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Abstract

The recent progress in natural language pro-
cessing research has been supported by the
development of a rich open source ecosystem
in Python. Libraries allowing NLP practition-
ers but also non-specialists to leverage state-
of-the-art models have been instrumental in
the democratization of this technology. The
maturity of the open-source NLP ecosystem
however varies between languages. This work
proposes a new open-source library aimed at
bringing state-of-the-art NLP to Rust. Rust is a
systems programming language for which the
foundations required to build machine learning
applications are available but still lacks ready-
to-use, end-to-end NLP libraries. The pro-
posed library, rust-bert, implements modern
language models and ready-to-use pipelines
(for example translation or summarization).
This allows further development by the Rust
community from both NLP experts and non-
specialists. It is hoped that this library will
accelerate the development of the NLP ecosys-
tem in Rust. The library is under active de-
velopment and available at https://github.
com/guillaume-be/rust-bert.

1 Introduction

Natural language processing (NLP) has undergone
a rapid transformation over the last few years.
Modern architectures based on the Transformers
(Vaswani et al., 2017), leveraging efficiently the
large amount of data available for unsupervised pre-
training, have enabled significant progress for a va-
riety of tasks including sentiment analysis, question
answering, summarization or translation. These
research efforts have been accompanied by the de-
velopment of a rich Python ecosystem enabling
a democratization of these technologies for both
practitioners and users, from tokenization to deep
learning architectures. The Transformers library
(Wolf et al., 2019) is an example of a library propos-

ing APIs at various levels to either promote further
development of NLP or their integration in higher
level applications.

The adoption of these technologies in other
programming languages has unfortunately not
been as fast, for example in Rust. Rust (Klab-
nik and Nichols, 2018) is a promising modern
static, strongly typed language that offers execu-
tion speeds similar to C. Its built-in memory safety
design makes it an attractive alternative to C++ for
the development of productive machine learning
systems. Rust does not include a garbage collec-
tor but instead relies on strict ownership rules for
the variables, dropping them when going out of
scope. Its modern implementation of the strings
data model that complies with UTF-8 standards is
especially relevant to NLP applications. Finally,
Rust includes a powerful utility called cargo to
manage external dependencies. This allows the de-
velopment of open-source ecosystems, similar to
Python’s PyPI (Python Packaging Authority, 2000)
or Java’s Maven (Miller et al., 2010).

Rust is a modern programming language for
which the foundations of a machine learning
ecosystem are still being built. A number of ini-
tiatives including array manipulation (rust-ndarray
Team, 2011), low-level CUDA libraries and deep
learning framework bindings for Tensorflow (Ten-
sorflow Project, 2016) or Torch (Mazare, 2019) are
now maturing. However, there is still a lack of
end-to-end, ready to use libraries leveraging state-
of-the-art NLP models. The proposed library aims
at filling this gap and exposes both Transformers-
based architectures to NLP practitioners in Rust
and pipelines that are ready for integration in
Rust-based back-ends. The proposed library,
rust-bert, is available at https://github.com/

guillaume-be/rust-bert or https://crates.

io/crates/rust-bert and is shared under
Apache 2.0 license.

https://github.com/guillaume-be/rust-bert
https://github.com/guillaume-be/rust-bert
https://github.com/guillaume-be/rust-bert
https://github.com/guillaume-be/rust-bert
https://crates.io/crates/rust-bert
https://crates.io/crates/rust-bert
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2 Related Work

This work leverages the rich open-source resources
available in Python. Especially relevant is the
Transformers library (Wolf et al., 2019), of which
large sections of the proposed Rust library were
ported from. The model architectures and layers
naming have been aligned with the Transformers
implementation, and Rust-compatible pre-trained
weights are available in Hugging Face’s Model
Hub (Hugging Face, 2019). The general API for
the high-level and ready-to-use pipelines has been
strongly inspired by the SpaCy library (Honnibal
and Montani, 2017).

A number of specialized libraries have been de-
veloped for Rust, including high performance tok-
enizers ((Hugging Face, 2020) or (Becquin, 2020))
and language detection libraries (Potapov, 2016).

3 Architecture Design

The library exposes three main features:

• Language models implementation, covering
state-of-the-art architectures including for ex-
ample BERT (Devlin et al., 2019) or GPT2
(Radford et al., 2019).

• Ready-to-use pipelines, combining these mod-
els with pre-and post-processing routines.

• Utilities to load external resources, including
a converter from PyTorch (Paszke et al., 2019)
pickled model files to a C-array format.

Library Root

Pipelines

Models

BERT

Translation

Summarization

bert.rs
embedding.rs
attention.rs
transformer.rs

Figure 1: High-level library structure.

