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Abstract

Modern conversational AI systems support
natural language understanding for a wide va-
riety of capabilities. While a majority of these
tasks can be accomplished using a simple and
flat representation of intents and slots, more
sophisticated capabilities require complex hi-
erarchical representations supported by seman-
tic parsing. State-of-the-art semantic parsers
are trained using supervised learning with data
labeled according to a hierarchical schema
which might be costly to obtain or not read-
ily available for a new domain. In this work,
we explore the possibility of generating syn-
thetic data for neural semantic parsing using
a pretrained denoising sequence-to-sequence
model (i.e., BART). Specifically, we first ex-
tract masked templates from the existing la-
beled utterances, and then fine-tune BART to
generate synthetic utterances conditioning on
the extracted templates. Finally, we use an
auxiliary parser (AP) to filter the generated ut-
terances. The AP guarantees the quality of
the generated data. We show the potential of
our approach when evaluating on the Facebook
TOP dataset1 for navigation domain.

1 Introduction

In this work, we investigate semantic parsing with
hierarchical representations (Gupta et al., 2018)
instead of the traditional logical forms (Zettlemoyer
and Collins, 2005). Given an utterance x, our goal
is to produce a tree-structured representation y of
the utterance where additional information about
intents and slots is introduced at the non-terminal
nodes of the tree. We define a template z of a given
annotation y as a result of replacing all terminal
nodes by a generic [mask] node. Figure 1 shows
an example of such an utterance x, its annotation
y and the corresponding template z.

1http://fb.me/semanticparsingdialog

x: What is the morning traffic hour 
y: [IN:GET_INFO_TRAFFIC What is the 
   [SL:DATE_TIME morning ] traffic hour ] 
z: [IN:GET_INFO_TRAFFIC [mask] 
   [SL:DATE_TIME [mask] ] [mask] ]

Figure 1: An example of an input utterance x, its de-
sired output y, and the template z inferred from y .
By definition, the template z above can be used to gen-
erate other utterances such as “how is the 5:00 traffic
looking” or “Any construction on my morning route”.
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Figure 2: Frequency of most 50 common templates in
Facebook TOP dataset. The frequency of z follows a
power-law probability distribution.

The hierarchical representation for task-oriented
parsing proposed in (Gupta et al., 2018) aims for
ease of annotation and expressiveness. The dataset
in their work, Facebook TOP, is the largest pub-
licly available dataset in English for hierarchical
semantic parsing. It has more than 44K annotated
queries. We look at the distribution of the tem-
plates in Facebook TOP and found that the dataset
is highly unbalanced (Figure 2). The 10 most fre-
quent templates account for 30% of the training
data and 14% of the data are singletons, which are
utterances with only a single occurrence. This anal-
ysis suggests that it is beneficial to generate more
synthetic data for templates with low frequencies.
In the field of Natural Language Processing, us-

http://fb.me/semanticparsingdialog
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ing synthetic data via back-translation (Sennrich
et al., 2016) has shown a great success for machine
translation (Edunov et al., 2018). Unlike machine
translation, generating synthetic data for hierarchi-
cal semantic parsing is less straightforward. Our
work positions itself as one of the first to explore
the possibility of generate text from graph (tem-
plate) for semantic parsing.

In this paper, we propose a generic framework
for augmenting a semantic parser with synthetic
data. Our framework consists of two steps. First,
we train a generator, followed by top-p sampling
to generate diverse synthetic utterances condition-
ing on the above-mentioned templates. Generated
utterances share similar hierarchical structures (i.e.,
templates) with real training utterances while pro-
viding a wide spectrum of lexical variety. Second,
we use an auxiliary parser for filtering on the gen-
erated candidates. The filtering step guarantees the
quality of the synthetic data. Our generator is a
sequence to sequence (seq2seq) model that is pre-
trained on massive amount of monolingual data
with text infilling objective (§2). We utilize BART
(Lewis et al., 2020), a recently proposed denoising
autoencoder, as our generator to avoid training it
from scratch. The auxiliary parser can be arbitrary.
We experiment with BART-based parser as well as
state-of-the-art pointer network parser (s2s-pointer;
Rongali et al., 2020).

The paper is structured as follows. We intro-
duce our generative model for synthetic data in
Section §2. Experimental results on Facebook TOP
dataset and sub-sampled datasets to simulate low-
resource scenario are presented in Section §3. Sec-
tion §5 concludes the paper.

