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Abstract

Our goal is to create an interactive natural
language interface that efficiently and reli-
ably learns from users to complete tasks in
simulated robotics settings. We introduce a
neural semantic parsing system that learns
new high-level abstractions through decompo-
sition: users interactively teach the system
by breaking down high-level utterances de-
scribing novel behavior into low-level steps
that it can understand. Unfortunately, existing
methods either rely on grammars which parse
sentences with limited flexibility, or neural
sequence-to-sequence models that do not learn
efficiently or reliably from individual exam-
ples. Our approach bridges this gap, demon-
strating the flexibility of modern neural sys-
tems, as well as the one-shot reliable gen-
eralization of grammar-based methods. Our
crowdsourced interactive experiments suggest
that over time, users complete complex tasks
more efficiently while using our system by
leveraging what they just taught. At the same
time, getting users to trust the system enough
to be incentivized to teach high-level utter-
ances is still an ongoing challenge. We end
with a discussion of some of the obstacles we
need to overcome to fully realize the potential
of the interactive paradigm.

1 Introduction

As robots are deployed in collaborative applications
like healthcare and household assistance (Scassel-
lati et al., 2012; Knepper et al., 2013), there is a
growing need for reliable human-robot communi-
cation. One such communication modality that is
both user-friendly and versatile is natural language;
to this end, we focus on robust natural language
interfaces (NLIs) that can map utterances to ex-
ecutable behavior (Tellex et al., 2011; Artzi and
Zettlemoyer, 2013; Thomason et al., 2015; Aru-
mugam et al., 2017; Shridhar et al., 2020).
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Go to the mug and pick it up
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Turn it off
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Figure 1: In our proposed framework, users interact
with a simulated robot to complete tasks. Central to
our approach is learning by decomposition: users teach
the system to understand novel high-level utterances by
breaking them down into utterances that the system can
understand and execute. Using these decompositions,
we update a semantic parser online, allowing our sys-
tem to adapt to users as they complete more tasks.

Most existing work on NLIs (and AI systems
more broadly) falls into a static train-then-deploy
paradigm: models are first trained on large datasets
of (language, action) pairs and then deployed, with
the hope they will reliably generalize to new utter-
ances. Yet, what happens when such models make
mistakes or are faced with types of utterances un-
seen at training — for example, providing a house-
hold robot with a novel utterance like “wash the
coffee mug?” Such static systems will fail with no
way to recover, burdening the user to find alternate
utterances to accomplish the task (or give up). In-
stead, we argue that NLIs need to be dynamic and
adaptive, learning interactively from user feedback
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High-Level Task 1  
Clean & Place (Mug, CounterTop)  

High-Level Task 2 
Clean & Place (Tomato, DiningTable)  

“Wash the coffee mug” —> I’m sorry - I don’t understand!

”Go to the mug and pick it up” —> GOTO Mug; PICKUP Mug

”Go to the sink and put it inside” —> GOTO Sink; PUT Mug Sink

”Turn on the faucet” —> TOGGLE Faucet

”Turn it off” —> TOGGLE Faucet

”Pick up the mug” —> PICKUP Mug

“Place it on the counter” —> I’m sorry - I don’t understand!

”Go to the counter” —> GOTO CounterTop

”Put the mug on the counter” —> PUT Mug CounterTop

“Clean and put the tomato on the table” —>  
                                                 I’m sorry - I don’t understand!

“Wash the tomato” —> 
GOTO Tomato; PICKUP Tomato;
GOTO Sink; PUT Tomato Sink;  
TOGGLE Faucet;
TOGGLE Faucet;

“Pick up the tomato” —> PICKUP Tomato

“Place the tomato on the table” —> 
GOTO DiningTable;  
PUT Tomato DiningTable;

One-Shot 
Generalization

Teaching

Figure 2: One-shot generalization example: When the system fails to understand an utterance (e.g. “wash the
coffee mug”, “place it on the counter”), the user teaches the system by decomposing it into other utterances the
system can understand (illustrated by brackets above), which eventually get mapped to low-level actions that are
executed. This induced mapping of high-level utterance to low-level actions forms an example that we use to
update our semantic parser online. Because our semantic parser is capable of reliable one-shot generalization,
users can leverage these decompositions when completing the next task.

to index and perform more complicated behaviors.
In this work, we explore building NLIs for simu-

lated robotics that learn from real humans. Inspired
by Wang et al. (2017), we leverage the idea of learn-
ing from decomposition to learn new abstractions.
Just like how a human interactively teaches a new
task to a friend by breaking it down, users interac-
tively teach our system by simplifying utterances
that the system cannot understand (e.g. “wash the
coffee mug”) into lower-level utterances that it can
(e.g. “go to the coffee mug and pick it up”, “go to
the sink and put it inside”, etc. — see Figure 1).

