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Abstract
The choice of the corpus on which word embeddings are trained can have a sizable effect on the learned representations, the types of
analyses that can be performed with them, and their utility as features for machine learning models. To contribute to the existing sets of
pre-trained word embeddings, we introduce and release the first set of word embeddings trained on the content of Urban Dictionary,
a crowd-sourced dictionary for slang words and phrases. We show that although these embeddings are trained on fewer total tokens
(by at least an order of magnitude compared to most popular pre-trained embeddings), they have high performance across a range of
common word embedding evaluations, ranging from semantic similarity to word clustering tasks. Further, for some extrinsic tasks such
as sentiment analysis and sarcasm detection where we expect to require some knowledge of colloquial language on social media data,
initializing classifiers with the Urban Dictionary Embeddings resulted in improved performance compared to initializing with a range of
other well-known, pre-trained embeddings that are order of magnitude larger in size.
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1. Introduction

Word embeddings provide useful representations of the
meanings of words in the form of vectors, and have become
the de-facto mapping from tokens to fixed-length continu-
ous inputs formachine learningmodels in the field of natural
language processing. These vectors can be randomly initial-
ized and subsequently learned from the training data for a
specific task. However, the ability to pre-train embeddings
on a large corpus in an unsupervised way is a powerful
technique for transferring generally applicable, word-level
semantic information from these massive corpora to a wide
range of downstream tasks. Especially in settings with a
smaller amount of domain-specific training data, initializ-
ing models with these pre-trained embeddings can provide
useful representations for words that may not have been seen
in the training data and help models converge more quickly
during training time. As training time is reduced, the fact
that these models can be trained once and subsequently
shared with other researchers reduces the environmental
impact of having each team of researchers recompute new
embeddings, placing the paradigm of training and sharing
within the principles of Green AI (Schwartz et al., 2019).
When training word embeddings, there are a number of al-
gorithms and parameters to choose from and tune, but it
has also been shown that the choice of corpus on which to
pre-train is also extremely important (Nooralahzadeh et al.,
2018; Risch andKrestel, 2019). This not only affects the vo-
cabulary – and therefore the coverage – of the embeddings,
but also shifts the meaning of other words to match the way
that they are used in the corpus. For certain cases, such
as the modeling and analysis of more descriptive mood and
sentiment topics (Fast et al., 2016) or for cases in which the
application domain greatly differs from typical large web or
news corpora (Silva and Amarathunga, 2019), the choice of
pre-trained word embeddings may have an impact on both
model performance and the ability to analyze results. That
is, embeddings learned from different corpora also provide

researchers with the ability to analyze the distributional se-
mantics of the words as they appear in that specific corpus,
allowing for comparisons of learned representations across
different corpora (Tan et al., 2015).
Several important sets of pre-trained word embeddings have
been released and leveraged in multitudinous applications
(Mikolov et al., 2013; Pennington et al., 2014; Mikolov et
al., 2018). Typically, these have been trained on large news,
web, or social media corpora, with the aim of learning rep-
resentations for a wide range of use cases. In these cases, the
embeddings are mostly learned from examples of the words
being used in context, rather than text that specifically de-
scribes their meaning. In light of this, some have made use
of human curated dictionaries with explicit word definitions
as a training source for word embeddings (Tissier et al.,
2017; Bosc and Vincent, 2018), especially in cases of rare
words (Pilehvar and Collier, 2017), which would typically
be treated as out-of-vocabulary by embedding models that
did not receive these words as input during training.
In this paper, we focus on training a set of word embeddings
to specifically capture the one important category of these
less common words: slang and colloquialisms. To accom-
plish this, we introduce and release the first set of word
embeddings trained on the entire content of Urban Dic-
tionary1, which is a crowd-built online English language
dictionary. On Urban Dictionary, the moderation of content
added to the resource itself is also managed by the crowd,
and so definitions range from serious descriptions of slang
terms to those that are outright offensive, inappropriate, or
incorrect.
We show that although these embeddings are trained on
this type of noisy data, containing fewer total tokens (by
at least an order of magnitude) compared to most popular
pre-trained embeddings, they have comparable, and in some
cases better, performance across a range of common word
embedding evaluations. In addition, in several extrinsic

