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Abstract

This paper presents our contributions to the SemEval-2020 Task 4 Commonsense Validation and
Explanation (ComVE) and includes the experimental results of the two Subtasks B and C of the
SemEval-2020 Task 4. Our systems rely on pre-trained language models, i.e., BERT (including
its variants) and UniLM, and rank 10th and 7th among 27 and 17 systems on Subtasks B and C,
respectively. We analyze the commonsense ability of the existing pretrained language models by
testing them on the SemEval-2020 Task 4 ComVE dataset, specifically for Subtasks B and C, the
explanation subtasks with multi-choice and sentence generation, respectively.

1 Introduction

SemEval-2020 Task 4 aims to evaluate whether a system identifies and rationalizes a given natural
language statement to be comprehensible under commonsense knowledge (Wang et al., 2020). Starting
from the pilot study (Wang et al., 2019), SemEval-2020 Task 4 consists of three subtasks: 1) Subtask A:
differentiating statements that make sense from those that do not, 2) Subtask B and C: selecting a reason
or explaining why the statement does not make sense. This paper presents an overview of our systems
that were examined for Subtasks B and C, as well as the final results.

Recently, inspired from the success of ELMo (Peters et al., 2018), GPT (Radford et al., 2018), and BERT
(Devlin et al., 2019) which demonstrated considerable improvements on various language understanding
tasks, including the GLUE benchmark (Wang et al., 2018) and SQuAD (Rajpurkar et al., 2016), significant
studies have been conducted on pretrained language models, including RoBERTa and XLNet, which
efficiently reduce the training and inference costs (Liu et al., 2019; Lan et al., 2019), Transformer-XL,
which extends to large contexts (Dai et al., 2019), XLNet (Yang et al., 2019), MASS and UniLM,
which support pretrained language models for generation tasks (Song et al., 2019; Dong et al., 2019),
DistillBERT for lightweight pretrained models (Sanh et al., 2019), analyzing BERT’s syntactic knowledge
(Hewitt and Manning, 2019), knowledge-enhanced language models (Peters et al., 2019), cross-lingual
pretrained language models (Conneau and Lample, 2019), few-shot learning using language models
(Radford et al., 2019; Brown et al., 2020), scaling up pretrained language models (Raffel et al., 2019)
and the retrieval-based language model using dense retrieval on the external corpus (Guu et al., 2020). A
critical review of the pretrained language models that include classical neural language models (Bengio et
al., 2003) has been presented in (Young et al., 2018).

Given the era of pretrained language models, the main design goal of our system on ComVE is to
explore the effect of using pretrained language models on Subtasks B and C, both for the understanding
and generation tasks. In the top-level design, BERT is selected for Subtask B, and UniLM, a generalized
pretrained language model that supports both understanding and generation capabilities, is employed for
Subtask C. Our system architectures for Subtasks B and C are summarized as follows.

1. BERT+FNN and BERT+BiLSTM (Subtask B): For Subtask B, we present two types of models,
BERT+FNN and BERT+BiLSTM based on BERT (Devlin et al., 2019). Given an input statement,
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we first apply BERT (Devlin et al., 2019) or its variants to the [SEP]-based concatenation of the
statement and i-th optional statement. Given k optional statements, BERT+FNN transforms the k
BERT-encoded representations obtained over all optional statements using a feedforward neural
network (FNN) on the last embeddings of [CLS] tokens, to compute the k scores. The probabilities
of k optional statements being the reason are computed based on the softmax function. A simple
extension is made on BERT+BiLSTM to further transform the BERT-encoded representations using
bidirectional long shot-term memory (LSTM) before applying FNN on the [CLS] embedding1. To
compare the performances of the BERT variants on Subtask B, we replace the BERT module in
BERT+FNN and BERT+BiLSTM with RoBERTa (Liu et al., 2019) or ALBERT (Lan et al., 2019). In
this paper, all models induced from BERT, RoBERTa, and ALBERT, are referred to as BERT-style
models.