To map language to executable behavior, Wang
et al. (2017) and Thomason et al. (2019) built adap-
tive NLIs that leverage grammar-based parsers that
allow reliable one-shot generalization but lack lexi-
cal flexibility. For example, a grammar-based sys-
tem that understands how to “wash the coffee mug”
may not generalize to “clean the mug.” Meanwhile,
recent semantic parsers are based primarily on neu-
ral sequence-to-sequence models (Dong and Lap-
ata, 2016; Jia and Liang, 2016; Guu et al., 2017).
While these models excel from a lexical flexibility
perspective, they lack the ability to perform reliable
one-shot generalization: it is difficult to train them
to generalize from individual examples (Koehn and
Knowles, 2017).

In this paper we propose a new interactive NLI
that is lexically flexible and can reliably and effi-
ciently perform one-shot generalization. We in-
troduce a novel exemplar-based neural network
semantic parser that first abstracts away entities
(e.g. “wash the coffee mug”→ “wash the<obj>”),

allowing for generalization to previously taught
utterances with novel object combinations. Our
parser then retrieves the corresponding “lifted” ut-
terance and respective program (exemplar) from
the training examples based on a learned metric
(implemented as a neural network), giving us the
lexical flexibility of sequence-to-sequence models.

We demonstrate the efficacy of our learning from
decomposition framework through a set of human-
in-the-loop experiments where crowdworkers use
our NLI to solve a suite of simulated robotics tasks
in household environments. Crucially, after com-
pleting a task, we update the semantic parser so
that users can immediately reuse what they taught.
We show that over time, users are able to complete
complex tasks (requiring several steps) more effi-
ciently with our exemplar-based method compared
to a neural sequence-to-sequence baseline. How-
ever, for more straightforward tasks that can be
completed in fewer steps, we see similar perfor-
mance to the baseline. We end with an error anal-
ysis and discussion of user trust and incentives in
the context of building interactive semantic parsing
systems, paving the way for future work that better
realizes the potential of the interactive paradigm.

2 Learning from Decomposition

User sessions are broken up into a sequence of
episodes (individual tasks), each comprised of two
phases: 1) Interaction, where the user provides
utterances to the system to accomplish the task,
and 2) Teaching, where the user teaches the system
to understand novel utterances (Figures 1 and 2).
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Primitive Action Canonical Utterance

GOTO <OBJ> go to <obj>
PICKUP <OBJ> pick up <obj>
OPEN <OBJ> open <obj>
CLOSE <OBJ> close <obj>
TOGGLE <OBJ> turn on/off <obj>
PUT <OBJ> <OBJ> put object <obj>

Table 1: List of primitive programmatic actions and
seed utterances used to initialize our semantic parser.
Note that the utterances are lifted; they do not include
references to concrete objects. This enables one-shot
generalization to unseen object combinations.

2.1 Interaction

During interaction, the user attempts to complete
a task by producing a sequence of user utter-
ances u1, u2, . . . with the corresponding system
responses p1, p2, . . . (including the NOT-SURE ac-
tion) that are executed in the environment (the
NOT-SURE action executes to an error message
“I’m sorry - I don’t understand!”). For example,
in Figure 1, the user first says the novel utter-
ance “wash the coffee mug,” and the system returns
NOT-SURE. The user follows up with “go to the
mug and pick it up,” which the system maps to the
program GOTO Mug; PICKUP Mug. This con-
tinues until the user has completed the task. If the
system or user makes a mistake and produces an
undesired action, the user must continue to provide
utterances, as there are no resets.