1 https://www.urbandictionary.com/

https://www.urbandictionary.com/
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tasks that we expect to require some knowledge of col-
loquial language, including sentiment analysis and sarcasm
detection, initializing our models with the Urban Dictionary
Embeddings resulted in higher accuracy and F1-scores than
when using a range of other well-known, pre-trained em-
beddings. Lastly, we provide some examples of the word
associations learned by these embeddings, which provide
a glimpse into the types of semantics captured by these
embeddings.
We provide two versions of the Urban Dictionary embed-
dings publicly, which we believe act as a valuable language
resource for multiple natural language processing (NLP)
tasks, especially those that deal with slang text. Our em-
beddings can be freely downloaded.2

2. Related Work
2.1. Corpora for Word Embeddings
Often with the goal of producing generally applicable word
embeddings, many popular pre-trained word embeddings
have been fit to large and diverse corpora of text from the
web such as the Common Crawl.3 In other cases, news
articles (Mikolov et al., 2013) or encyclopedic text (Pen-
nington et al., 2014) have been used, providing sources of
data that are typically more formal, less prone to spelling
and grammatical errors, and have high coverage over a range
of well-defined topics. With the rise of social media as an
important source of text corpora for social analysis and the
study of everyday language, several sets of pre-trained em-
beddings have been released that are specifically tailored for
this type of data (Pennington et al., 2014; Godin et al., 2015;
Shoemark et al., 2019) leading to improved performance on
classification tasks in this domain, and creating new oppor-
tunities to analyze the language of social media. Our work
in this paper adds another useful set of embeddings that
we hope will lead to similarly innovative new results and
analyses.

2.2. Embeddings for non-standard tokens and
expressions

When training word embeddings, the representation for a
specific word is learned from the many contexts in which
that word appears. This lead to challenges when build-
ing representations for rare words, or words that may not
appear at all in corpora that are used for pre-training. A
simple solution is to treat extremely rare or unseen words
as out-of-vocabulary (OOV) and representing them with a
standard OOV vector, such as the average of all vectors for
words in the vocabulary. However, previouswork has shown
that these issues can also be partially addressed by compos-
ing the meaning of these words using subword embeddings
(Bojanowski et al., 2017), or by learning separate represen-
tations for high and low frequency words (Sergienya and
Schütze, 2015). Another line of works seeks to expand
the coverage of word embedding models by providing them
with adequate training data from which to learn valid rep-
resentations for some of these rarer words, or other tokens
like emoji (Eisner et al., 2016). Additionally, recent work

2 http://smash.inf.ed.ac.uk/ud-embeddings/
3 https://commoncrawl.org

has shown that the meaning of non-compositional multi-
word expressions are, as should be expected, difficult to
derive from the set of the phrases’ constituent word vec-
tors, even for state-of-the-art systems (Shwartz and Dagan,
2019). This implies that it should be useful to sometimes
learn embeddings of these phrases themselves, which has
been done by treating short phrases as single words when
learning embeddings for them (Mikolov et al., 2013). We
take a similar approach in our work, but we use the structure
of Urban Dictionary to guide the selection of phrases to be
joined together, as discussed further in section 3.2.1.

2.3. Research using Urban Dictionary
Prior work has already focused on the study of Urban Dic-
tionary as a corpus (Nguyen et al., 2018), finding that the
platform has shown steady usage since its inception in 1999,
and that the definitions capture a mixture of opinions, hu-
mor, and true meanings of the defined headwords. The au-
thors also found skewed distributions in terms of the number
of definitions per word and votes per entry, which we also
verify in Section 3.1.. However, in our work, we do not at-
tempt to address the skewness issues, rather, we take Urban
Dictionary “as is” as a corpus of language in order to in-
vestigate how well distributional semantic models can learn
useful representations from this resource in its raw form.
Aside from the study of the linguistic content of Urban Dic-
tionary, it has also been shown that the information present
in Urban Dictionary can be valuable for downstream ap-
plications. In an entity linking system, Urban Dictionary
was used for query expansion: entity strings looked up in
Urban Dictionary, and when present, the tags associated
with the entry were used to identify additional query terms,
leading to increased accuracy on an entity linking task (Dal-
ton and Dietz, 2013). In another study, researchers trained
a sequence-to-sequence model to generate plausible expla-
nations for nonstandard English terms by training on data
collected from Urban Dictionary. Urban Dictionary was
also used as a resource for determining the approximate
date that new terms were used and defined in a study of
lexical emergence in Modern English (Grieve et al., 2017).

