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Abstract

Text normalization and sanitization are intrin-
sic components of Natural Language Infer-
ences. In Information Retrieval or Dialogue
Generation, normalization of user queries or
utterances enhances linguistic understanding
by translating non-canonical text to its canon-
ical form, on which many state-of-the-art lan-
guage models are trained. On the other hand,
text sanitization removes sensitive information
to guarantee user privacy and anonymity. Ex-
isting approaches to normalization and sani-
tization mainly rely on hand-crafted heuris-
tics and syntactic features of individual to-
kens while disregarding the linguistic con-
text. Moreover, such context-unaware solu-
tions cannot dynamically determine whether
out-of-vocab tokens are misspelt or are en-
tity names. In this work, we formulate text
normalization and sanitization as a multi-task
text generation approach and propose a neu-
ral pointer-generator network based on multi-
head attention. Its generator effectively cap-
tures linguistic context during normalization
and sanitization while its pointer dynamically
preserves the entities that are generally miss-
ing in the vocabulary. Experiments show
that our generation approach outperforms both
token-based text normalization and sanitiza-
tion, while the pointer-generator improves the
generator-only baseline in terms of BLEU4
score, and classical attentional pointer net-
works in terms of pointing accuracy.

1 Introduction

Early Natural Language Processing (NLP) faced
the long-standing limitation of human language un-
derstanding, mainly due to linguistic morphology
or the wide variance of word forms. Therefore, a
crucial requirement to obtain outstanding perfor-
mance for modern NLP systems is the availability
of “standardized” textual data (Guyon et al., 1996;

Rahm and Do, 2000). Standardizing or normal-
izing textual data reduces the domain complexity,
hence improves the generalization of the learned
model. However, there are challenges to automatic
text normalization. Natural language is by nature
evolving, e.g. Urban Dictionary1 is a crowdsourced
online dictionary for slang words and phrases not
typically found in a standard dictionary, but used in
an informal setting such as text messages or social
media posts. Moreover, abbreviations and emojis
allow humans to express rich and informative con-
tent with few characters, but troubles machine un-
derstanding. Finally, humans are prone to spelling
errors while writing or typing.

Due to the reasons mentioned above, develop-
ers have designed pre-processing techniques to
normalise textual data, including spell correction,
tokenisation, stemming, lemmatization and part-
of-speech tagging. During the years, multiple li-
braries have been proposed to facilitate such pre-
processing steps: e.g. NLTK (Bird, 2006), spaCy2

or Stanford Core NLP (Manning et al., 2014). How-
ever, as textual domains vary greatly from medi-
cal records, legal documents to social media posts,
there is no single solution or a fixed set of pre-
processing steps for text normalization. Thus, up
to date, defining a pre-processing pipeline remains
an art form which requires a significant engineering
effort. While researchers can define hard-policies
to eliminate all noisy textual data, they also consid-
erably reduce the amount of information available
to the model, thus limit its performance. Such prun-
ing approach appears problematic in the industry
where engineers tackle domain-specific problems
are given a relatively limited noisy textual dataset.

Enterprises also have to comply with multiple
policies concerning privacy. Thus, they are re-

1https://www.urbandictionary.com/
2https://spacy.io/

https://spacy.io/
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Table 1: Example of well formatted text correctly masked with simple regex rules. Note that all the reported credit
card number are artificially generated.

Unmasked Text Masked Text

i need to delete my credit card 5496-9579-4394-2954 i need to delete my credit card ****
the refund will post to your credit card ending in (8077) in
the next 3-5 business days

the refund will post to your credit card ending in (****) in
the next 3-5 business days

Table 2: Examples of text over-masked due to regex application.

Over-Masked Text Missing Information

I sent the faulty product back and provided PayPal with the tracking ***********************
USPS.