The language models and the pipelines are sep-
arated in different modules. Within the models, a
sub-module is defined for each model (for example,
BERT) with individual files for the major model
components (for example, its attention mechanism).
This promotes readability and modularity of the
code base (Figure 1).

An important design aspect of the library is re-
lated to the choice of abstractions. Rust does not
implement the concept of classes and inheritance
in a similar way to Python. Rather, data is arranged
in structs that may implement associated methods
in an impl block or shared behaviour via traits. As
opposed to Python, layers do not inherit from a
shared nn.Module because Rust requires a strict
definition of the names and types of the inputs and
outputs (those may differ significantly from model
to model). As a consequence the registration of
the model parameters in the variable store is done
manually:

1 pub struct ModelA {
2 dense: nn::Linear
3 }
4 impl ModelA {
5 pub fn new(p: &VarStore) -> Self {
6 // manual varstore registration
7 }
8 pub fn forward(&self,
9 arg1: Tensor,

10 arg2: bool)
11 -> OutputType {
12 // forward pass
13 }
14 }

While the model architectures have been gener-
ally ported from the Python Transformers’ library,
the proposed work is innovative in its handling of
shared behavior. Models and configurations share
capabilities using Traits. This includes for example
the possibility for a model to be used as a con-
ditional text generator by implementing the Lan-
guageGenerator trait. A given model implements
the trait by providing model-specific methods (e.g.
prepare inputs or reorder cache). The complex
text generation post-processing steps (beam search,
sampling, non-repetition rules...) and the genera-
tion routine can then be readily leveraged by this
model.

1 trait PrivateLanguageGenerator {
2 fn prepare_inputs() {}
3 fn reorder_cache() {}
4 fn top_k_top_p_filtering() {...}
5 fn generate_beam_search() {...}
6 }
7 pub trait LanguageGenerator:
8 PrivateLanguageGenerator
9 {

10 fn generate() {...}
11 }
12

13 impl PrivateLanguageGenerator
14 for ModelA {
15 fn prepare_inputs() {...}
16 fn reorder_cache() {...}
17 }
18 impl LanguageGenerator for ModelA {}



22

Shared behavior is also required for the ready-to-
use pipelines that implement logic valid for a wide
range of language models. Here the mechanism
instead relies on Enums wrapping specific models
in a shared abstraction. A given pipeline takes a
Model Enum, a Tokenizer Enum and a Configu-
ration Enum as inputs. The pipeline calls generic
functions that are implemented by the enum (for
example a forward pass). Each variant of the enum
defines how the forward method is implemented.
Note that this allows defining a common interface
to models expecting a different set of inputs.

1 pub enum ClassifierModel {
2 BERT(BertModel),
3 XLNet(XLNetModel)
4 }
5 impl ClassifierModel{
6 pub fn forward(x, y) {
7 match *self {
8 BERT(mdl)=>{mdl.forward(x)},
9 XLNet(mdl)=>{mdl.forward(x, y)}

10 }
11 }
12 }
13 pub struct Classifier {
14 pub model: ClassifierModel
15 }
16 impl Classifier{
17 pub fn predict(text: &str) {
18 self.model.forward(x, y)
19 }
20 }

This pattern is similar to dependency injection
(while the traits are closer to inheritance) and has
benefits of a greater flexibility in the interface for
model loading and forward methods and reduced
coupling between the model and the pipelines.

4 Capabilities Overview

The library exposes an API at two different lev-
els: the language models themselves, allowing to
build NLP pipelines from scratch, and end-to-end
pipelines that can readily be integrated in higher
level applications.

A rust implementation for a wide range of lan-
guage models has been implemented, including
BERT (Devlin et al., 2019), DistilBERT (Sanh
et al., 2019), RoBERTa (Liu et al., 2019), GPT
(Radford, 2018), GPT2 (Radford et al., 2019), AL-
BERT (Lan et al., 2019), BART (Lewis et al., 2020),
Marian (Junczys-Dowmunt et al., 2018), XLM-
RoBERTa (Conneau et al., 2020) and T5 (Raffel
et al., 2019). For each of these models, pre-trained
weights have been converted to a C-array format
and are hosted alongside the Python version on
Hugging Face’s model hub (Hugging Face, 2019).

A large user base of NLP technologies also ben-
efits from the availability of state of the art, end-to-
end pipelines requiring little to no familiarity with
NLP to be integrated in higher level applications.
To answer these needs of the Rust community, the
following capabilities have been implemented:

• Translation between 8 language pairs using
either Marian (Junczys-Dowmunt et al., 2018)
or T5 (Raffel et al., 2019) models.