3. Data and Methodology
3.1. Urban Dictionary as a Corpus
Urban Dictionary (UD) is a crowd-sourced dictionary for
(mostly) English-language terms or definitions that are not
typically captured by traditional dictionaries. In the best
cases, users provide definitions for new and emerging lan-
guage, while in reality, many entries are a mix of honest
definitions (“Stan: a crazy or obsessed fan”), jokes (“Shoes:
houses for your feet”), personal messages (“Sam: a really
kind and caring person”), and inappropriate or offensive
language (Nguyen et al., 2018). Each entry, uploaded by
a single user, contains a term, its definition, examples, and
tags (Figure 1). Further, those who view the definition have
the opportunity to provide other definitions to the entry
and/or also provide a vote in the form of a “thumbs-up” or
a “thumbs-down”, and these votes are recorded and used
to rank the possible definitions for a given term when it is
looked up in Urban Dictionary. Entries in the Urban Dic-

http://smash.inf.ed.ac.uk/ud-embeddings/
https://commoncrawl.org
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Figure 1: Example entry on Urban Dictionary, including
the head word (1), definition (2), usage examples (3), tags
(4), user and date (5), and upvote and downvote counts (6).
Words and phrases in color that are also bold and underlined
indicate links to other entries on Urban Dictionary.

Figure 2: Number of definitions per head word in Urban
Dictionary (log scale).

tionary can be for a singular word, a phrase (e.g. “spill the
tea”, Figure 1), or an abbreviation (e.g. “brb” and “FYI”).
For every entry in Urban Dictionary, we crawl and store
all of the aforementioned information, resulting in a total
of approximately 2 million unique defined terms with an
average of 1.8 definitions per term, with the full histogram
of the number of definitions per term presented in Figure
2. This data collection includes an up-to-date version of
Urban Dictionary as of October 16, 2019. In order to get a
high-level understanding of the data, we also visualize the
length of each definition (Figure 3) and plot the upvotes and
downvotes assigned to the full set of definitions (Figure 4).
We note similar skewness in these figures as was reported
in earlier analysis of Urban Dictionary data (Nguyen et al.,
2018).

3.2. Training Urban Dictionary Embeddings
When training embeddings using standard word embedding
approaches, a corpus of running text is required. Therefore,
we create a copy of Urban Dictionary in which each entry
is represented as a paragraph containing the headword, def-
inition, examples, and tags, each being treated as a separate
sentence. This way, the distributional based approaches to
learning embeddings will be able to access all elements of
an entry when learning representations for the headword,

Figure 3: Number of words per definition in Urban Dictio-
nary (log scale).

Figure 4: Counts of upvotes and downvotes per entry on
Urban Dictionary, with histograms (log scale).

as well as all of the other words that appear in the def-
initions, examples, and tags. Additionally, we lowercase
all text, remove the # character from the tags, and remove
punctuation.
We use the fastText framework (Mikolov et al., 2018)4 in
order to train our embeddings on Urban Dictionary. We
train our models for 10 epochs using the skipgram architec-
ture and maintain several parameters that were used in the
publicly released fastText-CC embeddings: window size of
5, a negative sampling rate of 10, and a word-level dimen-
sionality of 300. We experiment with models that include
subword embeddings of 3 to 6 characters and those that do
not use subword representations.

3.2.1. Treatment of Multi-word Expressions
Since many of the headwords in Urban Dictionary are ac-
tually phrases, we expect that the treatment of multi-word
expressions may be important in our training. We experi-
ment with two approaches.

4 https://fasttext.cc/

https://fasttext.cc/
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In UD-base, we tokenize the entire corpus as normal, and
provide no explicit guidance about how to join phrases dur-
ing training time. We do allow the fastText model to learn
representations for word n-grams with a length of up to five.
In UD-phrase, we join all phrases defined in Urban Dictio-
nary in order to learn embeddings for each of these phrases.
To achieve this, we build a list of all multi-word expressions
that are used as headwords in Urban Dictionary, and replace
all occurrences of these phrases with a single string rep-
resenting the entire phrase (by replacing whitespace with
the underscore character). We make these replacements
globally throughout the corpus when training the embed-
dings, so any occurrence of these phrases in the definitions,
examples, or tags will also be joined.
When multiple possible phrases match a specific sequence
of words, we greedily choose the longest matching phrase
within a given span of text. For example, if “the_best”,
”friend_ever”, and ”best_friend_ever” are all possiblemulti-
word expressions, and a document contained the string “she
was the best friend ever”, the joined version would be “she
was the best_friend_ever” since this is the longest of the
overlapping phrases (measured in total number of charac-
ters).