2. UniLM (Subtask C): For Subtask C, we need to use generation capable pretrained language models
beyond BERT, because it is difficult to apply BERT to natural language generation (NLG) tasks,
due to its bidirectionality nature (Wang and Cho, 2019). Hence, we employ UniLM (Dong et al.,
2019) which was recently found to be successful in NLG. UniLM employs three language model
(LM) tasks for pretraining, consisting of the unidirectional LM toward pretrained language models
for NLG tasks (Peters et al., 2018), bidirectional LM (Devlin et al., 2019) and sequence-to-sequence
prediction LM tasks, thereby enabling to fine-tune it on natural language understanding (NLU) and
NLG tasks. We examine the effect of UniLM on commonsense reasoning for Subtask C.

The remainder of this paper is organized as follows: Section 2 briefly summarizes the data description
for the SemEval-2020 ComVE task. Section 3 presents the details of our system architecture, Section 4
provides the preliminary and official experimental results, while our concluding remarks and a description
of the future work are presented in Section 5.

2 Data Description for SemEval-2020 ComVE

Each instance in the dataset for explanation subtasks of ComVE is composed of seven sentences
< s, o1, o2, o3, r1, r2, r3 >. Statement s, which does not make sense, is given as an input sentence,
commonly to Subtasks B and C. For Subtask B, o1, o2 and o3 are the three optional sentences to explain
why the statement does not make sense; the only a single sentence oi is marked as a correct (positive)
reason and the others as negative ones. For Subtask C, r1, r2, and r3, are the additional sentences for
referential reasons and, are used for training and evaluation. During the preliminary experiment for
Subtask B, we found that some of the topics included only two optional sentences2. Thus, we excluded
those topics from the dataset. In addition, we attached a punctuation mark to the sentences that did not
originally end with any punctuation marks.

3 System Description

This section presents detailed descriptions of our system and the methods that used for Subtasks B and C
at SemEval-2020 ComVE.

3.1 Model for Subtask-B

Let us recall the definition of Subtask B: given statement s, the system is required to select the correct
reason from three optional reasons by examining why statement s does not make sense.

To address Subtask B, we propose two types of BERT-style models, BERT+FNN and BERT+BiLSTM,
whose model architectures are depicted in Figures 1 and 2, respectively, where inputs for BERT are
provided at the bottom and the output from BERT is presented at the top right.

1Here, unlike the standard BiLSTM, which concatenates the forward and backward representations, we used the forward and
backward LSTM separately and perform the mean pooling on the resulting hidden representions.

2The topics are 5618th, 7238th, 9941th in the training set and 1998th in the trial set.
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Figure 1: Architecture of BERT+FNN. BERT+FNN only uses [CLS] token embedding to obtain learned
representation of sentences from pre-trained BERT-style models.

Figure 2: Architecture of BERT+BiLSTM. BERT+BiLSTM uses all token embeddings obtained from
pre-trained BERT-style models.

Formally, given an optional sentence oi, let Wi = [wi,0,wi,1,wi,2, · · · ,wi,n] be the sequence of
output embeddings of the BERT-style model, where wi,0 denotes the [CLS] token embedding for the i-th
sentence, and wi,t ∈ Rn denotes each output embedding3.

In BERT+FNN, we use only [CLS] tokens embedding, which is the first token embedding acquired
from the BERT-style model for classification. The [CLS] token embedding is usually used to represent
the whole meaning a given sentence. BERT+FNN is composed of a FNN and the softmax function to
select a correct sentence that makes sense.

P (correct|i) = softmax1≤i≤3(FeedForward(wi,0)) (1)

which indicates the probability that oi is the correct reason for why s does not make sense.
In BERT+BiLSTM, we use all token embeddings acquired from the BERT-style models. To obtain sen-

tence representations, we employ a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) architecture.
Using the LSTM, given the i-th optional sentence, the hidden state at time t, denoted by hi,t ∈ Rm , is
computed via

hi,t+1, ci,t+1 = LSTM(wi,t,hi,t, ci,t) (2)

where ci,t denotes the cell state of the LSTM.

3For notational simplicity, we often drop the i dependency on the output sequence.
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input i [SOS] s [EOS] oi [EOS]

Table 1: Input segment representation for BERT on Subtask B, where s is a given statement, oi ∈
{o1, o2, o3} is an optional sentence, and [SOS] and [EOS] are the special tokens for indicating the starting
and ending of a sentence, respectively.

input i [SOS] ”s” does not make sense. [EOS] Because oi [EOS]

Table 2: Input segment representation using extra words for BERT on Subtask B, where s is a given
statement, oi ∈ {o1, o2, o3} is an optional sentence.