2 Denoising Sequence-to-Sequence as
Generator

The generative story for generating synthetic data
Ysyn = {ỹi}

M
i=1 is given by

1. draw a template z ∼ pφ(z);2

2. draw an annotation y ∼ pθ(y | z) by filling
each [mask] token in z by a word or se-
quence of words from vocabularyV;

Note that the transformation from annotation y
to utterance x is deterministic by removing non-
terminals from y. While pφ(z) can be modeled by

2During inference for generating synthetic data, we draw z
uniformly in order to generate more annotations for templates
in the long tail.

an autoregressive neural language model or a Prob-
abilistic Context Free Grammar (Johnson, 1998),
in this work we sample template z from seen tem-
plates in the data. We leave the possibility of gen-
erating new templates to future work.

We need a powerful conditional model pθ(y | z)
to generate annotation y. Thus, we choose BART,
a pretrained denoising autoencoder for sequence-
to-sequence, as our model. Figure 3a illustrates
the idea behind BART. Given an input sequence
(a stream of text), one of five types of noise (Fig-
ure 3b) is used to corrupt the input sequence. Then
BART reconstructs the original sequence by maxi-
mizing the likelihood of the original sequence.

Autoregressive 
Decoder

Bidirectional 
Encoder

A  B  C  D  E

A  _  B  _  E         <s> A  B  C  D  

(a) BART is trained to reconstruct the corrupted input.

A B C . D E .A . C . E . A _ . D _ E .

A _C . _ E . C . D E . A B
Document RotationToken Masking

Token Deletion Text Infilling

D E . A B C .
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(b) Five different types of noise introduced in BART.

Figure 3: Overview of BART.

Since pretrained BART uses text infilling as
noise to corrupt the input sequence, naturally we
can use BART to infill the templates. Text infilling
is the task where a number of spans in the original
input sequence are replaced by a token [mask] and
BART is trained to predict the replaced spans in
the position of [mask] tokens. For our purpose of
generating synthetic data, we fine-tune BART on
an infilling dataset where the input is a template z
with [mask] and the output is a linearized tree rep-
resentation y where [mask] tokens are replaced
by lexical words as shown in Figure 4.

BART source/target construction: We call
out a few processing steps to construct this infill-
ing dataset. First, non-terminal words are low-
ercased. We find this is necessary since the in-
put will be tokenized by BART tokenizer and
lowercasing non-terminal words prevents over-
segmentation. Second, we make each of the clos-
ing brackets “]” in the original data explicit (e.g.,
in:get distance], sl:destination]). This
transformation provides the model explicit infor-
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Source: [in:get_distance [mask] [sl:destination [in:get_location [sl:category_location 
        [mask] sl:category_location] in:get_location] sl:destination] in:get_distance] 
Target: [in:get_distance How far is [sl:destination [in:get_location [sl:category_location 
        the coffee shop sl:category_location] in:get_location] sl:destination] in:get_distance] 

Figure 4: Data for fine-tuning BART.

mation of the scope of the intents and slots.
Fine-tuning and generation: We fine-tune

BART generator using the (template, annotation)
pairs. After fine-tuning, we use the generator to
generate full parse trees given templates. To in-
crease the diversity of generated samples, we use
top-p sampling (Holtzman et al., 2020) instead of
beam search. The generator is trained to generate
the tokenized labels together with the words. We
remove generated annotations with invalid labels
and convert the tokenized labels into the original
tags in a post-processing step.

Auxiliary parser (AP) for filtering: In our pre-
liminary experiments, we found that the generated
samples are noisy. When we train our parser on
the concatenation of both real and generated sam-
ples, the test accuracy degrades by 1.13% com-
pared with a parser trained purely on real data. We
therefore use an auxiliary parser (AP) to select ro-
bust samples. The filtering step is straightforward.
First, we train an auxiliary semantic parser fθ(x)
on the original Facebook TOP dataset. We then
use this trained AP to parse synthetic data (x̃i, ỹi)
and keep those samples where the outputs of the
parser fθ(x̃i) match the synthetic labels ỹi (i.e.,
fθ(x̃i) = ỹi). The AP for filtering can be different
from the target parser we train for semantic parsing.
Therefore, we propose three settings: (1) BART as
AP and a sequence-to-sequence model with pointer
networks (s2s-pointer; Rongali et al., 2020) as the
target parser. (2) BART models for both AP and
target parser. (3) s2s-pointer models for both AP
and target parser. The comparisons and analysis
are detailed in Section §3.

3 Experiments

We use Facebook TOP dataset in our experiments.
Statistics of the dataset are shown in Table 1. While
there are more than 31K annotated utterances in
training data, the number of unique templates is
about 6K. As we have shown in Section 1, the
distribution of the templates is highly unbalanced.
In training data, there are 1,511 annotations with
the template [IN:UNSUPPORTED NAVIGATION

[mask] ] and 1,046 annotations with template

[IN:UNSUPPORTED [mask] ]. In the case of
no UNSUPPORTED setting (− UNSUPPORTED
in Table 2), we exclude those annotations with
UNSUPPORTED templates from train, valid, and test
data. This results in 28,414 (template, annotation)
pairs for training and 4,032 pairs for validation.