4. Evaluating the Urban Dictionary
Embeddings

We explore the utility of our Urban Dictionary embeddings
across a range of intrinsic tasks that directly evaluate the
semantics captured by the embeddings. Then, since it has
been shown that intrinsic tasks alone to not provide an ade-
quate picture of the utility of word embeddings (Chiu et al.,
2016; Faruqui et al., 2016), we test impact of using these
embeddings to extract features for several downstream clas-
sification tasks that have the potential to benefit from better
representations of colloquial language.
We compare a set of pre-trained English language embed-
dings,5 including those trained using the word2vec model
on the large Google news corpus (Mikolov et al., 2013),
two sets of GloVe vectors (Pennington et al., 2014): those
trained on web text and those trained on Twitter data, and
the publicly released fastText embeddings (Mikolov et al.,
2018) trained on web data, which are especially important
for comparison given the fact that we also train our embed-
dings using the fastText library. Details including the size of
the training data for each of these sets of pre-trained vectors
are presented in Table 1.

4.1. Intrinsic Tasks
First, we evaluate all embeddings across a range of intrin-
sic evaluation tasks (Jastrzebski et al., 2017) that cover two
major categories: semantic similarity, and clustering (Table
2).6 For the word-level semantic similarity tasks, the goal is
to produce a similarity or relatedness score given a pair of

5 Avariety of other pre-trained word embeddings were considered,
but they consistently underperform the set that we present here
on our set of intrinsic tasks.

6 We used code from the web package, located at:
https://github.com/kudkudak/
word-embeddings-benchmarks to run the intrinsic
evaluation tasks.

Corpus Tokens Vocab size Dim.
word2vec-gnews News 100 B 3 million 300

fastText-CC Web 600 B 2 million 300
GloVe Web 42 B 1.9 million 300

GloVe-Twitter Twitter 27 B 1.2 million 200
UD-base UD 200 M 540,000 300

UD-phrase UD 200 M 830,000 300

Table 1: Popular word embeddings have typically been pre-
trained using tens or hundreds of billions of tokens, whereas
Urban Dictionary embeddings were trained on a few hun-
dred million.

tokens. For a set of pairs, the machine generated scores are
compared against human-generated gold labels by comput-
ing the correlation between the two lists of produced labels.
To directly evaluate the ability of the embeddings to capture
semantic relatedness, we compute the cosine similarity be-
tween the embeddings for each word in the pair, and use this
value as the machine generated score. The tasks consid-
ered each select the word pairs from different domains, and
some have human annotations for slightly different dimen-
sions of semantic similarity. The Wordsim-353 dataset was
annotated for both strict similarity and general relatedness,
allowing us to explore the embeddings’ ability to capture
each dimension in a controlled setting.
In the clustering tasks, groups of words have been manu-
ally sorted based on their semantic properties, and the goal
is to recover the original clusters in an unsupervised way
using information encoded in the pre-trained word embed-
dings. For each of these clustering, or categorization tasks,
we use both K-means and hierarchical agglomerative clus-
tering methods (Pedregosa et al., 2011) to produce a set of
K clusters, where K is the number of categories that exist
in the dataset. We then compute the cluster purity scores
and report the higher score between the two clustering ap-
proaches for each dataset.
Whilewe initially consider word analogy tasks as a third cat-
egory of intrinsic evaluation, a growing body of recent work
has shown that these tests are highly problematic and do not
provide a meaningful evaluation of distributional word em-
beddingmodels (Rogers et al., 2017; Schluter, 2018; Nissim
et al., 2019). Therefore, we do not evaluate our embeddings
using any analogical reasoning tasks.
Table 3 shows the results of the word-level similarity tasks,
and Table 4 shows the results of the word categorization
tasks. These results show that although Urban Dictionary
is a crowd-sourced resource whose only moderation comes
from anonymous volunteers, its content provides word em-
bedding models with representations that capture semantic
relationships between words roughly as well as, or better
than, popular pre-trained word embedding models, depend-
ing on the task considered. This is especially notable in light
of the relative size of the training corpora that were used to
produce each of these embeddings: the UD embeddings
match the performance of embeddings trained on orders of
magnitude more data.
The embeddings trained on Urban Dictionary exhibit strong
performance on tasks requiring meaningful representations
of concrete entities (MEN, BLESS, ESSLI 1a and 2b),
nouns (WS353), and ordinary language (RG65), suggesting

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks
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Task Domain Size Reference

Se
m
an
tic

Si
m
ila
rit
y MEN Image labels 3,000 pairs (Bruni et al., 2014)