Tracking Number

I was charged a fee for a payment from my son. He owed me *** and I only received 145.90. Can
you please refund that fee to my account? Thank you

Money Amount

quired to mask or remove sensitive information
rather than cache them inside data centers. Such
sensitive information includes credit card numbers,
email addresses and Social Security Number (SSN).
Note that sanitation issues not only arise during an
offline storage/backup process of user-generated
content, but they might also happen in real-time.
For example, it is common for big enterprises to
outsource customer services, like live-chat or chat-
bot systems, to third parties. Thus, there is the
need to remove all the sensitive information before
expose the input text to any third party to prevent
information leakage. At the same time, the se-
mantic meaning of a customer’s request has to be
preserved to deliver good customer support. Enter-
prises have traditionally addressed sanitization by
defining heuristics. Such an approach is effective
over well-defined text such as official documents
and notes. As shown in Tab. 1, carefully designed
regex rules are able to properly mask content fol-
lowing a specific pattern, e.g. credit card numbers,
from a document3. Instead, in an informal setting
regex rules can fail due to the presence of typos
or sensitive information whose syntax is not ac-
counted in the predefined patterns; for example:

• “my card ending -4810 has being refused.”

• “i want to cancel my last transaction 6 9 0 8 2
0 5 7 3 D 1 4 8 0 4 3 3.”

On the other hand, rules-based approaches, begin
semantic-unaware, tend to mask most of the in-
sensitive but crucial numerical information, trou-
bling the downstream analysis. For instance, Tab. 2

3Note that all the personal information have been anoni-
mized.

demonstrates a case when a tracking number is con-
fused with a transaction number. Similarly, in the
second case, a transaction amount is confused with
a credit card number.

As mentioned, we claim that it is not possible to
define a general heuristics that correctly cover all
the corner cases while ignoring semantics. Instead,
we propose a novel approach for text normalization
and sanitization based on the recent advancements
made in NLP, specifically in Machine Translation
(MT). That is, we formulate the joint text normal-
ization and sanitization task as learning to translate
from non-canonical English to a sequence of well-
defined or masked tokens. For example, Tab. 3
demonstrates how malformed texts are translated
into a semantically equivalent sequence of well-
defined tokens with properly masked information.
To our knowledge, this is the first attempt to for-
mulate the joint text normalization and sanitization
under MT framework. In so doing, we propose a
novel network architecture for MT that can solve
this multi-task learning problem.

Moreover, we address the thorny problem of gen-
erating unseen tokens during inference in sequence-
to-sequence (seq2seq) learning by making use of
pointer networks (Vinyals et al., 2015; See et al.,
2017; Merity et al., 2016). In addition to the genera-
tor, we integrate the pointer network, a module that
learns to directly copy a specific segment within
the input text to the output sequence. Compare to
previous work, our design of the pointer is novel
as it learns to predict the start and end positions
of the correct text segment to be copied, and is
built upon the concept of multi-head attention and
positional encoding (Vaswani et al., 2017). Ex-
periments show that using a generating-pointing
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mechanism improves normalization performance
compared to a pure generating mechanism. Our
model can correctly identify and preserve most
named entities contained in the input text, poten-
tially benefits downstream analysis.

2 Related Work

The introduction of word embeddings (Hinton et al.,
1986; Mikolov et al., 2013; Goldberg and Levy,
2014) has produced a gigantic leap forward for
most NLP-related task. Traditional problems such
as vector sparsity and word interaction were solved
by a simple, yet effective, methodology that ex-
ploits a large corpus rather than a sophisticated
algorithm. However, such methods are limited by
the challenge of inferring embeddings for words
unobserved at training time, i.e. Out-Of-Vocabulary
(OOV). Such scenarios are common in many social-
media related applications where the input text is
generated in real-time. Thus, the user’s malformed
language might affect downstream performance
(Hutto and Gilbert, 2014). Another solution is to
include all the misspelling words in the training
dataset or to impose similar embeddings for all
n-character variations of a canonical word. This,
would not scale well due to the sheer amount of
such non-canonical terms; thus researchers have
studied the spelling correction problem since long
time (Church and Gale, 1991; Brill and Moore,
2000). However, traditional approaches are based
on a word-per-word basis; which has shown accept-
able results when applied to formal languages.