2.2 Teaching

The goal of teaching is to convert the sequence of
utterance-action pairs (ui, pi) into a set of valid
training examples for updating the system. To
do this, the system presents the user with each
ui where pi is NOT-SURE, and asks the user
to select the corresponding contiguous sequence
of actions pi+1, . . . pj . To facilitate comprehen-
sion, we show users (programatically generated)
human-readable representations of each action p
— e.g. “go to the mug” for a program p = GOTO
Mug. For example, the user maps “wash the cof-
fee mug” to the sequence GOTO Mug; PICKUP
Mug; . . . TOGGLE Faucet (see Figure 1 for
the full decomposition). Similarly, the user maps
“place it on the counter” to GOTO CounterTop;
PUT Mug CounterTop. The resulting exam-
ples (ui, p̂i = pi+1 . . . pj) are used to update the
system (details in Section 3.2.2). We update every

time a user completes a task and teaches new exam-
ples — this allows users to access what they have
taught immediately, during the following task.

2.3 Desiderata
This example illustrates two desiderata for our
framework, both of which are key to trust: 1) the
ability to identify novel types of utterances (when
to output NOT-SURE), as well as 2) the ability to
perform one-shot generalization. Knowing when
to output NOT-SURE is key to trust during infer-
ence: signaling to users what the system knows,
so that the simulated robot does not take unde-
sired actions (like dropping your coffee mug on the
floor). Performing one-shot generalization is key
to trust during learning: users need to rely on the
system remembering what has been taught so they
can more efficiently complete future tasks. For ex-
ample, when the user is completing the next task
(second half of Figure 1), they should be able to
rely on the system understanding “wash the tomato”
and “place the tomato on the table,” even though
these refer to different objects than in the taught
examples. Section 3 discusses how we enable one-
shot generalization in further detail.

Sequence-to-sequence models fail. We found
modern neural sequence-to-sequence models to be
a poor fit in our setting. The biggest problem we
found was their ability to handle novel utterances.
Anecdotally, we found when given the novel ut-
terance “wash the coffee mug,” a neural sequence-
to-sequence system trained on the seed set of ut-
terances in Table 1 returned the program OPEN
Mug, which does not even execute. These prob-
lems are exacerbated by the lack of training data;
a single user’s interaction only creates a handful
of new examples, contraindicating the use of data-
hungry sequence-to-sequence models (Koehn and
Knowles, 2017).

3 Semantic Parsing

To address the above desiderata (identifying when
to output NOT-SURE, and one-shot generaliza-
tion), we incorporate two key insights into our ap-
proach. To identify when to output NOT-SURE,
we look at the distances between a new utterance
and the utterances in our training set, similar to
the exemplar-based approach of Papernot and Mc-
Daniel (2018) — if an utterance is “close enough”
to a training utterance, return the corresponding
program, otherwise return NOT-SURE. To enable
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one-shot generalization, our parser operates over
lifted versions of utterances and programs — ver-
sions that abstract out explicit references to objects
(allowing for automatic generalization to new com-
binations of objects unseen during training).

We now describe our semantic parser, which
maps a user utterance u and environment state s
to the corresponding program p that best reflects
the meaning of the user’s utterance. In this work, a
state s consists of a set of objects where each object
is defined by a fixed set of features (e.g. visibility,
toggle status, etc.). We define a program p as a
sequence of primitive actions, where each action
consists of a template (from Table 1) with argu-
ments corresponding to object types. We conclude
with a description of how we retrain our semantic
parser using the newly taught examples from the
teaching phase (Section 2.2).

3.1 Model

Our semantic parser (Figure 3) takes an utterance
u and first abstracts out entities (Section 3.1.1), cre-
ating object references and lifted utterances. We
parse these into object types (Section 3.1.1) and
lifted programs (Section 3.1.2), which are com-
bined (Section 3.1.3) and fed to a reranker that
additionally uses the state s (Section 3.1.4) to iden-
tify the program p∗ to execute.

3.1.1 Entity Abstraction & Resolution
We define an entity abstractor that maps an utter-
ance u (e.g. “wash the coffee mug”) to a lifted
utterance f (e.g. “wash the <obj>”) and a list of
object references O (e.g. [“coffee mug”]). The en-
tity resolver maps each object reference o ∈ O
(e.g. “coffee mug”) to a grounded object type
g (e.g. Mug) resulting in a new list G. To do
this, we exploit a set of “typical names,” (e.g.
Mug = {“coffee mug”, “mug”, “cup”}) that we
define a priori, looking up the object type with
the given name. However, if there are multiple
types that share the given name (e.g. in our dataset,
table is a “typical name” for DiningTable,
CoffeeTable, SideTable), we use the cur-
rent state s to disambiguate: we fetch all the match-
ing items in s and return the physically closest one.