MTurk News entities 280 pairs (Radinsky et al., 2011)
RG65 Ordinary words 65 pairs (Rubenstein and Goodenough, 1965)
RW Rare words 2,034 pairs (Luong et al., 2013)

Simlex999 Word associations 999 pairs (Hill et al., 2015)
WS353 Nouns 353 pairs (Finkelstein et al., 2002)

WS353-R Nouns: relatedness 353 pairs (Finkelstein et al., 2002)
WS353-S Nouns: similarity 353 pairs (Finkelstein et al., 2002)

Cl
us
te
rin

g

AP Web nouns 402 words (Almuhareb and Poesio, 2005)
BLESS Concrete nouns 200 words (Baroni and Lenci, 2011)
Battig Category members 5231 words (Battig and Montague, 1969)

ESSLI 1a Concrete nouns 44 words (Baroni et al., 2008)
ESSLI 2b Abstract & concrete 40 words (Baroni et al., 2008)
ESSLI 2c Verbs 45 words (Baroni et al., 2008)

Table 2: Intrinsic evaluation tasks.

MEN MTurk RG65 RW SimLex999 WS353 WS353R WS353S
fastText-CC 0.755 0.744 0.790 0.553 0.441 0.652 0.611 0.758

GloVe 0.736 0.645 0.817 0.376 0.374 0.553 0.473 0.669
GloVe-Twitter 0.594 0.555 0.698 0.197 0.130 0.451 0.373 0.59

word2vec-gnews 0.741 0.670 0.761 0.471 0.442 0.700 0.635 0.772
UD-base 0.809 0.697 0.876 0.387 0.508 0.739 0.684 0.772

UD-phrase 0.787 0.685 0.893 0.393 0.479 0.712 0.656 0.742

Table 3: Performance of pre-trained word embeddings, measured as the correlation between vector similarity scores
(computed using cosine similarity between the embedding vectors) and gold standard similarity scores (provided via human
annotations), on intrinsic word-level semantic similarity and relatedness tasks.

AP BLESS Battig ESSLI 1a ESSLI 2b ESSLI 2c
fastText-CC 0.659 0.755 0.460 0.818 0.750 0.711

GloVe 0.622 0.785 0.451 0.795 0.750 0.578
GloVe-Twitter 0.515 0.690 0.326 0.773 0.700 0.578

word2vec-gnews 0.649 0.795 0.406 0.750 0.800 0.644
UD-base 0.600 0.780 0.389 0.841 0.775 0.667

UD-phrase 0.590 0.800 0.381 0.841 0.800 0.622

Table 4: Purity scores achieved using various pre-trained word embeddings on intrinsic word-level clustering tasks.

that the language of Urban Dictionary is relatively concrete
in nature. Further, these embeddings showed weaker per-
formances for tasks built on more formal text, like news
(MTurk), which is to be expected, since the language of
Urban Dictionary is highly informal.

4.2. Extrinsic Tasks
Using the top performing models from our intrinsic evalu-
ations, we train straightforward, but high performing clas-
sification models that can showcase the effects of various
word embedding initializations. We evaluate these models
on two tasks that we expect to benefit from the informa-
tion present in Urban Dictionary: sentiment analysis and
sarcasm prediction in Twitter data. In sentiment analysis,
it is important to understand the polarity of terms, and Ur-
ban Dictionary provides a useful perspective on slang terms
that might not normally be detected as positive (e.g., “lit”,
“dope”, “fire”) or negative (e.g., “WOAT”, “toolish”) using
standard approaches. Alternative meanings of words can
also be useful to measure in the task of sarcasm detection,
where notable incongruity between terms in a text can be

an important indicator (Joshi et al., 2017).

4.2.1. Classification Models
For each task, we use the fastText classification model,
which is akin to a neural bag-of-words classifier, and has
been shown to be extremely competitive with deeper neu-
ral architectures including CNN- and RNN-based mod-
els (Joulin et al., 2016). We acknowledge that somewhat
stronger results would be achieved on these tasks using en-
semble methods, using highly task-specific architectures, or
by fine-tuning parameter-rich deep learning networks, but
the impact of the input embeddings becomes more difficult
to observe as model complexity and task-specific tuning in-
crease. Therefore, we choose a model that directly obtains
its features from the word embedding dimensions, and learn
a simple transformation from these input features to the out-
put space for each task: the embeddings from all words in
the input are averaged together, element-wise, and used as a
representation for the input text. Then, a logistic regression
classifier with a softmax output is trained to make a pre-
diction for the specific task based on this aggregated input.
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w/o word n-grams with word n-grams
acc prec rec f1 acc prec rec f1