There have been many robust approaches to
token-level spelling correction and lemmatization.
The pioneering work done by Han and Baldwin
demonstrated that micro-phonetic similarity could
provide valuable insight to correct the spelling in an
informal context, as many of these relaxed spellings
are often based on the word’s phonetic, e.g thr
for there or d for the. Monoise (van der Goot,
2019a) generates feature-engineered n-character
candidates for a misspelt word not found in the
vocabulary and ranks them using a Random Forest
Classifier. However, to accurately identify mis-
spelt words, let alone normalizing them, optimal
approaches need to consider the whole contextual
semantics rather than the word-level morphology.
For example, the utterance Can I speak to a reel
person? is not misspelt at word-level as every word
is a valid English word. However, if we consider
sentence-level semantics, reel should be normal-

ized into real. To factor in such contextual signals,
recent advancements in NLP has considered these
sequential nature of a written language as well as
the long-term dependencies present in sentences.
Thus, the research community has proposed dif-
ferent methodologies to perform micro-text nor-
malisation based on deep learning (Min and Mott,
2015; Edizel et al., 2019; Gu et al., 2019; Satap-
athy et al., 2019). While we address the problem
of text normalisation in the NLP context, it has
also been adopted as a key component for speech
applications (Sproat and Jaitly, 2016; Zhang et al.,
2019).

Pointer Network was first proposed to solve ge-
ometric problems where the size of the output
classes is a variable not conforming to the fixed
multi-label classification of traditional seq2seq
learning (Vinyals et al., 2015). Pointer Network
becomes widely adopted in many NLP tasks in-
cluding machine translation (Gulcehre et al., 2016),
abstractive summarization (See et al., 2017) and
language modeling (Merity et al., 2016) as it aids
accurate reproduction of factual details such as un-
seen proper nouns commonly treated as OOVs.
However, existing works formulate the pointing
operation as a single position classification task
that returns one word (token) position in the en-
coding sequence to be copied to the decoding se-
quence. Such formulation is no longer suitable
for our char-to-word strategy. Furthermore, with
the recent state-of-the-art in seq2seq learning in-
troduced by the Transformer architecture, there
has not been a comprehensive comparison between
different attention strategies, i.e. the classical at-
tention mechanisms (Luong et al., 2015) and multi-
head attention (Vaswani et al., 2017) on this point-
ing objective.

Finally, none of the previous research considered
the joint privacy-preserving issue, which is com-
mon in commercial NLIs such as virtual agents
for customer services. To the best of our knowl-
edge, (Sánchez et al., 2012) is the first model that
attempted to solve the sanitization problem at a se-
mantic level, without using a rule-based approach
(Sweeney, 1996). However, the former approaches
are based on manually defined policies that are
application and context-specific or are limited to
named entities; thus are not generalizable across
domains and applications.
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Table 3: Example of malformed input text is normalized in the output. Note that the tracking number is mapped to
an unknown token while the transaction id is masked for security/privacy reasons.

Input Text Output Text

D show jst gettin started. the show is just getting started .
R u thr ? are you there ?
Why it is my transaction with id 781243692BSD0433 on hold ? why it is my transaction whith id <msk> on hold ?
I can’t enter the tracking number 781243692BSD0433 for a refund. i can not enter the tracking number <unk> for a refund

3 Problem Formulation

Neural seq2seq models (Sutskever et al., 2014;
Cho et al., 2014; Vaswani et al., 2017) became
the de facto standard for machine translation sys-
tems. Such models are composed by an encoder-
decoder architecture which takes an input sequence
x = [x1, ..., xM ] and generate the desired output
sequence y = [y1, ..., yN ] according to the con-
ditional probability distribution P gen

θ (y|x), where
θ stands for the model parameters. Due to their
well-designed factorisation of P gen

θ (y|x) based on
an autoregressive approach:

P
gen
θ (y|x) =

N∏
t=1

Pθ(yt|yt−1, ..., y1,x). (1)

seq2seq models have been proven capable of solv-
ing the translation task with outstanding results.
However, in the traditional MT settings x and y
are tokens’ sequences of different languages, in-
stead, in our context y represents the same input
sentence, but rewritten in a formal and anonymised
language.