3.1.2 Semantic Parsing
Central to our approach is the exemplar-based se-
mantic parser that maps a lifted utterance f to a
set of lifted programs Q. To do this, we learn a
classifier pθ that takes two lifted utterances (f, f ′)

“Wash the coffee mug”

“coffee mug”“Wash the <object>”

GOTO <OBJ_0>; PICKUP <OBJ_0>
GOTO Sink; PUT <OBJ_0> Sink
TOGGLE Faucet; TOGGLE Faucet

OBJ_0: Mug

 

Mug: Visible, inInventory
Sink: Visible, isReceptacle

Semantic Parsing Entity Resolution

Combination

Entity Abstraction

PUT Mug Sink; TOGGLE Faucet; TOGGLE Faucet

Re-Ranking

Execution

PUT <OBJ_0> Sink
TOGGLE Faucet; TOGGLE Faucet

GOTO Mug; PICKUP Mug
GOTO Sink; PUT Mug Sink
TOGGLE Faucet; TOGGLE Faucet

PUT Mug Sink
TOGGLE Faucet; TOGGLE Faucet

State: 

Figure 3: Semantic parsing pipeline. First, entities are
extracted and the corresponding outputs — the lifted
utterance and object references — are parsed into pro-
grams and grounded object types. These are combined
and re-ranked to identify the program to execute.

and predicts a probability whether they have the
same lifted program (q = q′). We take Q to be the
programs corresponding to the highest probability
f ′ under pθ.

Embedding Utterances. We first embed each
utterance with an embedding function φ, imple-
mented as a neural network that first uses GloVe
(Pennington et al., 2014) to embed the words in
f followed by position encoding similar to that
used in Vaswani et al. (2017) and a nonlinear trans-
form. The resulting embeddings are summed and
fed into to a two-layer MLP to create the utter-
ance embedding φ(f). The classifier pθ outputs
σ(a cos-sim(φ(f), φ(f ′)) + b), where cos-sim is
cosine similarity, a, b are learned scalars, and σ is
the sigmoid function. We train pθ with a binary
cross-entropy objective on a training set of (lifted
utterance, lifted program) pairs: {(fi, fj , [qi =
qj ]) : i, j ∈ [n]}.

Efficient Inference. We now describe how we
use pθ for inference given a new lifted utterance f ′.
Unfortunately, naı̈ve application of pθ for a new f ′

requires pairwise comparison with every training
example. We streamline this by using the struc-
ture of our embedding space — as the classifier
outputs the scaled cosine similarity between two
utterances, we store the embeddings φ(fi) for each
training utterance (fi, qi) in our dataset, then use
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an approximate nearest neighbors algorithm to find
the the set of utterances that are “close-enough”;
we use the corresponding lifted programs to form
the output set Q. We formalize what it means for
an utterance to be “close-enough” in the following
paragraph. We note that this procedure is similar
to COSINEBERT (Mussman et al., 2020), a model
used for active learning on pairwise language tasks.

Setting a Threshold. One of the desiderata of
our system is returning NOT-SURE for utterances
it is not confident about. To do this, we set a
threshold τ such that if ‖φ(f)− φ(f ′)‖2 ≥ τ , re-
turn NOT-SURE. Note that this is equivalent to to
thresholding the probability output by pθ which is
monotonic in the cosine distance as defined above.
We set this threshold using a held-out validation set
of (utterance, program) pairs (defined based solely
on the seed examples in Table 1). For each utter-
ance in the validation set f , we set τ such that 90%
of the programs corresponding to utterances with τ
are correct. Given an utterance f ′ at test time, we
return the set of lifted programs Q corresponding
to all lifted utterances within τ of φ(f ′) (all lifted
utterances “close enough” to f ′).

Handling Compositionality. For multi-action
utterances (e.g. “go to the apple and pick it up”)
we heuristically split on the keyword “and,” result-
ing in multiple substrings. We parse each substring
obtaining subsets of lifted programs, and take the
cross-product of these subsets as the final set Q.
We acknowledge that this is not a perfect heuristic;
in future work we hope to explore more general
extensions that allow us to efficiently interpret ut-
terances that have been composed in this way.