No pre-training 0.596 0.597 0.574 0.571 0.553 0.571 0.506 0.476
fastText-CC 0.596 0.585 0.593 0.585 0.604 0.605 0.584 0.579

GloVe 0.634 0.622 0.632 0.625 0.636 0.624 0.636 0.629
GloVe-Twitter 0.635 0.626 0.631 0.627 0.650 0.642 0.644 0.642

word2vec-gnews 0.574 0.565 0.568 0.559 0.581 0.594 0.549 0.537
UD-base 0.644 0.634 0.639 0.636 0.634 0.628 0.626 0.626

UD-phrase 0.629 0.620 0.622 0.620 0.640 0.634 0.629 0.629

Table 5: Accuracy, precision, recall, and f1-score achieved on the sentiment prediction task when initializing classifiers
with various pre-trained word embeddings.

w/o word n-grams with word n-grams
acc prec rec f1 acc prec rec f1

No pre-training 0.790 0.792 0.789 0.789 0.794 0.797 0.793 0.793
fastText-CC 0.788 0.788 0.787 0.787 0.802 0.804 0.802 0.802

GloVe 0.797 0.798 0.797 0.797 0.804 0.805 0.803 0.804
GloVe-Twitter 0.790 0.791 0.790 0.790 0.810 0.811 0.810 0.810

word2vec-gnews 0.776 0.777 0.776 0.776 0.801 0.802 0.800 0.800
UD-base 0.802 0.802 0.802 0.802 0.812 0.813 0.811 0.811

UD-phrase 0.793 0.793 0.792 0.792 0.802 0.803 0.801 0.801

Table 6: Accuracy, precision, recall, and f1-score achieved on the sarcasm prediction task when initializing classifiers with
various pre-trained word embeddings.

Since we expect the meanings of multi-word expressions to
be important in our models, we also experiment with using
word-level n-grams of up to length 5 for each model, and re-
port these results separately for each task. Though our aim
is not necessarily to achieve state-of-the-art results on these
tasks, we do still make note of top performing models in the
following subsections, order to provide reference points.

4.2.2. Preprocessing
Since all tasks involve the use of Twitter data, we preprocess
the input in the same way. We tokenize the text, separate
punctuation tokens from alphanumeric tokens, and remove
links, user mentions. We also add a copy of each hashtag to
the tweet, with the # symbol being removed from the copy
and all _ characters in the copy being replace with a single
space (i.e, "#great_day" becomes "#great_day great day").

4.2.3. Sentiment Analysis
First, we explore the ability of the Urban Dictionary em-
beddings as features for sentiment classification on Twitter.
We use the SemEval 2017 task A test dataset (Rosenthal
et al., 2017), which includes 12,284 English tweets col-
lected by querying for posts related to a range of topics,
including named entities, geopolitical entities, and other
potentially controversial topics like vegetarianism and gun
control. Each tweet has been annotated for its sentiment us-
ing a 3-way labeling scheme: positive, negative, and neutral.
As allowed by all teams participating in the task, we used
training tweets from previous SemEval sentiment analysis
tasks for training. Due to tweets that have become unavail-
able over time, we are able to retrieve approximately 35,000
of the 50,000 annotated tweets provided for training. At
the time of the competition, a top scoring model (Cliche,
2017) achieved an accuracy of 0.658 and f1-score of 0.685
(Rosenthal et al., 2017), but other recent work, combin-

ing large pre-trained, transformer-based architectures with
multi-head attention (Devlin et al., 2019), along with en-
semble learning techniques, pushed the f1-score as high as
0.718 (Azzouza et al., 2020).
Table 5 shows the results of our classificationmodels trained
using different pre-trainedword embeddings, and the results
after adding word-level n-grams to the models. We see that
in the basic version of the classification model using no
word n-grams, initializing with UD-base embeddings con-
sistently gives the best performance, slightly outperforming
the GloVe-Twitter embeddings. However, when including
theword n-gram features, theGloVe-Twitter embeddings ex-
perience a greater boost across all metrics, leading to better
performance than any of the Urban Dictionary embeddings.
However, the UD-phrase embeddings still outperform all
other popular word embeddings as a way to initialize clas-
sifier embeddings for the sentiment task.