In addition to the next token generation objective,
we formulate the pointing objective as outputting
two sequences of start positions us = [us1, ..., u

s
N ]

and end positions ue = [ue1, ..., u
e
N ] of the input

encoding sequence where usi , u
e
i ∈ [1, ...,M − 1].

Similar to y, us and ue are chosen according to the
conditional probability distributions P pt-start

θ (u|x)
and P pt-end

θ (u|x) which can be factored as:

P
pt-start
θ (ue|x) =

N∏
t=1

P
pt-start
θ (ust |yt−1, ..., y1,x),

(2)

P
pt-end
θ (us|x) =

N∏
t=1

P
pt-end
θ (uet |yt−1, ..., y1,x).

(3)
Note that the factorisation proposed in Eq. 2

(and 3), convert the intractable estimation of us

conditioned on x in a sequence of classification
tasks over the sequence length (M ) predicting ust
based on the previous predictions y<t.

Finally, we learn the optimal θ by maximizing
the joint likelihood of the distribution for gener-
ative normalisation and sanitisation, P gen

θ (y|x),
and the distribution for pointing to the start and
end positions for normalisation, P pt-start

θ (us|x),
P

pt-end
θ (ue|x). In other words, our optimisation

problem is the minimization of the well-known
cross-entropy loss:

θ∗ = argmin
θ
−

T∑
t=1

[
ŷt logP

gen
θ (yt|y<t,x)

+ ûst logP
pt-start
θ (ust |y<t,x)

+ ûet logP
pt-end
θ (uet |y<t,x)

]
.

(4)

4 Proposed Method

4.1 Generator
It is possible to formalise the text normalisation
task as a seq2seq problem, where malformed En-
glish is translated in well-defined English. In lit-
erature seq2seq (Sutskever et al., 2014) models
and the similar Memory Networks (Gulcehre et al.,
2017; Weston et al., 2014; Graves et al., 2014) have
been widely applied to multiple tasks such as ma-
chine translation (Vaswani et al., 2017; Cho et al.,
2014) , language inference (Sukhbaatar et al., 2015;
Devlin et al., 2018; Dai et al., 2019), question an-
swering (Devlin et al., 2018; Yang et al., 2019) and
more. Still, in most cases, the model is expected to
serve at a single granularity level: i.e. sequence of
words to sequence of words (W2W), char-to-char
(C2C) or subword-to-subword (Sw2Sw). While
this guarantees consistency, these approaches are
not suitable for our application. On the one hand,
the limited vocabulary size is the main advantage
of a C2C approach, but it is more computationally
expensive and might generate misspelt words.

On the other hand, a W2W setting is affected
by the huge vocabulary size and by the OOV prob-
lem, but it guarantees grammatically correct words.
Thus, we propose to use a char-to-word (C2V) strat-
egy, where the input sequence is handled as a string
of characters, but the output is generated as a dis-
tribution over well-formed words. Such a design
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Figure 1: Model architecture. The left part represent a bidirectional encode based on the Transformer architectuGre,
while the right part represent an auto-regressive decoder with pointing capabilities also based on the Transformer
architecture. Note that, for each decoder timestep, the probabilities of the ith position in the encoder being the
start and end positions are calculated from the start and end pointer distribution. The pointer and vocabulary
distribution are derived from the encoder hidden states of the input text and decoder hidden states of the partial
output text.

enables us to handle any input string, solving the
problems related to spelling errors while certifying
well-formed output. However, it imposes also some
challenges; e.g how to embed conceptually differ-
ent objects in the same low dimensional space, or
how to learn time dependencies inside a long se-
quence of characters are only the major problems.

As shown in Fig. 1, given the input embedding
of a sequence of characters x = [x1, ..., xM ], we
can formally define an encoder as:

q,k,v = xWq,xWk,xWv, (5)

z = f(q,k,v) (6)

where f(·) is a bidirectional Transformer as defined
in (Devlin et al., 2018). Similarly, given the output
embedding of a sequence of words y = [y1, ..., yN ]
the decoder is defined as:

q′,k′,v′ = yW′q,yW′k,yW′v, (7)

ht = f ′(q′,k′,v′, z) (8)

where f ′(·) is a traditional Transformer decoder ap-
plied in an auto-regressive settings as in (Vaswani
et al., 2017). Note that, we are differentiate from
the original implementation as we adopt a C2W
approach.