Implementation Details. When identifying the
threshold τ , we define a hyperparameter lower
bound β; this lower bound ensures that our se-
mantic parser isn’t overly conservative (returning
NOT-SURE despite being moderately confident
about the set of candidate programs). We find a
value β = 0.15 works well for our experiments.
We use Spotify’s annoy library as our approxi-
mate nearest neighbors store for fast lookups.

We initialize our exemplar-based parser with
seed examples (utterances mapped to programs)
that cover the set of actions. Table 1 shows these
actions, and a subset of the utterances used for train-
ing — our full dataset consists of only 44 examples
(minor variations of the trigger words in the table).
This is similar to prior work that defines a set of

canonical utterances (Wang et al., 2015), or a core
grammar (Wang et al., 2017). We strip stop words
(the, up, down, on, off, of, in, to, then, a, an, back,
front, out, from, with, inside, outside, below, above,
top) from f prior to feeding to our parser to make
our model more robust to minor lexical variation.

3.1.3 Combination

We combine each lifted program q ∈ Q with the
grounded object types G to form a set of grounded
programs P = {p1, . . . , pk}. In general, given
a lifted program q that takes a sequence of argu-
ments (e.g PUT <OBJ> <OBJ>) and a list of ob-
ject types (e.g. G = [Mug, DiningTable]),
we simply substitute the object types into the pro-
gram, replacing each argument in the lifted pro-
gram. This results in a final grounded program (e.g.
p = PUT Mug DiningTable).

3.1.4 Reranking

The semantic parser, entity resolver, and combina-
tion step produce a set of grounded programs P .
The reranker takes the original utterance u, current
state s, and this set of grounded programs P and
chooses a single candidate p∗ ∈ P to execute.

As a first step, we discard candidate programs
that fail to execute in our simulator: for example,
PICKUP Mug is discarded if the robot is already
holding an object. Then we use a neural network
to produce a score for each pi ∈ P . This net-
work separately embeds the utterance, state, and
each candidate program, feeding the concatenated
embeddings to a two-layer MLP to produce a real-
valued score for each pi. In our work, the state s
is retrieved dynamically based on the grounded ob-
jects G returned by the entity resolver; the state is
made up of hand-coded features corresponding to
attributes like visibility, toggle status, and whether
it can be picked up, amongst others. We use a sim-
ilar scheme as the semantic parser (Section 3.1.2)
to encode utterances and candidate programs (em-
bed, position encode, and sum), and a simple linear
transformation to encode the bag-of-features repre-
senting the state s.

The highest-scoring candidate p∗ ∈ P is exe-
cuted. The reranker is trained via the process de-
scribed in Section 3.2.3 only after new examples
are taught by users during the teaching phase fol-
lowing each task they are asked to complete.
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3.2 Retraining from User Feedback

In the following subsections, we discuss how to
retrain our semantic parser and reranker to achieve
the second of the two desiderata desired of our
system: reliable and efficient one-shot generaliza-
tion. As input to the retraining procedure, we take
the dataset D̂ = (ui, p̂i) of newly taught examples
from the teaching phase (Section 2.2).

3.2.1 Creating Lifted Examples
Retraining the exemplar-based semantic parser
requires converting our grounded dataset D̂ to
pairs of lifted utterances and programs. Consider
the grounded example (“Place the tomato on the
table”, GOTO DiningTable; PUT Tomato
DiningTable); we want to map this to its lifted
form (“Place the <obj> on the <obj>”, GOTO
<OBJ> PUT <OBJ> <OBJ>). To do this, we
use the entity abstractor and resolver (from Section
3.1.1) to factor out object references.

Concretely, using the entity abstractor on the
above example leaves us with f̂ = “Place the
<obj> on the <obj>”, and references Ô =
[“tomato”, “dining table”], which the entity re-
solver maps to Ĝ = [Tomato, DiningTable].
We replace any element of G that occurs in the
original program with the generic <OBJ> token
to create the lifted program (q̂ = GOTO <OBJ>;
PUT <OBJ>). Applying this procedure to each
example in D̂ gives us our lifted examples (f̂ , q̂).