To exploit the contextual information in a bidirectional manner, we process the input embeddings using
a bidirectional LSTM, which reads an input in both forward and backward orders. We then perform the
mean pooling instead of the concatenation: Rd × Rd → Rd, thereby yielding the mean vector of both
representations to combine them. In particular, we compute the hidden state at time t, hi,t ∈ Rm, for an
input embedding of length T , using the following:

hforward
i,t+1 = LSTM(wi,t,h

forward
i,t , cforward

i,t ) (3)

hbackward
i,t+1 = LSTM(wT−t,h

backward
i,t , cbackward

i,t ) (4)

hi,T = mean(hbackward
i,T ,hforward

i,T ) (5)

The rest of the architecture is the same as that of BERT+FNN, where the feedforward neural network is
applied to hi,T instead of the [CLS] embedding.

3.1.1 Input representation for BERT encoder
The remaining part includes determining the input that should be used for the BERT encoder. In particular,
let a test (or training) instance for Subtask B be an entry consisting of 4 sentences < s, o1, o2, o3 >. To
pass an input to BERT+FNN and BERT+BiLSTM, we pack a given sentence s and an optional sentence
oi using sentence starting and ending tokens, [SOS] and [EOS], where the two sentences are packed as
“[SOS] S1 [EOS] S2 [EOS],” wherein S1 and S2 denote the first and second sequences, respectively. Table
1 presents how an optional sentence is packed as an input with an original sentence s.

To make the input more natural, we optionally further apply a simple preprocessing on the dataset by
supplementing extra words, such as “because” between s and oi, as illustrated in Table 2.

3.1.2 Extension using BERT variants
Under the architectures of Figures 1 and 2, we compare three pretrained language models, i.e., BERT,
RoBERTa and ALBERT, to examine the effectiveness of the BERT-style models on the commonsense
reasoning ability in the setting of Subtask B.

3.2 Model for Subtask C
It should be noted that Subtask C is a type of NLG task, where the goal is to generate reasons for
determining why input sentence s does not make sense. To address Subtask C, we use UniLM, as
mentioned in the introduction, inspired by the recent works wherein UniLM demonstrates promising
performance on NLG tasks, such as abstractive summarization, question generation, and generative
question answering. While BERT is used mainly for NLU tasks, UniLM provides various types of
language models based on its encoders and decoders, which enable it to be fine-tuned for both NLU and
NLG tasks, including our addressed Subtask C.

To train UniLM for Subtask C, let a training (or test) instance be an entry consisting of four sentences
< s, r1, r2, r3 >. The input sentence s is encoded by UniLM and the generation model based on UniLM
is fine-tuned for the loss function of Subtask C, such that it generates a correct reason for why the input
sentence s does not make sense. For Subtask C, we select only one reason, r1, from the three possible
references.



531

4 Experimental Results

We use the official release dataset of SemEval Task 4 for the experiments. The dataset is split into
train/trial/dev/test sets, and, we use the dev (development) set to obtain the model with the best perfor-
mance.

4.1 Model training
In our submitted model for Subtask B, the hidden dimension of LSTM was 768. We used the Adam
optimizer for BiLSTM and FNN with a learning rate of 1e-3. The number of layers for the LSTM and
dropout were 1 and 0.3, respectively. For finetuning BERT, we used the Adam optimizer with a learning
rate of 5e-6.

For Subtask C, the submitted model was trained with Adam using β1 = 0.9 and β2 = 0.999 for
optimization. The learning rate and dropout rate were 3e-5 and 0.1, respectively.

4.2 Results for Subtask B
For Subtask B, we first evaluate BERT+FNN across several BERT-style models, i.e., BERT, RoBERTa,
and ALBERT. Table 3 presents the results of BERT+FNN on the trial and dev datasets released from the
SemEval-2020 organizers. Note that all models for Subtask B use the exactly same evaluation pipeline,
which makes them directly comparable. As evident in Table 3, the RoBERTa-large-based model performs
significantly well on this task, outperforming other models on the dev set. Our results partly suggest that
some of the commonsense knowledge is entailed from the BERT-style models.