4.2.4. Sarcasm Detection
Next, observing that sarcastic language is prevalent inUrban
Dictionary, we hypothesize that these embeddings will pro-
vide a helpful initialization for sarcasm detection models.
We train classifiers to predict “sarcastic” or “not sarcastic”
given an input tweet. The dataset that we evaluate on for
this task (Ptáček et al., 2014) contains examples of tweets
that were collected and automatically labeled using a set of
sarcasm-indicating hashtags, such as #sarcastic. Using only
the text of the tweets, as we do, previous work using intra-
attention networks was able to achieve an f1-score as high
as 0.860 (Tay et al., 2018). Additionally, it has been shown
that an f1-score of 0.934 can be reached by incorporating
user-level information into models trained on this dataset
(Oprea and Magdy, 2019), which is out of the scope of our
current work.
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fastText-CC GloVe GloVe-Twitter word2vec-gnews UD-base UD-phrase
gr
ea
t

fantastic good good terrific good amazing
terrific fantastic amazing fantastic amazing good

wonderful excellent awesome trememdous awesome the best
good wonderful wonderful wonderful best wonderful
geat amazing fantastic good wonderful awesome

w
at
er

water.The waters drink potable water submergophobia the water
Water salt ice Water monohydrogen hydrogen oxide

water.This drinking pool sewage stormwater lake michigan highball
water dry bottle groundwater waterfuck hose water

water.Now sea milk floridian aquifer butt-splash stormwater

ho
gw

ar
ts

Hogwarts hermione narnia

n/a

slitherpuff harry potter
Hogwart dumbledore potter potter slytherin
slytherin griffindor slytherin ilvermorny ilvermorny
gryffindor snape muggle gryfindor gryffindor
hagrid quidditch hufflepuff gryffindor the harry potter series

ye
et

saay waaaaaaaaaaah yeeet

n/a

yeeted yeet yeet
ylur talk-the-talk thugging yeeting yeeted
daay pfeh yuuuuh yeet-a-mis-max-mis yeeticus
howw nah-uh iwu yote yeeterday
buut megabuckcasinos werking yoby yote

eu
ro
pe

europe. european france european european in europe
germany germany germany germany embrian european
european asia european spain countries france
france countries spain england germany germany
america france uk america sapmi baltics

so
da

sodas coke coke soda pop cola carbonated
soda- sodas drink sodas sodagasm pepsi
soda. juice sprite soft drink carbonated sodie pop
cola cola juice soft drinks pepsi sodagasm

soda.The drink vodka Lynen ate fruit mexicoke sodie

nm
hb

u

StLafayette

n/a n/a n/a

wuzzap wuzzap
BlvdMetairie sappenin’ yagoo
BlvdMemphis ishyaboi yallow ..

BlvdPhiladelphia wzup bookitty
StreetBaltimore wwta best frannn

gi
ra
ffe

giraffes elephant elephant giraffes trinko ostraffe
hippo zebra marius gorilla girrhino hipraffe
Giraffe giraffes zebra hippopotamus gipraffe dementaxcating

hippopotamus cheetah kitten zebra mimily trinko
okapi hippo monkey rhinoceros queyon queyon

Table 7: Query words (left-most column) and their top five nearest neighbors in various pre-trained word embeddingmodels.
“n/a” indicates that the query word was not present in the vocabulary of the word embeddings.

Given that Urban Dictionary contains examples of sarcas-
tic language, we expect that the UD-base and UD-phrase
word embeddings might provide classifiers with helpful fea-
ture for this task. When automatically identifying sarcastic
tweets, we find that initializing our classifier with Urban
Dictionary embeddings consistently provides better results
than using any of the other embeddings, though by a small
margin when compared to the GloVe-Twitter initialization
(Table 6). This is likely due to the fact that the domain
of this prediction task is also Twitter data, making these
embeddings especially helpful.

4.2.5. Analysis of Extrinsic Evaluations
Our quantitative results demonstrate the effectiveness of
initializing classifiers with word embeddings that have been
pre-trained on Urban Dictionary data. The models we use
directly leverage the embedding dimensions as features for
classification in order to emphasize the effect of initializing

with each embedding, and we find comparable or even su-
perior performance when using the Urban Dictionary em-
beddings for this. This shows that these embeddings are
promising for the use in future classification tasks even
though they have been trained on a much smaller corpus
and have a smaller vocabulary that other popular pre-trained
word embeddings.