• Summarization using a BART (Lewis et al.,
2020) model trained on the CNN / Daily Mail
summarization dataset (See et al., 2017).

• Conversational model using DialoGPT
(Zhang et al., 2020).

• Question Answering using a DistilBERT
(Sanh et al., 2019) model trained on the
SQuAD dataset (Rajpurkar et al., 2016).

• Sentiment Analysis using a DistilBERT model
trained on the SST-2 dataset (Socher et al.,
2013)

• Named Entity Recognition for English, Ger-
man, Spanish and Dutch trained on CoNLL03
(Tjong Kim Sang and De Meulder, 2003) and
CoNLL02 (Tjong Kim Sang, 2002) datasets

These pipelines can be created and used in a few
lines of code without prior knowledge in NLP.

1 let model = TranslationModel::
2 new(translation_config)?;
3 let input = ["Hello, world!"];
4 model.translate(&input);

While the implementation of the language mod-
els is a prerequisite, the availability of powerful
end-to-end pipelines is key to a broader adoption
of NLP technology in Rust. These pipelines can
easily be integrated with server back-ends running
Rust with queuing and batching of incoming re-
quests (Walsh, 2020).

5 Benchmarks

This library was developed with the primary goal
of making state of the art NLP capabilities avail-
able to the Rust community rather than speeding
up inference. Nevertheless, Rust is a high perfor-
mance language with execution speeds matching C
or C++. Efficient predictions using NLP systems
has become a key subject of research and engineer-
ing development over the past few months. Sev-
eral methods have been investigated to improve the
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Figure 2: Rust-Python benchmark results.

model predictions performance, including for ex-
ample pruning, quantization and Huffman Coding
((Han et al., 2016), (Shen et al., 2020)), distillation
(Sanh et al., 2019), graph optimizations and layer
fusing (Nvidia, 2020) or optimized runtimes such
as ONNX (Bai et al., 2019). The high performance
of the state of the art models usually comes with a
significant computational cost.

It should be noted that the proposed library is
based on bindings (Mazare, 2019) to LibTorch
(Paszke et al., 2019), and therefore limited ben-
efits can be expected from the tensor operations.
These are executed in the CUDA layer that is effec-
tively shared with the Python-based models. The
following investigates if these high performance
features of the language translate into benefits for
the proposed NLP pipelines.

Benchmarks between Python and Rust are
shown in Figure 2 using a Turing RTX2070 GPU
with a AMD 2700X CPU. For all experiments the
average time relative to Python is reported with
the standard deviation. For all prediction tasks, the
Transformers (Wolf et al., 2019) library (v3.2.0)
is used as a reference. All experiments are run
for 10 iterations, with various number of samples
(provided in brackets). For reference, the Python
absolute execution time per iteration is provided.

The loading benchmarks represent the average
time required to load models into the GPU buffer.
Significant benefits can be observed for Rust. This
is probably caused by the simpler serialization for-
mat based on C-arrays for Rust, and may be advan-
tageous for event-driven applications loading mod-
els on a per-request basis (short warm-up time).

The forward pass results vary between applica-
tions. As expected, pipelines with very simple
pre- and post-processing steps offer virtually iden-
tical performance (for example sentiment analysis).

Significant benefits can be observed for question
answering, coming entirely from the tokenization
process (At the time this document was prepared,
the Transformers’ (Wolf et al., 2019) question an-
swering pipeline did not leverage Rust-based tok-
enizers yet). The performance of pipelines involv-
ing complex post-processing steps (text generation
with sampling and beam search) can show signif-
icant benefits. Marian-based translation models
(Tiedemann and Thottingal, 2020) exhibit a 40%
speedup (in line with the native C++ implemen-
tation (Junczys-Dowmunt et al., 2018)). The T5
implementation is faster for small effective batch
sizes (with a beam size of 6) but slower for larger
batches, indicating optimization potential remains.
In general it was observed that the actual model
forward pass (tensor operations) is comparable al-
beit slightly slower in Rust than in Python. A last
experiment (large matrix multiplication) shows the
Rust LibTorch bindings seem to be 1 to 2% slower
than the PyTorch equivalent.

6 Conclusion

Rust is a promising language for the development
of NLP systems. Its concurrency capabilities, mem-
ory safety features and modern strings data model
make it a good alternative to C++ for production
systems. While evolving quickly, the Rust NLP
open-source ecosystem still lags behind Python
rich set of libraries. Complementing the availabil-
ity of high performance tokenizers, rust-bert makes
state-of-the-art language models and end-to-end
NLP pipelines available to the Rust community.
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