
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 136–140
Online, November 20, 2020. c©2020 Association for Computational Linguistics

136

Analysis of Resource-efficient Predictive Models for Natural Language
Processing

Raj Ratn Pranesh
Birla Institute of Technology,

Mesra
raj.ratn18@gmail.com

Ambesh Shekhar
Birla Institute of Technology,

Mesra
ambesh.sinha@gmail.com

Abstract

In this paper, we presented an analyses of the
resource efficient predictive models, namely
Bonsai, Binary Neighbor Compression(BNC),
ProtoNN, Random Forest, Naive Bayes and
Support vector machine(SVM), in the machine
learning field for resource constraint devices.
These models try to minimize resource require-
ments like RAM and storage without hurting
the accuracy much. We utilized these models
on multiple benchmark natural language pro-
cessing tasks, which were sentimental analy-
sis, spam message detection, emotion analy-
sis and fake news classification. The exper-
iment results shows that the tree-based algo-
rithm, Bonsai, surpassed the rest of the ma-
chine learning algorithms by achieve higher ac-
curacy scores while having significantly lower
memory usage.

1 Introduction

In last few years, large pretrained language models
have gained a lot of popularity. These models were
able to achieve state-of-the-art performance on var-
ious natural language processing tasks. But due to
the higher resource requirement such as time and
computation power, researchers have shifted their
focus on developing more efficient and sustainable
language models.

Devices like Arduino board, ATmega328 etc.
which are essential in IoT infrastructures like health
care, smart grids, wearables, etc, have very lim-
ited computational resources. Therefore, mostly
these devices transfer data to cloud to extract some
information and are dependent on them. These
devices need models that can run without depend-
ing on cloud computing since cloud connectivity is
not present everywhere, in a network data security
can be compromised, it takes time to compute and
transfer data which might not be good for real time
analysis. So we need models that can run locally

and need limited resources as well as do not hamper
the accuracy of the task.

There have been many advances in this field like
reducing the prediction cost of KNN with proto-
type based methods like ProtoNN (Gupta et al.,
2017) and BNC(Binary Neighbour Compression)
(Zhong et al., 2017) where you learn prototypes
to reduce model size, SNC(Stochastic Neighbour
compression) (Kusner et al., 2014) where you learn
very small synthetic dataset to perform KNN, Tree
based methods like bonsai tree where under con-
straints model learns non-linear decision rules at
each node (Kumar et al., 2017), pruning the random
forests based on resource constraints (Pal, 2005).

In this paper, we present an analysis of various
resource efficient machine learning algorithm for
performing NLP tasks, such as, sentiment and emo-
tion classification, fake news and spam message
detection. We used six models, namely, Bonsai,
Binary Neighbor Compression(BNC), ProtoNN,
Random Forest, Naive Bayes and Support vector
machine(SVM) and reported their performance ac-
curacy and memory usage for each task. We ob-
served that the Bonsai model performed the best by
achieving significantly higher accuracy scores than
other models at the cost of minimum memory us-
age. We believe that our generated insights would
be very useful in designing and developing IoT for
NLP-based application purposes.

2 Methods

In this section, we discussed about the various mod-
els used in our analysis.

2.1 Naive Bayes

Naive Bayes (Rish et al., 2001) is based on super-
vised machine learning methods that uses the prim-
itive or naive approach by applying Bayes’ theorem
between pair of features present in a text data point.



137

Naive Bayes states the conditional probabilty be-
tween pair of words in a given sentence. Based on
naive conditional independence assumption for x
feature with y labels given, therefore for all i, this
relationship is simplified to

P (y|x1, ..., xn) =
P (y)Πn

i=1P (xi|y)

P (x1, ..., xn)

Since P (y|x1, ..., xn) is the given input to the
model, for classification process the predicted is

ŷ = argmax
y

P (y)Πn
i=1P (xi|y)

Therefore for each text data point we have in our
dataset, this machine learning algorithm calculates
the conditional propbabilty for pairs of words and
therefore based on the domain specific training it
quantifies each data point to its respective classes.