4.2 Pointer

We address the limitation of generating unseen to-
kens in our design of the pointer network. As our
generator module predicts a token from a fixed dic-
tionary (vocabulary), it fails to normalise OOVs.
We add a pointer module to our neural network
that allows it to copy a segment of the input text
if an unknown word is detected. Although previ-
ous works designed their pointer module to point
to a single position, for our char-to-word learning
problem where each position indicates a character,
we propose to jointly point to a start and an end
position, while coping all characters in-between.
As the output token often consists of consecutive
characters, this strategy effectively avoids copying
a long continuous character sequence over multiple
steps.

Formally, at the decoder timestep t, we learn
to output the start position ust and end position
uet by maximisation of Eq. 2 and Eq. 3 respec-
tively. The pointer distribution for the start po-
sition is a function of the encoder representa-
tion z and the decoder representation ht at t, or
P

pt-start
θ (ust |y<t,x) = gs(ht, z). Given that, we

can formally define the attention mechanism of the



42

Transformer architecture as:

attni(q,k) = softmax(
qi · kTi√
dK

), (9)

z = [attn0(q,k), ..., attnN (q,k)]WO

(10)

where dK stands for the output dimension of Wk,
[·, ..., ·] is the concatenation of N different attention
heads and WO is a linear transformation.

Our pointer distribution can be formulated as
the attention probability of the last decoder hidden
state at timestep t towards each position of the
encoder hidden state z. Specifically, we treat ht
as the query vector q; while z is the key sequence
k in Eq. 10. We derive the probability of the i-th
position of the encoding sequence being the start
position as:

gsi (ht, z) = [attn0(ht, z), ..., attnN (ht, z)]iWs.

Notice that unlike the original multihead attention,
we did not concern about the value sequence v, but
we directly use the attention output to detect the
pointing position. Similarly, we define the proba-
bility of the j-th position being the end position to
copy as:

gej (ht, z) = [attn0(ht, z), ..., attnN (ht, z)]jWe.

5 Experiments

We conducted 3 experiments to verify the effective-
ness of our proposed model. 1) For improved joint
normalization and sanitization, we compare our
context-aware model with: 1.1) a traditional token-
level lemmatizer and spelling corrector, and 1.2) a
LSTM W2W encoder-decoder model. 2) For im-
proved normalization of proper nouns, we compare
our multi-head attentional pointer-generator with
2.1) a generator-only and a pointer-only baseline,
and 2.2) the traditional attention encoder-decoder
model. 3) Finally, to address the utility of text
normalization we evaluate the performance’s im-
provement obtained on a text classification task
with or without text normalization.

The seq2seq transformer architecture we used
has 4 attention heads and 5 layers with 100 hidden
units. The maximum number input characters and
output words are 600 and 300 respectively. Dur-
ing evaluation we maintain a beam size of 3. We
determine the correct positions for the pointer net-
work by matching any output word to its character

Table 4: The datasets’ statistics used for evaluation.

Conversational Classification

Total size 66151 17851
Training Set 54110 6851
Validation Set 6020 5500
Test Set 6021 5500

list if the characters appear consecutively in the
input character sequence, and noting the start and
end position of that character list. Words whose
characters are not found consecutively are assign
a start and end position of 0 (the beginning of the
sequence). We fix the start and end position to the
nearest left and right space respectively in the in-
put character sequence to select a complete word.
We use the pointer output instead of the genera-
tor output whenever the predicted probability for
generation is less than 0.6.

5.1 Datasets

We conducted the experiments on two datasets:
• The former dataset contains conversations oc-

curred between a customer and a live-chat agent.
Human annotators provide the normalized and san-
itized version as ground turth. We will refer to
this as the Conversational dataset and use it for the
evaluation of the first two experiments.
• The later one contains utterances collected

from a task-oriented chatbot service where cus-
tomers interact with an agent to solve 27 possible
tasks. Each utterance has been manually inspected
and assigned to one of the possible class. We will
refer to this as the Classification datasets and we
will adopt it for the last experiments in Sec. 6.3.

