean

accuracies of STL and MTL on five runs and the larger number is bolded when they differ

significantly with a p < 0.001.

Target

Auxiliary Datasets Size NLI PI

MNLI 393k X

SNLI 549k X X

QQP 364k X

PAWSQQP+Wiki 60k X

HANS 30k X

Table 4: Auxiliary dataset sizes for the

different target datasets from two tasks: NLI

and PI.

especially when the minority examples in the

target dataset is scarce (e.g., PAWS). Whereas

prior work has shown limited success of MTL

when tested on in-distribution data (Søgaard and

Goldberg, 2016; Hashimoto et al., 2017; Raffel

et al., 2019), our results demonstrate its value for

out-of-distribution generalization.

On HANS, MTL improves the accuracy signif-

icantly for BERTBASE but not for RoBERTaBASE.

To confirm the result, we additionally experi-

mented with RoBERTaLARGE and obtained consis-

tent results: MTL achievesan accuracy of 75.7 (2.1)

on HANS, similar to the STL result, 77.1 (1.6).

One potential explanation is that RoBERTa is

already sufficient for providing good generaliza-

tion from minority examples in MNLI.

In addition, both MTL and RoBERTaBASE yield

the biggest improvement onlexical overlap,

as shown in the results on HANS by category

(Table 5), We believe the reason is that lexi-

cal overlap is the most representative pattern

among high-overlap and non-entailment training

examples. In fact, 85% of the 727 HANS-like

examples belong to lexical overlap. This

Model Algo. HANS-O HANS-C HANS-S

BERTBASE STL 75.8 (4.9) 59.1 (4.8) 52.7 (1.2)

BERTBASE MTL 89.5 (1.9) 61.9 (2.3) 53.1 (1.1)

RoBERTaBASE STL 88.5 (2.0) 70.0 (2.3) 63.9 (1.4)

RoBERTaBASE MTL 90.3 (1.2) 64.8 (3.1) 63.5 (4.9)

Table 5: MTL Results on different categories

on HANS: lexical overlap (O), con-

stituent (C), and subsequence (S). Both

auxiliary data (MTL) and larger pre-training

data (RoBERTa) improve accuracies mainly on

lexical overlap.

suggests that further improvement on HANS may

require better data coverage on other categories.

On PAWS, MTL consistently yields large im-

provement across pre-trained models. Given that

QQP has fewer minority examples resembling the

patterns in PAWS, which is also harder to learn

(Section 4.2), the results show that MTL is an

effective way to improve generalization when the

minority examples are scarce. Next, we investigate

why MTL is helpful.

Improved Generalization from Minority

Examples. We are interested in finding how

MTL helps generalization from minority exam-

ples. One possible explanation is that the chal-

lenging data in the auxiliary datasets prevent the

model from learning suprious patterns. However,

the ablation studies on auxiliary datasets in Table 6

and Table 7 show that the challenging datasets are

not much more helpful than benchmark datasets.

The other possible explanation is that MTL

reduces sample complexity for learning from the

minority examples in the target dataset. To verify

this, we remove minority examples from both the
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Removed MNLI-m HANS ∆

None 83.7 (0.3) 68.2 (1.8) −

PAWSQQP+Wiki 83.5 (0.3) 64.6 (3.5) −3.6

QQP 83.2 (0.3) 63.2 (3.7) −5.0

SNLI 84.3 (0.2) 66.9 (1.5) −1.3

Table 6: Results of the ablation study on auxiliary

datasets using BERTBASE on MNLI (the target

task). While the in-distribution performance is

hardly affected when a specific auxiliary dataset

is excluded, performance on the challenging data

varies (difference shown in ∆).

Removed QQP PAWSQQP ∆

None 91.3 (.07) 45.9 (2.1) −

HANS 91.5 (.06) 45.3 (1.8) −0.6

MNLI 91.2 (.11) 42.3 (1.8) −3.6

SNLI 91.3 (.09) 44.2 (1.3) −1.7

Table 7: Results of the ablation study on auxiliary

datasets using BERTBASE on QQP (the target

task). While the in-distribution performance is

hardly affected when a specific auxiliary dataset

is excluded, performance on the challenging data

varies (difference shown in ∆).

auxiliary and the target datasets, and compare their

effect on the robust accuracy.

We focus on PI because MTL shows the largest

improvement there. In Table 8, we show the results

after removing minority examples in the target

dataset, QQP, and the auxiliary dataset, MNLI,

respectively. We also add a control baseline

where the same amounts of randomly sampled

examples are removed. The results confirm our

hypothesis: Without the minority examples in the

target dataset, MTL is only marginally better than

STL on PAWSQQP. In contrast, removing minority

examples in the auxiliary dataset has a similar

effect to removing random examples; both do not

cause significant performance drop. Therefore, we

conclude that MTL improves robust accuracy by

improving generalization from minority examples

in the target dataset.