Model Name
Accuracy(%)

Tiral-set Dev-set

BERT
BERT-base-uncased 90.15 85.76
BERT-large-uncased 92.97 85.46

RoBERTa
RoBERTa-base 92.08 87.56
RoBERTa-large 96.34 92.58

ALBERT

ALBERT-base-v1 87.28 81.85
ALBERT-base-v2 91.83 86.16
ALBERT-large-v1 90.54 84.85
ALBERT-large-v2 93.61 88.87
ALBERT-xlarge-v1 88.07 85.26
ALBERT-xlarge-v2 93.37 89.37
ALBERT-xxlarge-v1 96.44 92.48
ALBERT-xxlarge-v2 96.63 92.28

Table 3: Comparison results across BERT-style models under BERT+FNN of Figure 1 for Subtask B. The
default input representation of Table 1 is applied.

Given the effectiveness of the RoBERTa-large model, we use RoBERTa-large for evaluating
BERT+BiLSTM with two input variants:

1. BERT+BiLSTM: The default input representation of Table 1 is applied.

2. BERT+BiLSTM + extra words: The extended input representation by adding extra words in Table
2 is applied.

Table 4 presents the results. Interestingly, the extended input representation of using Table 2 makes some
improvement over that of using the default one. This result enables us to explore the issue of determining
which natural expression is effective for the BERT input in the ComVE task. The run “BERT+BiLSTM +
extra words” is our final submission for Subtask B. Table 4 summarizes the performances of the top three
results in the leaderboard for reference. Finally, our system ranked 10th out of the 27 valid submissions
for Subtask B.
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Team Name
Accuaracy(%)

trial dev test
ECNU-ICA (Top 1) - - 95.0
hit-itnlp (Top 2) - - 94.8
NUT (Top 3) - - 94.3
BERT+BiLSTM (ours) 96.56 92.98 90.9
BERT+BiLSTM + extra words (ours) 97.01 94.08 91.4

Table 4: Comparison results using RoBERTa-large models under BERT+LSTM of Figure 2 for Subtask B.

4.3 Results on Subtask C

Table 5 presents the results of our model using UniLM for Subtask C, comparing the performances of the
top three results in the leaderboard.

In Table 5, the model achieves a BLEU score of 70.20% on the trial set. From the further analysis, we
found that the trial set contained a large number of instances in the training set. Given this redundancy, in
the trial set where the input sentence is likely included in the training set, the model tends to accurately
generate correct sentences that explain why the input sentence does not make sense. For new test sentences,
it is observed that the model generates relatively low-quality sentences, compared to the results from the
trail set.

Finally, our submission ranks 7th out of the 17 valid submissions on Subtask C.

Team Name
Bleu(%)

trial dev test
BUT-FIT (Top 1) - - 22.4
Solomon (Top 2)‘ - - 19.3
LuoJunNB (Top 3) - - 18.5
UniLM 70.20 14.97 15.90

Table 5: Results of UniLM for Subtask C, comparing the top three submissions in the leaderboard.

5 Conclusion

We participated in Subtasks B and C at the SemEval-2020 ComVE. Our system was based on BERT and
UniLM for Subtasks B and C, respectively.

For Subtask B, we explored the effects of the three variants of BERT-style models to study their
commonsense reasoning ability. Finally, our submitted run for Subtask B ranked 10th out of the 27
submissions. Our results showed that the model capacity of BERT is highly related to the task accuracy,
suggesting that BERT encodes the commonsense knowledge, but more in larger models. This implies
that we should scale up the current models by exploring significantly larger models such as T5 (Raffel et
al., 2019; Roberts et al., 2020), GPT-3 (Brown et al., 2020), or retrieval-based commonsense reasoning
motivated by (Guu et al., 2020)

For Subtask C, the UniLM-based model ranked 7th out of the 17 submissions and 6th on the human
score. We found that there still exists a large divergence between our results and human-level commonsense
reasoning. Most of the sentences generated from the model were considerably different from the answers
on the development dataset. Although we did not compare the other models on Subtask C, we expect that
model capacity would be important here.

In future work, we plan to explore large pretrained models to enrich the commonsense knowledge in
neural models under closed book (Roberts et al., 2020) or open book (Guu et al., 2020) settings. Further,
we would like to incorporate pretrained language models with external knowledge, such as ConceptNet
(Speer et al., 2017).
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