4.3. Qualitative Analysis
Finally, we take a deeper dive into the types of embeddings
that are learned from Urban Dictionary. We select several
example terms in order probe the models’ ability to capture
a variety of word types, and display the top 5 most similar
words to each as measured using cosine distance (Table 7).
We note that for standard sentiment-related terms, like the
example word “great”, all models retrieve qualitatively sim-
ilar groups of positive words. This may explain why Urban
Dictionary embeddings perform roughly as well as the other
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popular embeddings on the task of sentiment analysis (Sec-
tion 4.2.3.).
However, when examining the word “water”, we immedi-
ately start to see a contrast between the different types of
embeddings and the associations that are made. Interest-
ingly, the UD-phrase embeddings retrieved some unique
ways to describe something as ordinary as water, such as
“lake michigan highball” which is defined on Urban Dic-
tionary as “tap water from Chicago”. While this is not as
standard as related terms like “pool”, and “sea” that were
found with other models, it provides a unique perspective
on the semantics of “water”. Here, we also see some in-
appropriate language among the results, which is another
side-effect of training on this type of data, and should be
taken into consideration for any applications that produce
output based on the full vocabulary space of Urban Dictio-
nary.
Most of the embeddings are able to capture the relationships
between words related to the fictional school “hogwarts”,
yet the Urban Dictionary terms contain what could even be
considered nonstandard language relating to this fictional
world, such as “slitherpuff”, which is only a fan-defined
term and not part of the original Harry Potter series of
novels (Rowling, 2014).
All of the embeddings appear to have a difficult time cap-
turing the meaning of a word like “yeet” in a way that is not
self-referential, though it is worth noting that fastText-CC
appears to treat this token as a misspelling of “yet”, pro-
ducing other misspellings as the nearest neighbors. Unsur-
prisingly, this word doesn’t appear at all in the news-based
word2vec embeddings.
A crucial example is that of the token “nmhbu”, which is
short for “not much, how ’bout you?”. Most popular embed-
dings have no representation for this token, and fastText-CC
tries to infer the meaning using subword components, which
leads it to erroneously match the word to some street name
related tokens. Only the Urban Dictionary embeddings are
able to find reasonable neighbors for this word, and actually
provide a list of other terms that are mostly related to con-
versations of greeting, which provide a common situation
in which “nmhbu” would be used.
On the other hand, the Urban Dictionary embeddings strug-
gle to retrieve useful nearest neighbors for animals like “gi-
raffe”, showcasing their lack of encyclopedic knowledge.
This lies in contrast to the abilities of the other word em-
beddings, which consistently identify other animals with
similar habitats to a giraffe’s. Instead, the Urban Dictionary
embeddings give similar words including strange hybrid
species like “girrhino” and “ostraffe”, which are said to be
fusions of giraffes with rhinos and ostriches, respectively.
We note that some of these words received very few upvotes
(or downvotes) on Urban Dictionary, suggesting that further
filtering based on community scoring could help to provide
a cleaner set of vocabulary terms in the future.
Overall, we find that the Urban Dictionary embeddings ap-
pear to be well suited to capture unique expressions and
nonstandard ways of expressing concepts, while sometimes
struggling to capture items that require encyclopedic knowl-
edge. When searching through all Urban Dictionary em-
beddings, it is important to consider that some of the re-

trieved terms might be offensive or inappropriate, and so
care should be taken in cases where these results may be
directly presented to unsuspecting users.

5. Conclusions
We have introduced the first set of pre-trained Urban Dic-
tionary word embeddings, which we release as a language
resource for analysis and machine learning model initial-
ization. We release both the ud-base and ud-phrase em-
beddings, as well as a script to automatically perform the
multi-word expression-level joining that is needed in order
to properly use the ud-phrase embeddings on any corpus.
Through a series of intrinsic and extrinsic evaluations, we
see that the Urban Dictionary embeddings perform on par
with popular and state-of-the-art non-contextual word em-
beddings. Notably, we observed that the fastText-CC and
word2vec-gnews vectors have strong performances onmany
of the intrinsic tasks, while GloVe and GloVe-Twitter were
more beneficial to use as embedding-layer initializations for
classification models. For both intrinsic and extrinsic tasks,
however, the Urban Dictionary Embeddings are on par with,
or even outperform, the best of the other popular embedding
models, suggesting that they are not overly specialized to-
ward one type of task. Our new embeddings appear to be
especially promising when used for tasks involving infor-
mal and non-literal language, such as the case of sarcasm
detection on social media data. Future work should explore
how these embeddings might be incorporated into state-of-
the-art models that currently rely on other pre-trained word
embeddings, yet are otherwise specifically designed for the
tasks for which Urban Dictionary embeddings showed the
most potential.
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