Takeaway. These results suggest that both pre-

training and MTL do not enable extrapolation;

instead, they improve generalization from minor-

ity examples in the (target) training set. Thus it is

important to increase coverage of diverse patterns

Removed QQP PAWSQQP ∆

None 91.3 (.07) 45.9 (2.1) −

random examples

QQP 91.3 (.03) 44.3 (.31 ) −1.6

MNLI 91.4 (.02) 45.0 (1.5 ) −0.9

minority examples

QQP 91.3 (.09) 38.2 (.73) −7.7

MNLI 91.3 (.08) 44.3 (2.0) −1.6

Table 8: Ablation study on the effect of minority

examples in the auxiliary (MNLI) and the target

(QQP) datasets in MTL with BERTBASE. For

MNLI, we removed 727 non-entailment examples

with 100% overlap. For QQP, we removed 228

non-paraphrase examples with 100% overlap. We

also removed equal amounts of random examples

in the control experiments. We ran t-tests for

the mean accuracies after minority removal and

random removal based on five runs, and numbers

with a significant difference (p < 0.001) are

bolded. The improvement from MTL mainly

comes from better generalization from minority

examples in the target dataset.

in the data to improve robustness to spurious

correlations.

6 Related Work

Pre-training and Robustness. Recently, there

has been an increasing amount of interest in

studying the effect of pre-training on robustness.

Hendrycks et al. (2019, 2020) show that pre-

training improves model robustness to label noise,

class imbalance, and out-of-distribution detection.

In cross-domain question-answering, Li et al.

(2019) show that the ensemble of different pre-

trained models significantly improves perfor-

mance on out-of-domain data. In this work, we

answer why pre-trained models appear to improve

out-of-distribution robustness and point out the

importance of minority examples in the training

data.

Data Augmentation. The most straightforward

way to improve model robustness to out-of-

distribution data is to augment the training set

with examples from the target distribution. Recent

work has shown that augmenting syntactically

rich examples improves robust accuracy on NLI

(Min et al., 2020). Similarly, counterfactual
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augmentation aims to identify parts of the input

that impact the label when intervened upon, thus

avoiding learning spurious features (Goyal et al.,

2019; Kaushik et al., 2020). Finally, data recom-

bination has been used to achieve compositional

generalization (Jia and Liang, 2016; Andreas,

2020). However, data augmentation techniques

largely rely on prior knowledge of the spurious

correlations or human efforts. In addition, as

shown in Section 4.2 and a concurrent work

(Jha et al., 2020), it is often unclear how much

augmented data is needed for learning a pattern.

Our work shows promise in adding generic pre-

training data or related auxiliary data (through

MTL) without assumptions on the target

distribution.

Robust Learning Algorithms. Serveral recent

papers propose new learning algorithms that are

robust to spurious correlations in NLI datasets

(He et al., 2019; Clark et al., 2019; Yaghoobzadeh

et al., 2019; Zhou and Bansal, 2020; Sagawa

et al., 2020; Mahabadi et al., 2020). They rely on

prior knowledge to focus on ‘‘harder’’ examples

that do not enable shortcuts during training. One

weakness of these methods is their arguably strong

assumption on knowing the spurious correlations

a priori. Our work provides evidence that large

amounts of generic data can be used to improve

out-of-distribution generalization. Similarly, re-

cent work has shown that semi-supervised learning

with generic auxiliary data improves model ro-

bustness to adversarial examples (Schmidt et al.,

2018; Carmon et al., 2019).

Transfer Learning. Robust learning is also

related to domain adaptation or transfer learning

because both aim to learn from one distribution

and achieve good performance on a different

but related target distribution. Data selection

and reweighting are common techniques used in

domain adaptation. Similar to our findings on

minority examples, source examples similar to

the target data have been found to be helpful

to transfer (Ruder and Plank, 2017; Liu et al.,

2019a). In addition, much work has shown that

MTL improves model performance on out-of-

domain datasets (Ruder, 2017; Li et al., 2019;

Liu et al., 2019c). A concurrent work (Akula

et al., 2020) shows that MTL improves robustness

on advesarial examples in visual grounding. In

this work, we further connect the effectiveness of

MTL to generalization from minority examples.

7 Discussion and Conclusion

Our study is motivated by recent observations on

the robustness of large-scale pre-trained trans-

formers. Specifically, we focus on robust accuracy

on challenging datasets, which are designed to

expose spurious correlations learned by the model.

Our analysis reveals that pre-training improves

robustness by better generalizing from a minority

of examples that counter dominant spurious pat-

terns in the training set. In addition, we show

that more pre-training data, larger model size,

and additional auxiliary data through MTL further

improve robustness, especially when the amount

of minority examples is scarce.

Our work suggests that it is possible to go

beyond the robustness–accuracy trade-off with

more data. However, the amount of improvement

is still limited by the coverage of the training

data because current models do not extrapolate to

unseen patterns. Thus, an important future direc-

tion is to increase data diversity through new

crowdsourcing protocols or efficient human-in-

the-loop augmentation.

Although our work provides new perspectives

on pre-training and robustness, it only scratches

the surface of the effectiveness of pre-trained

models and leaves many questions open, for

example: why pre-trained models do not overfit to

the minority examples; how different initialization

(from different pre-trained models) influences

optimization and generalization. Understanding

these questions are key to designing better pre-

training methods for robust models.

Finally, the difference between results on

HANS and PAWS calls for more careful thinking

on the formulation and evaluation of out-of-

distribution generalization. Semi-manually con-

structed challenging data often cover only a

specific type of distribution shift, thus the results

may not generalize to other types. A more com-

prehensive evaluation will drive the develop-

ment of principled methods for out-of-distribution

generalization.
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