Condition train valid test

+ UNSUPPORTED 31,279 4,462 9,042
− UNSUPPORTED 28,414 4,032 8,241

Table 1: Number of samples in Facebook TOP dataset
with (+) and without (−) UNSUPPORTED utterances.

We fine-tune our BART generator using Adam
optimizer (Kingma and Ba, 2015) with a linear
warmup of 4,000 steps at the peak learning rate of
2e−5. We pick the best model based on validation
perplexity. After fine-tuning, we use the generator
to sample 5 full parse trees per template.

The exact-match results for the three settings
of using BART/s2s-pointer as auxiliary and target
parser are given in Table 2. We first notice that the
BART-based parser performs on-par with SOTA
model based on pointer network and RoBERTa
(Liu et al., 2019) feature extractor in the work of
Rongali et al. (2020). This suggests that pretrain-
ing a general purpose seq2seq model is beneficial
for downstream conditional generation task. We
also see that using synthetic data brings additional
0.89% for BART-parser and 0.88% for s2s-pointer
parser on the exact-match accuracy. The gain of
using synthetic data is smaller when UNSUPPORTED
utterances are present in training and testing data.

Table 3 shows the exact match accuracy of
BART-based parser on testset with respect to tem-
plate frequency f in training data. We see that syn-
thetic data helps low-frequency templates ( f < 5)
the most (+1.36%). The gain of 0.67% for unseen
templates ( f = 0) suggests that there is a room for
further improvement by generating new templates.

In order to support new domains (with new in-
tents and slots) for the virtual assistants, we inves-
tigate the role of synthetic data when there is a
little data available for the new domains. We sim-
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Template: 
[in:get_info_road_condition [mask] [sl:road_condition [mask] ] [mask] [sl:path [mask] ] ] 
Generate: 
[in:get_info_road_condition is the road [sl:road_condition icy ] on [sl:path I - 5 ] ] 
[in:get_info_road_condition Are the roads [sl:road_condition slick ] on [sl:path I90 ] ] 
[in:get_info_road_condition Is there [sl:road_condition snow ] on [sl:path the commute ] ] 
[in:get_info_road_condition will the roads be [sl:road_condition slippery ] on [sl:path my commute ] ] 
[in:get_info_road_condition Are there any [sl:road_condition flooding ] on [sl:path Route 66 ] ]

Figure 5: Sample of five synthetic parse trees generated given a template. Colors indicate the corresponding
generated spans per [mask] token. The data is reformatted for readability.

− UNSUPPORTED + UNSUPPORTED

Data AP filter Target parser #Samples Acc (%) #Samples Acc (%)

Real BART 28,414 83.37 31,279 81.01
+ syn BART BART 53,679 84.26 (+0.89) 56,547 81.74 (+0.73)

Real s2s-pointer 28,414 84.80 31,279 82.10
+syn BART s2s-pointer 53,679 85.31 (+0.51) 56,355 82.71 (+0.61)
+syn s2s-pointer s2s-pointer 89,629 85.68 (+0.88) 92,264 82.77 (+0.67)

Table 2: Exact-match results of our experiments. The AP filter can be a fine-tuned BART for parsing or a s2s-
pointer model of Rongali et al. (2020)

Training data f ≥ 5 f < 5 f = 0

Real 89.46 74.70 61.90
+syn 90.30 76.06 62.57

∆ 0.84 1.36 0.67

Table 3: Exact-match accuracy on testset with respect
to template frequency f in training data.

ulate this scenario by sub-sampling 6K utterances
in the training data as follows: for each template
in the training data, we randomly choose one ut-
terance. We use this sub-sampled data for training
our parser, generator, and AP. Table 4 shows the
mean and variance of the accuracy on five random
sub-sampled portions of the train data. We see that
in this low resource setting, our approach boosts
the accuracy by more than 2% absolute.

Training data #Samples Acc (%)

Real 6,000 72.24 ± 0.05
+syn 30,000 74.31 ± 0.05

Table 4: Average accuracy of five different runs for
6K training examples. The synthetic data is filtered by
BART parser, which is trained on 6K samples.

4 Related Work

Using pretrained models to generate synthetic data
has been studied recently (Amin-Nejad et al., 2020;
Kumar et al., 2020). Their work however focuses
on multi-class classification problems. Taking a
step further, our work shows a viable path for struc-
tured output (i.e., parse trees) problems.

5 Conclusions

We have proposed a novel approach for generating
synthetic data for hierarchical semantic parsing.
Our initial experiments show promising results of
this approach and open up possibility for applying
it to other problems with highly structured outputs
in Natural Language Processing.
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