
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1100–1105
Barcelona, Spain (Online), December 12, 2020.

1100

CN-HIT-MI.T at SemEval-2020 Task 8: Memotion Analysis Based on
BERT

Zhen Li, Yaojie Zhang
Harbin Institute of Technology
linklizhen@163.com

yjzhang@hit-mtlab.net

Bing Xu, Tiejun Zhao
Harbin Institute of Technology

hitxb@hit.edu.cn
tjzhao@hit.edu.cn

Abstract

Internet memes emotion recognition is focused by many researchers. In this paper, we adopt BERT
and ResNet for evaluation of detecting the emotions of Internet memes. We focus on solving the
problem of data imbalance and data contains noise. We use RandAugment to enhance the data of
the picture, and use Training Signal Annealing (TSA) to solve the impact of the imbalance of the
label. At the same time, a new loss function is designed to ensure that the model is not affected by
input noise which will improve the robustness of the model. We participated in sub-task a and our
model based on BERT obtains 34.58% macro F1 score, ranking 10/32.

1 Introduction

Memes are from people’s culture or some social activities in daily life, usually composed of one or two
forms of image, video, gif, and text (Park, 2020). Memes are active in people’s social media, but with the
number of memes increasing, offensive memes are also increasing (Williams et al., 2016). So for many
social media companies, how to identify the type of meme is very important. Using machine learning to
identify the type of meme is a very important solution, and has shown promising Performance.

In SemEval-2020 Task 8: Memotion Analysis (Sharma et al., 2020), the organizer collecting the Internet
memes and then using OCR recognition it and correct manually the text on the pictures. The task is
divided into three sub-tasks: a) sub-task a detects the emotions of the Internet memes, which are divided
into positive, negative and neutral; b) sub-task b detects the types of humor expressed by Internet memes,
which are divided into sarcastic, humorous, offensive and motivation type, a meme can belong to multiple
categories; c) sub-task c is a semantic level classification of the various humor types of task b, each type is
divided into 4 categories: not, slightly, mildly and very. The task uses macro F1 as the evaluation standard
for sub-task a, and average macro F1 as the evaluation standard for sub-tasks b and c.

There are three challenges for this task. The first, how to fuse picture and text features, because whether
it is a separate text or picture, the meaning expressed is lacking, and it is necessary to fuse the picture
features and text semantics to obtain the best classification results. The second, the distribution of train
data is imbalanced, which will increase the learn difficulty of the model. At last, the text information
provided by the training data contains too much noise, which affects the semantic understanding of the
text by the model and it will need to clean the data. Because we didn’t find a proper way to fuse text and
picture feature, we used BERT (Devlin et al., 2018) for text feature extraction, and ResNet (He et al.,
2015) for image feature extraction. Through experiments, we found that the macro F1 score of BERT was
higher than ResNet, so we submitted the predicted result of BERT in the final submission result.

In the rest of this article, we organize the content as follows: section 2 introduces the background of this
task; section 3 mainly introduces the model we used and some details; section 4 introduces the data and
preprocessing; section 5 shows the experimental results and make some analysis. Finally, we discussed
our work and future work directions.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Background

Prez Rosas et al. (2013) use the Spanish video collected from YouTube to fuse the audio, video and text
at feature level, and then perform sentiment classification on the video dataset. Dobrisek et al. (2013)
use decision-level fusion to merge audio and video. Designed a multimodal emotion recognition system.
Wollmer et al. (2013)focus on the task of automatically analyzing a speaker’s sentiment in on-line videos
contain movie reviews, using a mixed feature model to merge audio, video and text. Truong and Lauw
(2019) use pictures to extract effective text information for sentiment classification. Xu et al. (2019)
researched aspect-level sentiment classification of images and texts. Cai et al. (2019) extract image
attributes features, which help the multimodal models for photo-text sarcasm detection. Zadeh et al.
(2017) mix single-mode, dual-mode and triple-modal feature information to identify emotion in the
comment video. However, none of these research work uses a pre-trained model based on Transformers,
but the pre-trained model has proved its effectiveness in many works, so we decided to use BERT instead
of LSTM this time.