3.2.2 Updating the Semantic Parser
Updating the semantic parser requires optimizing
the binary cross-entropy objective from Section
3.1.2 using these lifted examples (f̂ , q̂). As we
train our parser from pairs of examples, and there
are far more negative examples (pairs with different
programs) than positives, we over-sample positive
examples so that batches have an equal number
of positives and negatives. We train on the en-
tire history of data for the given user, re-creating
the nearest neighbors store with embeddings of
each training utterance fi. After this step, we re-
calibrate the nearest neighbors threshold using the
procedure in Section 3.1.2.

3.2.3 Updating the Reranker
After updating the semantic parser, we re-parse
each utterance in our dataset to define our retrain-
ing dataset of (ûi, P̂i, ŝi) tuples. We use the pro-
gram p∗ that was actually executed for utterance ûi
in state ŝi as the “gold” label for the reranker. We

train the reranker by maximizing the log-likelihood
(minimizing the cross-entropy loss) of this candi-
date p∗ amongst the others.

4 Experiments

We evaluate our approach with a set of human-
in-the-loop experiments where crowdworkers are
tasked with solving a series of simulated robotics
tasks. Users interact with our system over 5
episodes (where each episode consists of a single
task), teaching our system new examples after suc-
cessfully completing each one. Each user has their
own individual semantic parser and re-ranker (mod-
els are not shared across the users), with both com-
ponents updating online after each teaching phase,
prior to the start of the next task. Updating the two
models (including rebuilding the nearest neighbors
store) after each teaching phase varies depending
on task complexity, but takes anywhere from 28
– 63 seconds on an Amazon EC2 T2.Medium (2
CPUs, 4 GiB RAM, no GPU) instance.

4.1 Experimental Setup

Environment and Tasks. Our experiments take
place in simulated household environments, with
users completing structured, everyday tasks. We
create a 2D web-client inspired by the AI2-THOR
Simulation Environment (Kolve et al., 2017) that
removes the 3D rendering and spatial layout, but
preserves the object types, attributes, and relations.

We borrow our tasks from the ALFRED Dataset
(Shridhar et al., 2020) that defines 7 task types: 1)
Pick and Place, 2) Pick Two Objects and Place, 3)
Look at Object in Light, 4) Nested Pick and Place,
5) Pick, Clean, and Place, 6) Pick, Heat, and Place,
and 7) Pick, Cool, and Place.

Interactive User Studies: We run our interac-
tive user studies via Amazon Mechanical Turk
(AMT). Each user is assigned one of the 7 task
types, and is asked to complete 5 tasks of that type
in a row. We recruited 20 workers per approach.
Workers were paid $5 with an average completion
time of 23 minutes. We limit our AMT studies to
workers with an approval rating ≥ 98%, location =
US, and a total number of completed HITs > 5000.

Baseline. We compare our approach with a neu-
ral sequence-to-sequence with attention model sim-
ilar to Jia and Liang (2016). To improve reliability,
if the user enters an utterance that can be handled
by a simple grammar that covers the core utterances
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Figure 4: Complete set of results across 20 users with 7 different task types. Each user is given a single task type,
and asked to complete 5 different episodes, with different combinations of environments and objects. The graph
on the left shows the number of examples taught over 5 episodes. The graph in the middle shows the per-turn
program complexity (number of primitives per language utterance) over time. The last graph shows the normalized
episode length (# utterances to solve task / number of actions required).

from Table 1, we return the resulting program; oth-
erwise, we invoke the sequence-to-sequence model.
We find the inclusion of such a grammar necessary
to prevent users from getting stuck. We refer to this
combination of a neural sequence-to-sequence with
a grammar as “seq2seq-grammar”, whereas we re-
fer to our system as “exemplar-based”. We keep
the learning by decomposition framework identical
for both our system and the sequence-to-sequence
system — in other words, we simply swap out our
exemplar-based neural parser described in Section
3.1.2 for the seq2seq-grammar model.

Metrics. We define three evaluation metrics:

1. Total number of examples taught: The num-
ber of unique (utterance, program) pairs that the
users teach the system across each teaching phase
(as described in Section 2.2). This number starts
at 44, the number of unique seed examples from
Table 1. Higher is better — this metric indicates
whether users are engaging with the system to teach
high-level abstractions; a flat curve means that the
users have finished teaching and are exploiting the
examples they have previously taught.