2.2 Support Vector Machine
Support Vector Machine (Suykens and Vandewalle,
1999) is also a supervised learning methods majorly
used in classification and outliers detection. Due
to their performance with high dimensional space
or higher features handling irrespective of the di-
mension of samples and available kernels functions
for specified functions makes this model best in
handling text data. If we pass a sparse matrix gen-
erated using TF-IDF function to a SVM classifier,
it maximizes the decision boundary by minimiz-
ing |||w|| to find an optimal hyperplane for all the
classification tasks:

minf :
1

2
||w||2

ŷ(i) = (wtx(i) + b) ≥ 1, i = 1, ...,m (1)

where w is the weight vector, for all i, x is input
features matrix with b as the bias, with a resulting
ŷ.

2.3 ProtoNN
ProtoNN (Gupta et al., 2017) is kNN based model
that uses compressed model and prototypes for
prediction. Prototypes are learned from the the
data along with the estimation of projection matrix
jointly, due to which it avoids pruning after the
model is learnt to fit the model in desired mem-
ory. Prototypes are points that represent the en-
tire data. The projection matrix is sparse matrix
estimated by performing SGD and iterative hard-
thresholding. Since number of prototypes are far

less than number of inputs and number of features
are less the model is comparatively small. ProtoNN
gives nearly the same accuracy as most popular
models that take a huge amount of RAM with very
small amount of memory used , which makes it
fit for our use in resource constrained IoT devices.
ProtoNN tries to optimize the following loss func-
tion:

Li(Z,B,W ) = L(yi,

m∑
j=1

zjKγ(bj ,Wxi)) (2)

This is for each data point i. B is prototypes and
Z is its corresponding score vector. W is low di-
mensional projection matrix. Kγ is RBF similarity
kernel function used in the paper, any other ker-
nel function can be used as well. The optimizing
problem they obtained is non-convex but alternat-
ing optimization works in this case. Each of the
parameters (B,Z,W ) are learnt alternately using
the algorithm provided with sparsity constraints.

2.4 BNC
Another simple model which is similar to the one
described above is Binary Neighbor Compression
(BNC) (Zhong et al., 2017). Here a KMeans clus-
tering is performed on each class and number of
clusters from each class are given by ky = βNy

where β ∈ (0, 1) and Ny is the number of points
that belong to class y. In this way we create a ma-
trix of prototypes C of size m × d, where m is the
total number of prototypes, and d is the dimension
of the data. Then we initialize a matrix W of size
d × r randomly, where r is the new dimension of
data. Using this we convert the Prototypes to lower
dimension representation and also binary form as:
B = sign(CW ). Hence B will be of the size m ×
r. After this we learn B and W alternately, using the
loss function below which is similar to multi-class
hinge loss:

min
W,B

1

N

N∑
i=1

[α− max
j:zj=yi

(tanh(γW Txi)
T bj)

+ max
j:zj 6=yi

(tanh(γW Txi)
T bj)]+λ

∑
k∈[r]

(||wk||2−1)2

where tanh is used instead of sign function,
as sign is not differentiable. So as γ →
∞, tanh(γW Txi) → (W Txi). Here [x]+ =
max{0, x} and α is a hyper-parameter. Also a
regularization is applied on W. Prediction is made
by computing the similarity of projected test point



138

Dataset #Train #Test #Features #Classes
SMS-Span Collection 4218 1032 1226 2
Fake and Real News 1600 400 756 2
Sentiment-140 3200 800 1362 3
The Emotion in Text 3116 780 1542 14

Table 1: Dataset Statistics

with all the prototypes, and the label of the proto-
type which has highest similarity is assigned to the
test point.

2.5 Bonsai Tree
Based on the paper (Kumar et al., 2017) unlike
normal trees which learn axis aligned decision rules
bonsai learns a non linear decision rule at every
node. It first projects the data into low dimensional
space(can be done in streamlined fashion), then
projected features are traversed through the tree
with each node scoring the output in their own way
and sum of all scores is used as net score.

Scoring Function Bonsai learns a single, shal-
low sparse tree whose predictions for a point x is
given by :

y(x) =
∑
k

Ik(x)W T
k Zx� tanh(σV T

k Zx) (3)

where � denotes the element wise Hadamard
product, σ is a hyper-parameter, Z is a sparse pro-
jection matrix and Ik(x) is an indicator function
taking the value 1 if node k lies along the path tra-
versed by x and 0 otherwise and Wk and Vk are
sparse scoring vectors learnt at node k.

Branching Function Bonsai tree computes Ik
by learning a sparse vector θk at each internal node
such that the sign of θTk Zx determines whether
data object x should be branched to the left or right
child. Optimizing the Ik is hard problem so it is
relaxed as follows:

Ik>1 = 0.5×Ij(x)(1+(−1)k−2jtanh(σIθ
T
j Zx))

(4)
where, jth node is parent of kth node.