We report the dataset statistics in Tab. 4 and the
detailed descriptions in Sec. 8.1.

5.2 Baselines

We adopted two baselines to benchmark the abil-
ity of the proposed model in the task of normaliz-
ing and sanitizing a sentence. The first baseline,
Monoise (van der Goot, 2019b) – a lexical normal-
ization tool, is adopted to confirm our model’s ef-
fectiveness over token-based approaches. Monoise
performs normalization via two subtasks: candi-
date generation and candidate ranking. The first
subtask uses heuristics to select potential normal-
ized forms of each token, including nearest neigh-
bors in word embedding space, edit distance and
phonetic distance, and crafted lookup list derived
from training, and more. The second subtask first
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Table 5: Performance of our proposed Transformer ver-
sus baseline in text normalization and sanitization.

Systems Normalization Sanitization
BLEU4 WER BLEU4 WER

Monoise 0.9536 0.0206 - -
LSTM 0.9955 0.0015 0.9827 0.0076

Transformer
(Our model) 0.9986 0.0007 0.9880 0.0052

engineers features for each candidate, including
word embedding distance, n-gram probability, char-
acter order, and more. This baseline is used to
demonstrate the improvement of our approaches
over a heuristic token-based model not only in
terms of effectiveness but also efficiency.

The second baseline, LSTM implemented using
Fairseq (Ott et al., 2019), is used to highlight the ef-
fectiveness of our char-to-word Transformer-based
proposal over traditional word-to-word RNN.

Based on the previous research done in the MT
filed, we report the test performances of normaliza-
tion and sanitization in terms of BLEU4 and Word
Error Rate (Klakow and Peters, 2002) (WER). The
experiment results are described in Tab. 5.

We also (2.1) compare the performance of
our proposed pointer-generator model against
generator-only model in text normalisation objec-
tive and, (2.2) compare multi-head attention against
classical attention mechanisms described in a pre-
vious work (Luong et al., 2015). The alternative
attention formulation considered for benchmarking
are:

• General attention
gsi (ht, z, θs) = hTt Wszi

gei (ht, z, θe) = hTt Wezi

• Concat attention
gsi (ht, z, θs) = vTs tanh(Ws[h

T
t , zi])

gei (ht, z, θs) = vTe tanh(We[h
T
t , zi]).

Note that, for an overall comparison of the dif-
ferent network architectures considered we used
the BLEU4 score. Instead, to evaluate the pointing
mechanisms, we compute the accuracy score of
the start and end position w.r.t. the correct text’s
segment, as well as the improved F1 score of the
proposed model and baselines. The experiment
results are described in Tab. 7.

Finally, the classification is done using a linear
classifier with a bag-of-word approach; which is a

common settings in the industry. The performance
are evaluated in terms of accuracy and F1 score.
The results are reported in Tab. 9.

6 Results and Evaluation

6.1 Generator

At the macro-scopic level, all translation models,
i.e. LSTM and the proposed Transformer-based
out-perform Monoise. Specifically, our model out-
performs Monoise by 0.045 absolute margin or re-
duces the error by 33 times in terms of BLEU4
score. In terms of WER, the result is perfor-
mance is consistent where our model reduces the
error by 0.02 or by 29 times. Overall, this high-
lights the improvement of context-aware translation
models from context-unaware token-based lemma-
tizers. We also highlight the superiority of our
Transformer-based architecture over the RNN base-
line. On normalization task, it is able to reduce
LSTM’s error by approximately 3 times in terms of
BLEU4 and 2 times in terms of WER. On Sanitiza-
tion task, the proposed model consistently reduces
LSTM’s error by approximately 1.5 times in terms
of both BLEU4 and WER.