2. Per-turn program complexity: the number
of actions generated per utterance. For example,
an utterance that generates the program GOTO
Mug; PICKUP Mug; GOTO Sink; PUT
Mug Sink has complexity of 4 — one for each
primitive (NOT-SURE counts at 0). We expect
a steep upward trend in this metric over time as
users teach and reuse progressively more complex
examples.

3. Normalized episode length: the number of lan-
guage utterances the user provided divided by the
number of primitive actions required to solve the
task. This is the end-to-end metric we seek to op-
timize — values less than 1 indicate that users are
able to tap into what they have taught to complete
tasks in fewer steps.

4.2 Results

Full Results: 20 Users x 7 Tasks. Figure 4
presents graphs of the three metrics over the 5
episodes for each of the 20 users, split across the
7 different task. Error bars denote estimated stan-
dard deviation across all 20 users. Users of both
our exemplar-based system and the sequence-to-
sequence baseline teach a moderate number of new
examples over time, with an upwards trend in per-
turn program complexity as they complete more
tasks. Finally, we see a decreasing trend in the
normalized episode length, with the mean value of
our system dipping slightly below a value of 1 after
completing 5 instances.

Case Study: Pick, Cool, and Place. Figure 5,
on the other hand, presents graphs of the 3 met-
rics across 3 users for the Pick, Cool, and Place
task, one of the more complex tasks in our suite,
requiring at least 12 primitive utterances to com-
plete successfully (compared to tasks like Pick and
Place that only require 4). Here we see large gaps
between our system and the sequence-to-sequence
baseline — not only do users of our system teach
significantly more high-level examples, but they
have a much-higher per-turn program complexity
after 5 episodes compared to the baseline. Finally,
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Figure 5: Results for the Pick, Cool, and Place task across 3 users (subset of the original 20). This task is complex,
requiring at least 12 primitives to complete. Notice how the number of defined examples and per-turn program
complexity are much higher for our method, and that the normalized episode length is lower.

we see that after 5 episodes, the normalized episode
length is around 0.2, indicating that users are able
to complete the complex task in 1/5 the steps nec-
essary with our system.

Are users re-using high-level abstractions?
The general results in Figure 4 indicate that while
users are teaching the system new abstractions, they
are unfortunately not re-using them effectively. The
normalized episode length plot shows that both sys-
tems converge to 1, indicating that users are de-
faulting to the primitive actions, rather than trying
to teach higher-level examples. One possible expla-
nation for this is that for simpler tasks (e.g. Pick
and Place), it is perhaps easier and faster to pro-
vide low-level utterances (those in Table 1), rather
than teach new examples. Defaulting to low-level
utterances also explains the lack of a significant
gap between the sequence-to-sequence model and
our model — in light of low-level utterances, the
grammar does the heavy-lifting (in other words, we
would not be invoking the sequence-to-sequence
model at all). Indeed, across all 20 users for the
seq2seq-grammar model, 89.9% of successfully
parsed utterances (713 out of 793 total) were han-
dled by the grammar, with only 10.1% handled by
the seq2seq model (70 of 793 total).

However, this trend doesn’t hold true for more
complex tasks. Figure 5 shows that users are teach-
ing and reusing a significant number of examples,
completing tasks extremely efficiently. One hy-
pothesis is to correlate task complexity with ab-
straction reuse (and thus, the ease by which users
solve tasks), and while supported by the Pick, Cool,
and Place results (Figure 5), we would require
future experiments with a larger number of users

before we can draw meaningful conclusions.

5 Related Work

We build on a long tradition of learning semantic
parsers for mapping language to executable pro-
grams (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005, 2007; Liang et al., 2011), with a fo-
cus on using context and learning from interaction.

Contextual Semantic Parsing. In many set-
tings, successfully parsing an utterance requires
reasoning about both linguistic and environment
context. Artzi and Zettlemoyer (2013) developed
a model for parsing instructions in the SAIL Navi-
gation dataset (MacMahon et al., 2006; Chen and
Mooney, 2011) that leverages the environment con-
text. Later, Long et al. (2016) introduced the
SCONE Dataset, requiring building models that
can reason over both types of context. More re-
cently, Yu et al. (2019) introduced the large-scale
Conversational Text-to-SQL (CoSQL) dataset that
requires jointly reasoning over dialogue history and
databases to parse user queries to SQL. We han-
dle both linguistic context and environment con-
text in our work, by decoupling semantic parsing
from grounding; our lifted semantic parser handles
linguistic context, while our entity resolver and
reranker handle environment context.