We participated in sub-task a, which is to judge the emotions of memes, and we only used the data
provided by the competition organizer (Sharma et al., 2020). In order to effectively extract the image
features and text features, we considered using the single-modal model to extract the features of the image
and the text, and then the multimodal model is designed on the basis of the single-modal model. However,
the multimodal model is found to be less effective than the single-modal model. It will discuss in section
5.

3 System Overview

In this task, we mainly used the ResNet-101 pre-training model and the BERT pre-training model. We
refer to VistaNet (Truong and Lauw, 2019), Hierarchical Fusion Model (Cai et al., 2019) and Tensor
Fusion Network (Zadeh et al., 2017) respectively. We also refer to Liu (2019), and extract the effective
features of the picture through the sentences in the text, and then merge the text features and the effective
features of the picture. But we found that the prediction results of the multimodal model are not as good as
the single-modal model, so we did not use multimodal model in the final submission results, see section 5
for details.

3.1 Single-modal for Photo

ResNet He et al. (2015) proposed a residual nets (ResNet) .The residual nets solves the problem of
network degradation in deep networks by adding the shallow output of the model to the deep output of
the model, and successfully increased the network depth to 152 layers. We would like to use ResNet
as a single-modal model to train the image. Through experiments, we decided to use ResNet-101. The
pre-training model we use is from the torchvision module of pytorch1.

RandAugment The Google research team released RandAugment (Cubuk et al., 2019), which is used
to automatically data augmentation with a reduced search space . RandAugment has two parameters N
and M, where N represents the number of augmentation transformations to apply sequentially and M
represents the magnitude for all the transformations. Because we found that the training data is small,
which may lead to the model can not be fully trained, so we consider using RandAugment to enhance the
data. In this task, we set N = 14, M = 11, and in the submission result F1 (macro) obtained a score of
0.334.

3.2 Single-modal for Text

BERT The Google research team released the pre-trained model BERT (Devlin et al., 2018) on the
basis of Transformer. Through pre-training on a huge number of corpora, BERT has achieved state of the
art results on many NLP tasks. Considering that the dataset of SemEval-2020 Task8 (Sharma et al., 2020)
is not large, we adopted the BERT-base2 version. Because Google did not provide the pytorch version of

1https://pytorch.org/docs/stable/torchvision/models.html\#classification
2https://github.com/google-research/bert
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positive negative neutral
very positive positive very negative negative neutral

1033 3127 151 480 2201

Table 1: The first table is the distribution of data in sub-task a.

the BERT model code, we used the BERT model loading module provided by HuggingFace (Wolf et al.,
2019).

TSA Google mentioned a training technique Training Signal Annealing (TSA) in Unsupervised Data
Augmentation (Xie et al., 2019). TSA can gradually release labeled training data as the training progresses.
Because we consider the imbalance of the dataset of SemEval-2020 Task8 (Sharma et al., 2020), we learn
from TSA’s skills. During the training process, if the prediction accuracy of a certain type of data reaches
the threshold, then remove it during training.

KL-divergence Because we found that the text data provided by SemEval-2020 Task8 (Sharma et
al., 2020) contains a lot of text fragments that are not related to the task, we cleaned the text data, see
section 4.2 for details. Because we only cleaned the training data, but not the test data. , Resulting in
inconsistency between training data and test data. To solve this problem, we redefined a new loss as
follows:

Oc = Fbert(xc) (1)

Od = Fbert(xd) (2)

KLloss = Losskl(Oc, Od) (3)

CEloss = Lossce(Oc, yt) (4)

loss = KLloss + CEloss (5)

Where Fbert(·) is the model based on BERT, Oc and Od represent the probability distribution of the
cleaned and uncleaned text obtained by the model. Losskl and Lossce is the kullback-leibler diver-
genceloss and cross-entropy loss function.

4 Experimental Setup

4.1 Data Setup
Memotion Dataset 7k Dataset (Sharma et al., 2020) is collected for memotion analysis. This task judges
the various emotions expressed by the meme based on the meme picture and the text in the picture. Table 1
lists the number of memes of each category in the sub-tasks a. We divide the data into five parts, four of
which are training set and one is development set.

4.2 Preprocessing
We found that the text in the data set mainly contains three kinds of errors, a) contains meaningless text,
such as URL; b) lack of punctuation, resulting in two sentences becoming one sentence; c) the order of
the sentences is disordered or multiple sentences are randomly mixed. Therefore, we have corrected the
text with the above errors.