Optimization Problem The optimization prob-
lem can be formulated with any empirical loss func-
tion (e.g categorical cross entropy loss), as follows
:

min
Θ
{L(y, x,Θ) +

λθ
2
Tr(θT θ)

+
λW
2
Tr(W TW ) +

λV
2
Tr(V TV )

+
λZ
2
Tr(ZTZ)}

All the parameters are simultaneously optimized
in alternating fashion. This model now can be
trained using gradient descent approach, newton
method etc. the original implementation used gra-
dient descent with IHT(iterative hard thresholding)
constraints over the parameters.

2.6 Random Forest
Random Forest is designed as an ensemble learn-
ing based classifier that combines different decision
tree classifiers to perform class prediction (Injadat
et al., 2016). The model is consists of multiple
decision trees and the training of each of the deci-
sion tree is done using random subsets of features.
In the Random Forest model, the final prediction
is given through the majority voting of generated
predictions from all the trees in the forest. As de-
scribed by the author in (Malik et al., 2011), the
Random Forest algorithm can be formulated as fol-
lowing:
(i) T number of trees are selected
(ii) For dividing each node m number of variables
are selected, m<<M, where M represents total
number of input variables.
(iii) Tree is populated by using the following meth-
ods:

• Given N training samples, a sample of size N
is created while growing and replacing a tree
from the produced sample.

• To obtain finest split, randomly choose m vari-
able from m while populating each node in
the tree.

• The tree is left for growing without any hin-
drance.

(iv) For the classification of node X, majority vot-
ing is utilized to predict the class label.

3 Dataset

We have used four textual datasets(see table 1)
for different natural language processing classi-
fication task, namely, Sentiment140 dataset (Go
et al., 2009) for sentiment analysis, the SMS Spam
Collection dataset1 for spam classification, the The
Emotion in Text (Mohammad and Bravo-Marquez,
2017) dataset for emotion analysis and the Fake
and Real news2 dataset for fake new classification
task. These datasets hold clean textual data with

1https://archive.ics.uci.edu/ml/datasets
2https://www.kaggle.com/c/nlp-getting-started



139

Models
Datasets Sentiment-140 SMS-Span-Collection Fake-News The Emotion in Text

Naive-Bayes 59.66(2kB) 86.85(2kB) 78.16(2kB) 53.88(3kB)
SVM-Linear 59.83(137kB) 88.19(15.89kB) 89.66(18.37kB) 56.15(51.6kB)
SVM-poly 60.63(131kB) 88.64(64kB) 81.00(121kB) 55.52(144kB)
SVM-rbf 60.46(115kB) 88.64(18kB) 89.33(43.27kB) 57.22(125kB)
Random Forest 56.08(34kB) 88.19(1.61MB) 89.50(549kB) 60.74(812kB)
BNC 60.71(5.8kB) 90.71(3.9kB) 92.85(3.8kB) 62.41(5.0kB)
ProtoNN 62.45(3.5kB) 90.87(3.5kB) 94.17(3.5kB) 68.97(3.5kB)
Bonsai 64.38(2kB) 94.91(2kB) 97.29(2kB) 67.20(2kB)

Table 2: Models performance on datasets. For each model, accuracy(%) along with Memory usage is provided

their corresponding labels for supervised learning
tasks.

Sentiment140: This contains 1.6M tweets text
data extracted using twitter API. Each tweet has
been annotated with labels neutral, negative, and
positive to express their sentiment.

SMS Spam Collection: A collection of 5,574
English non-encoded messages annotated spam or
ham(legitimate). The dataset contains 425 SMS
manually extracted from the Grumbletext website,
and a subset 3375 SMS randomly chosen legitimate
messages of the NUS SMS corpus.

The Emotion in Text: It is a collection of 40,000
manually labelled tweets dataset for emotion de-
tection and classification tasks. The dataset has 14
emotion categories.

Fake and Real news dataset: This contains
38,729 English news text data annotated with fake
and true labels denoting whether they are fake or
not. development in NLP tasks.