For a deeper understanding of the models behav-
ior, we examine the results at micro-scopic level
in Tab. 6. We observe that in the first example,
Monoise, being unaware of the context, normalize
shipping address to ship address. This can be con-
fusing as the phrase shipping address specifically
means the delivery address of a package, while ship
address possibly means the docking location of a
large watercraft. Instead, the proposed model is
able to consider the contextual information such
as my order, indicating a package to be delivered,
and leave the word shipping as it is. In the second
example, Monoise leaves the word real unlemma-
tized as reel is an existing English word. However,
when we factor in the context of virtual agent and
the followed word person, normalizing reel as real
is more sensible. Overall, also the analysis of the
last example demonstrate how the proposed model
is able to consider the semantics of an utterance;
which eventualy lead to a better results w.r.t. a
token-based approach.

6.2 Pointer

As shown in Tab. 7, all the networks with pointing
capabilities outperform the Generator-only base-
line in terms of BLEU score. Multihead Pointer-
Generator improves Generator-only model by the
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Table 6: Test examples highlight the behaviours of different methods. Note that, misspelled phrases are highlighted
in red and correctly normalised phrases are highlighted in blue.

Input Text Transformer (Our model) Monoise

shipping address is incorrect on my or-
der.

shipping address is incorrect on my or-
der .

ship address is incorrect on my order .

can i speak with a reel person? can i speak with a real person ? can i speak with a reel person ?
i had money that was refunded to me
and i tried sending to my bank account
but its was on hold

i have money that was refund to me and
i try send it to my bank account but it
was on hold

i have money that was refund to me and
i try send it to my bank account but it is
was on hold

Table 7: Performance of our proposed Multihead Pointer-Generator versus baselines in text normalisation. The
Pointer Start Acc. and Pointer End Acc. denote the accuracy of each system in pointing to the correct start and end
position. The Generating F1 denotes the F1 score of each system in generating the correct next token.

Systems BLEU4 Pointer Start Acc. Pointer End Acc. Generating F1

Generator-only 0.9532 – – 0.9243
General Pointer-Generator 0.9583 0.7083 0.7084 0.9229
Concat Pointer-Generator 0.9582 0.707 0.7065 0.928

Multihead Pointer-Generator 0.9606 0.7076 0.7076 0.9334

Table 8: Test examples highlight the behaviours of different methods.Note that: misspelled phrases are
highlighted in red, correctly normalised phrases are highlighted in blue, mishandled OOVs are highlighted in
gray, and, correctly pointed OOVs are highlighted in green.

Input Text Generator-only Output Pointer-only Ouput Pointer-Generator Output

sennd mony from PayPal
to venmo account

send money from PayPal to
UNK account .

sennd mony from PayPal to
venmo account .

send money from PayPal to
venmo account .

how can I conect my
venmo account with hsbc
and citibank account?

how can i connect my UNK
account with hub and UNK
account ?

how can i conect my venmo
account with hsbc and
citibank account ?

how can i connect my venmo
account with hsbc and
citibank account ?

followw PayPal on twitter follow PayPal on UNK . followw PayPal on twitter . follow PayPal on twitter .

largest absolute margin of .0074 or 15.8% error
reduction, compared with .0061 absolute margin or
10.89% error reduction and 0.006 absolute margin
or 10.68% error reduction from General and Con-
cat Pointer-Generator respectively. These statics
confirm our hypothesis that jointly using a pointing
and generating mechanism improves the perfor-
mance of neural models. Moreover, our Multihead
Pointer-Generator being highly compatible with
the end-to-end transformer-based architecture is
the most effective amongst the proposed pointer-
based models.

We further seek to understand the improvement
brought about by our proposed Multihead Pointer-
Generator by examining its accuracy in pointing
to the correct start and end positions of the text
segment to be copied. Experiment results from
Pointer Start Acc. and Pointer End Acc. Table 8
suggest that there is no significant difference in
pointing to the correct positions between the three
pointer models. However, the Multihead Pointer-
Generator shows a performance boost in terms of

Table 9: Classification performances with and without
text normalized and sanitized input.

Systems Accuracy F1 score

with text-norm 0.7696 0.7175
without text-norm. 0.7583 0.6855

F1 score, where our proposed model enhances the
Generator baseline by 0.0091 absolute margin or
12.02% error reduction. This is significantly higher
than the changes brought about by General (+1.84%
error), and Concat (+4.89% error). This implies
that our network design is capable of enhancing a
traditional Generator-only module when applied
to the text normalisation tasks.