Learning from Interaction. Closest to our work
is Voxelurn (Wang et al., 2017), and its close prede-
cessor SHRDLURN (Wang et al., 2016). Voxelurn
defined an open-ended environment where the goal
was to build arbitrary voxel structures using lan-
guage instructions. We take inspiration from its
teaching procedure where users decompose high-
level utterances into low-level actions in the context
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of a grammar-based parser. Other work uses alter-
native modes of interaction to teach new behaviors.
Srivastava et al. (2017) used natural language ex-
planations to teach new concepts. Relatedly, Labu-
tov et al. (2018) introduced LIA, a programmable
personal assistant that learned from user-provided
condition-action rules. Furthermore, Weigelt et al.
(2020) introduce an approach for teaching systems
new programmatic functions from language that
explicitly reasons about whether utterances con-
tain “teaching intents,” a mechanism that is similar
to our procedure for returning NOT-SURE. Once
these “teaching intents” have been identified, they
are parsed into corresponding code blocks that can
then be executed. Other work leverages conver-
sations to learn new concepts, generating queries
for users to respond to (Artzi and Zettlemoyer,
2011; Thomason et al., 2019). Notably, Thoma-
son et al. (2019) used this conversational structure
in a robotics setting similar to ours, but focused
on learning new percepts, rather than structural
abstractions. Yao et al. (2019) defined a similar
conversational system for Text-to-SQL models that
decides when intervention is needed, and generates
a clarification question accordingly.

General Instruction Following. Other work
looks at instruction following for robotics tasks out-
side the semantic parsing paradigm, for example by
mapping language directly to sequences of actions
(Anderson et al., 2018; Fried et al., 2018; Shrid-
har et al., 2020), mapping language to representa-
tions of reward functions (Arumugam et al., 2017;
Karamcheti et al., 2017), or learning language-
conditioned policies via reinforcement learning
(Hermann et al., 2017; Chaplot et al., 2018).

6 Discussion & Lessons Learned

Towards More Complex Settings. Our analysis
in Section 4.2 suggests that situating our system
in a more complex setting might allow us to truly
see the benefits of learning by decomposition. One
such setting is Voxelurn (Wang et al., 2017), with
its open-ended tasks that allow for the definition of
multiple different high-level abstractions with com-
positional richness. In contrast, the tasks in this
work are linear, with similar sequences of primi-
tives used to accomplish each high-level task.

Future work should use this insight and iden-
tify environments that are more complex and open-
ended, where users are naturally incentivized to
teach the system new abstractions that built atop

each other, to facilitate performing more complex
behaviors. In robotics, this might translate to build-
ing systems for cooking, perhaps taking inspiration
from Epic Kitchens (Damen et al., 2018), where
the set of high-level objectives (general recipes to
follow, kitchen behaviors to imitate) is much larger,
but where individual subtasks (low-level abstrac-
tions like slicing a vegetable, stirring a pot) are very
common and generalizable. Other settings might
include open-ended building tasks, either in the
real world (Knepper et al., 2013; Lee et al., 2019),
or in virtual worlds like Minecraft (Johnson et al.,
2016; Gray et al., 2019).

On Trusting Interactive Learning. Users have
an implicit expectation that after providing just a
single example — say to “wash the coffee mug”
— the system will know how to “wash the tomato”
or even “clean the plate” immediately. However,
existing machine learning is not built with such ex-
treme data efficiency in mind; especially for harder
types of generalization (e.g. to “clean the plate”),
we cannot guarantee learning this in a single step.
While in this work we show reliable one-shot gen-
eralization across objects in a simplified setting,
the real-world is much more complex, and differ-
ent entities merit different behaviors. For example,
consider generalizing from “wash the spoon” to
“wash the table”; a system like ours will try to exe-
cute the program taught in the first context (going
to the sink, placing the object inside, etc.) to the
second, leading to complete failure.

Part of the problem is a lack of transparency;
after teaching an example, it is hard for a user to
understand what the system knows. This impacts
trust, and as a result, when the system makes a
mistake interpreting a high-level utterance, users
back off to using utterances they are confident the
system will understand (mirroring our observed
results). This suggests future work in building more
reliable methods for one-shot generalization and
interpretability, providing users with a clear picture
of what the model has learned.
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