4 Experiment

We experimented with six machine learning mod-
els on four benchmark natural language dataset for
different tasks. We used Tf-Idf as our text-features
conversions, where we randomly selected the num-
ber of features to be considered while conversion.
For each of the dataset, as seen in the figure 1, we
used a specific number of features. We fixed the
number of features so that we can evenly compare
and evaluate the machine learning models. For
SMS-Spam dataset, we used a subset consisting of
5120 instances of dataset with 1226 features. For
Fake-News data, we used 2000 instances of dataset
with 756 features. For Sentiment-140 dataset, we
used 4000 instances of the total dataset with 1362
features. For The Emotion in Text dataset, we used
3896 instances of dataset with 1542 feature count.

Each dataset was splitted into train and validation
dataset with a ration of 80/20. The hyperparameter
setting of all the models was done based on their
best performance on the validation dataset. We
used ADAM (Kingma and Ba, 2014) and Gradient
Descent optimization for the models.

5 Result and Discussion

We have reported the model performance in the
table 2. We can clearly see that the Bonsai model
was able to outperform other model in majority of
the tasks which makes it suitable for IoT based ap-
plications. Bonsai achieved an accuracy of 97.29,
64.38 and 68.97 over the classification task in fake-
news, sentiment-140 and SMS-spam dataset with
2kB of memory usage. The ProtoNN model was
able to beat Bonsai in the The Emotion in Text
dataset task by gaining an improvement of 2.56%
on the Bonsai model. Being said that, even with
lesser accuracy, the Bonsai model performed the
classification task in just 2kB memory while Pro-
toNN took 4.2kB. On an average, these two light
weight models, ProtoNN and Bonsai Tree, outper-
formed other models on average by 4.83% and
7.06% respectively. Out of Naive-Bayes, SVM and
Random Forest, with significantly higher memory
consumption, Random Forest surpassed other mod-
els with better performance. On the other hand,
Naive-Bayes’s accuracy to memory conception ra-
tio was higher than SVM and Random Forest. This
suggest that the Naive-Bayes is capable of getting
accuracy with lesser memory consumption.

6 Conclusion

In this paper, we presented a comparative analysis
of various machine learning model for performing
NLP tasks. We investigated the models perfor-
mance based on accuracy achieved and memory
required for performing a NLP task. We found that
Bonsai model was able to surpass other models



140

with higher accuracy and lesser memory consump-
tion. We also conclude that these models can be
trained on a laptop and can be transferred to IoT
devices satisfying resource requirements of model.
Through our work, we aim at contributing towards
the goal of sustainable NLP by developing more
resource efficient NLP methods.

References
Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-

ter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009.

Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Har-
sha Vardhan Simhadri, Bhargavi Paranjape, Ashish
Kumar, Saurabh Goyal, Raghavendra Udupa, Manik
Varma, and Prateek Jain. 2017. Protonn: Com-
pressed and accurate knn for resource-scarce de-
vices. In International Conference on Machine
Learning, pages 1331–1340.

MohammadNoor Injadat, Fadi Salo, and Ali Bou Nas-
sif. 2016. Data mining techniques in social media:
A survey. Neurocomputing, 214:654–670.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ashish Kumar, Saurabh Goyal, and Manik Varma.
2017. Resource-efficient machine learning in 2 kb
ram for the internet of things. In International Con-
ference on Machine Learning, pages 1935–1944.

Matt Kusner, Stephen Tyree, Kilian Weinberger, and
Kunal Agrawal. 2014. Stochastic neighbor com-
pression. In International Conference on Machine
Learning, pages 622–630.

Arif Jamal Malik, Waseem Shahzad, and Far-
rukh Aslam Khan. 2011. Binary pso and random
forests algorithm for probe attacks detection in a net-
work. In 2011 IEEE Congress of Evolutionary Com-
putation (CEC), pages 662–668. IEEE.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. arXiv preprint
arXiv:1708.03696.

Mahesh Pal. 2005. Random forest classifier for remote
sensing classification. International journal of re-
mote sensing, 26(1):217–222.

Irina Rish et al. 2001. An empirical study of the naive
bayes classifier. In IJCAI 2001 workshop on em-
pirical methods in artificial intelligence, volume 3,
pages 41–46.

Johan AK Suykens and Joos Vandewalle. 1999. Least
squares support vector machine classifiers. Neural
processing letters, 9(3):293–300.

Kai Zhong, Ruiqi Guo, Sanjiv Kumar, Bowei Yan,
David Simcha, and Inderjit Dhillon. 2017. Fast clas-
sification with binary prototypes. In Artificial Intel-
ligence and Statistics, pages 1255–1263.