The training objective is cross-entropy and KL divergence, and Adam (Kingma and Ba, 2015) optimizer
is adopted to compute and update all the training parameters. Learning rate is set to 2e5 for model,
respectively. We also use gradual warmup (Goyal et al., 2017) and cosine annealing schedule for learning
rate.

5 Results

The evaluation metric of sub-task a is macro-F1. We divide the dataset into training (5595 meme data) and
development (1397 meme data) subsets. We initialize the model with different random seeds for many
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Input Type Model Type System Dev-F1 Test-F1
text-picture multimodal HFM 0.3682 0.2062
text-picture multimodal TFNet 0.3608 0.3267
text-picture multimodal TFNet+TSA 0.3658 0.3329

picture single-modal ResNet 0.3694 0.3294
text single-modal BERT 0.3822 0.3203

picture single-modal ResNet+TSA+RA 0.3728 0.3336
text single-modal BERT+TSA+KL+200 0.3746 0.3458

Table 2: Dev-F1 means the prediction result on the development set, Test-F1 means the prediction result on
the test set. TSA means training signal annealing, RA means RandAugment, KL means kullback-leibler
divergence loss.

Figure 1: The confusion matrix of the classification results in Sub-task A

times. Various models are used for training. At the same time, we use a variety of models for training, and
the prediction results are shown in Table 2.

From the results, we can see that the prediction results of the multimodal model HFM and TFNet are
not as good as the single-modal model. We tried VistaNet (Truong and Lauw, 2019), HFM (Cai et al.,
2019) and TFNet (Zadeh et al., 2017). VistaNet’s prediction result in this task is the worst. We think
VistaNet’s main purpose is to filter important text through multiple pictures. It focuses is not just the
fusion of text and picture information, so we gave it up early. However, the prediction results of HFM and
TFNet are not as good as the single-modal model too. By observing the data set , We found that the meme
dataset (Sharma et al., 2020) of SemEval-2020 Task8 has a feature, that is the understanding of meme is
very dependent on the alignment of text segment and image regions. But neither HFM nor TFNet focuses
on it. So we later designed a model to align the picture and the text. We divide the text into sentences
and get the features of sentences by BERT (Liu and Lapata, 2019). Then we get the 7x7 image regions
through ResNet-101. At last, performing attention operations on the images regions by sentences. But
the actual effect is not good, which is worse than HFM and TFNet. We found that in many cases, a text
is only divided into one sentence, so we consider that it may be the sentence level division is too rough.
We guess that the use of phrase level or word level division may achieve better results, but we have not
designed a suitable model. So in the end we did not use the multimodal model.

we can see that the result of using text alone is better than using pictures alone, it should be the
picture information is more complicated, especially some pictures contain multiple sub-pictures. At
the same time, we found that after adding TSA and RA, the ResNet’s result is improved. Training
Signal Annealing (TSA), which can gradually releases training data to model. Specifically, if the models
predicted probability for the category positive is higher than a threshold η, we remove that data from
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this training step (Liu, 2019). As for RandAugment, data augmentation has the potential to significantly
improve the generalization of deep learning models (Cubuk et al., 2019). Then, when TSA and KL are
added, the result of BERT is improved greatly. KL can be referred to 3.2 . In the end, the best result we
submitted, the highest score of macro-F1 was 0.3458, which is about 0.0088 lower than the first place
0.3546 in sub-task a.

The confusion matrix is shown in Figure 1. From the figure, we can see that because of the problem of
label imbalance in the dataset, the precision of the negative label is only 20%, and the precision of the
positive label reaches 61.13%. This also leads to this macro- F1 is relatively low.

Conclusion

Is very important for social network to recognize the sentiment of Internet memes, but the main difficulty
is how to integrate the information of pictures and texts, Which is a very challenging job. Although our
multimodal model has not been get very good results, our single-modal model got the 10th . Considering
that our multimode model may not align the text features and image features correctly, we hope to use a
suitable way to align text features and picture features. For example, use a phrase-level way to divide text,
and then align the features of the picture. At the same time, we found that the problem of label imbalance
in the dataset led to the low value of the final macro-F1, so in the future we will consider using some other
strategies to reduce the impact of label imbalance.
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