6.3 Classification

Finally, we want to evaluate if text normalization
and sanitization is also beneficial for downstream
tasks. That is, we hypothesized that a normalized
and sanitized utterance would be easier to process
by another model such as a text classifier. Re-
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cent advancement in NLP claims that BERT-like
models can easily overcome limitations related to
misspelling errors due to their tokenization and
pre-training process. However, such models are
computational expensive thus are not yet widely
adopted in commercial applications that require
high-throughput like chatbot services.

It has to be noted that our Conversational dataset
contains a broader set of topics and a more varie-
gate lexicon than this dataset. Thus, for this experi-
ment, we directly apply the best performing model
of task 1 and 2 to obtain a normalized and sanitized
version of the input utterances.

Tab. 9 reports the impact of text normalization
and sanitization on a downstream text classifica-
tion task in our NLI that requires strong natural
language understanding. Overall, our proposed
model yields a relative improvement of +1.08%
in terms of accuracy and +4.67% in terms of F1

score. This indicates that text normalization is ben-
eficial in detecting the classes characterized by a
limited amount of training examples.

7 Conclusion

We addressed the importance of context awareness
in joint normalization and sanitization. We veri-
fied our C2W Transformer-based model’s quality
over context-unaware word-level lemmatizer and
traditional W2W seq-to-seq model at both macro-
scopic and microscopic level. Moreover, we tack-
led the limitation of representing and producing
OOVs during generation with a pointer-generator
that learns to copy the relevant text segments from
the source input to the translated output. Experi-
ments at both macroscopic and microscopic level
verified improved normalization and sanitization
fluency previously limited by OOVs.

Our formulation of text normalization as a
learning-to-translate problem avoids the tedious en-
gineering of domain specific preprocessing heuris-
tics for textual data. The proposal of pointer-
generator is highly generalizable to other NLP tasks
such as summarization or machine translation.
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8 Appendix

8.1 Dataset Details

As described in Sec. 5.1, we adopted two distinct
datasets in our evaluation. Here we are going to
describe their characteristics and the annotation
process used.

Conversational Dataset
As over-mentioned, this dataset is formed by utter-
ances collected from a chat service where clients
interact with customers service agents. Note that
such conversations happen in real-time. Thus they
contain a huge variety of topics as well as a huge
lexicon. Clients can access this chat service from
any device, this translate in many syntactic errors
present in the utterances as well as an informal lan-
guage. All the above considerations suggest that
many customers adopt mobile devices to interact
with these services. The topics covered in such con-
versations can vary from issues related to financial
services to trust problem, which involves third par-
ties not directly participating in the conversations
or general chitchatting.

Human annotator has been used to reduce each
word o its canonical form, i.e. lemmas. In contrast,
misspelt words and sensitive/personal information
are corrected or masked according to the contex-
tual meaning of the conversation. Note that this
labelling process contains little uncertainty; thus,
we used a single annotator per utterance to max-
imise the dataset size.

Classification Dataset
The second dataset is a traditional text classifica-
tion dataset collected from a task-oriented chatbot
system where customers can interact with a chatbot
agent to solve 27 possibles task. Note that the user
interface is equal for both dataset, but in this case,
instead of a human agent, there is a chatbot agent.
It has to be noted that we collect only the first ut-
terance typed from the customer since it is the only
part needed to classify the customer’s need on the
27 classes correctly.

3 skilled annotators have manually annotated
each utterance, and we have discharged all the ut-
terances that do not present 100% of agreement.
The classes used in this dataset are a subset of the
topics appearing in the previous dataset. For exam-
ple, we have classes related to transactions status,
transactions that are declined, dispute for item not
received, scam emails or problems related to the ac-

count of a customer. Note that, if the chatbot is not
able to address the customer’s need the conversa-
tion would be redirected to an human agent. Thus,
a system able to normalize and sanitize utterances
from the live-chat service (Conversational dataset),
would be directly applicable also to this dataset.


