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Abstract

Collecting training data for semantic parsing
is a time-consuming and expensive task. As
a result, there is growing interest in industry
to reduce the number of annotations required
to train a semantic parser, both to cut down
on costs and to limit customer data handled
by annotators. In this paper, we propose un-
certainty and traffic-aware active learning, a
novel active learning method that uses model
confidence and utterance frequencies from cus-
tomer traffic to select utterances for annota-
tion. We show that our method significantly
outperforms baselines on an internal customer
dataset and the Facebook Task Oriented Pars-
ing (TOP) dataset. On our internal dataset, our
method achieves the same accuracy as random
sampling with 2,000 fewer annotations.

1 Introduction

Semantic parsing is the task of mapping natural
language to a machine-executable meaning repre-
sentation. Supervised semantic parsing models are
trained on corpora of natural language utterances
with annotated meaning representations. Collect-
ing these annotations is an expensive manual pro-
cess, usually requiring expert annotators who are
familiar with both the domain of utterances and the
target meaning representation language (e.g. SQL).

Active learning is a method for collecting train-
ing data when annotating is difficult or budgets
are limited (Settles, 2009). In active learning, an
algorithm selects examples from an unlabeled set
that are predicted to be more useful for the model
if labeled. These examples are annotated and the
model is retrained in an iterative process. The goal
of an active learner is to reach higher performance
faster than a random sampling baseline.

In this paper, we propose uncertainty and traffic-
aware active learning, a simple yet effective
method to improve a semantic parser. In our setup,

we assume access to a set of initially annotated
utterances and a large set of unlabeled utterances
from customer traffic. We show that by using a
combination of uncertainty and utterance frequency
from traffic, we can achieve significantly higher
performance than baselines on both an internal cus-
tomer dataset and on the Facebook Task Oriented
Parsing (TOP) dataset (Gupta et al., 2018).

2 Related Work

Active learning has been applied to various NLP
tasks (Zhou et al., 2010; Li et al., 2012; Shen et al.,
2017; Peshterliev et al., 2019; Chen et al., 2019).
Duong et al. (2018) presented one of the first works
on active learning for deep semantic parsing and
found that selecting low-confidence examples out-
performed random examples on two datasets but
failed on a third. Koshorek et al. (2019) experi-
mented with learning to actively-learn for semantic
parsing, a method where the active learner is a
learned model, but failed to see better performance
than random sampling. Ni et al. (2020) proposed a
framework where a weakly trained semantic parser
was allowed to actively select examples for extra su-
pervision. The authors found that selecting the least
confident of the incorrect examples led to the best
performance. Incorrect examples were identified
by executing the predicted query and comparing
the predicted answer with an expected answer. In
this paper, we experiment with using uncertainty
and utterance frequencies from customer traffic, a
feature often found in industry logs.

3 Uncertainty and Traffic-Aware Active
Learning

We propose uncertainty and traffic-aware active
learning for semantic parsing. Our method is in-
spired by Mehrotra and Yilmaz (2015), who pre-
sented an active learning method for ranking al-
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gorithms which selects examples that are both in-
formative to the model and representative of the
dataset. The authors found that including a repre-
sentativeness measure helped offset the tendency
of informativeness measures to select outliers. In
their paper, the authors measured informativeness
as permutation probability based on a committee of
ranking models, so a query where the most certain
committee member had the least confidence was
considered more informative. For representative-
ness, the authors used an LDA model to create a
feature vector for each query. If a query’s feature
vector had higher cosine similarity to the average
feature vector of all queries, the query was consid-
ered more representative.

In our method, we also use informativeness and
representativeness, but we introduce new ways to
measure both that can be applied to semantic pars-
ing tasks. For each utterance u in a set of unlabeled
utterances U, we calculate f(u), a sampling weight
associated with u, as:

f(u) = β
φ(u)∑

u∈U
φ(u)

+ (1− β)
ψ(u)∑

u∈U
ψ(u)

(1)

where φ(u) is the representativeness and ψ(u) is
the informativeness of u. We measure φ(u) as the
utterance frequency, calculated as the number of
times the utterance u appeared during a given time
window of traffic. We measure ψ(u) as 1 - our
model’s confidence on u. To calculate confidence,
we use perplexity per word, which is the inverse
probability of a model’s output normalized by the
number of words. We convert this perplexity into a
confidence score by scaling it to a value between
[0,1] using the function in Algorithm 1. The thresh-
old is set to 0.9, which was fine-tuned based on the
model’s accuracy in production. In this function,
confidence approaches 1 as perplexity approaches
0, confidence is 0.5 when perplexity is the thresh-
old, and confidence approaches 0 as perplexity ap-
proaches infinity. While this scaled perplexity is
not an exact measure of confidence, we found that
it was effective in our experiments.

Both φ(u) and ψ(u) are normalized by the sum of
all values of φ(u) and ψ(u). We use f(u) as a weight
on each utterance when sampling. Utterances that
maximize f(u) by having higher frequencies and
lower confidences are more likely to be selected.

The β is a fine-tunable term that weighs the ut-
terance frequency against the confidence. We man-

Algorithm 1: Perplexity to confidence
p← perplexity
if p > threshold: then

return 1 / (2 + (100 * (p - threshold)));
else

return 1 - 0.5 * (p / threshold);
end

ually fine-tuned β by training 9 models with differ-
ent values ranging from 0.1 to 0.9 and compared
performance in terms of exact-match accuracy. We
found that a β of 0.4 performed the best on our
internal dataset and a β of 0.5 performed the best
on TOP, and so we use these β values in this paper.

3.1 Semantic Parsing Model

The semantic parsing model we use to evaluate
our method is a reimplementation of the sequence-
to-sequence model with pointer generator network
proposed by Rongali et al. (2020), which achieved
state-of-the-art performance on Facebook TOP
(Gupta et al., 2018). We use a BERT-Base model
(Devlin et al., 2019) as the encoder and a trans-
former based on Vaswani et al. (2017) as the de-
coder. The encoder converts a sequence of words
into a sequence of embeddings. Then at each time
step, the decoder outputs either a symbol from the
output vocabulary or a pointer to an input token. A
final softmax layer provides a probability distribu-
tion over all actions, and beam search maximizes
the output sequence probability.

3.2 Compared Approaches

We compare our method to the following baselines.

RANDOM: Our random baseline randomly
samples utterances for annotation.

TRAFFIC-AWARE: Our traffic-aware baseline
uses utterance frequencies as a weight on each
utterance, prioritizing utterances asked more
often. In datasets containing duplicates, this
is equivalent to random sampling.

CLUSTERING: In our clustering baseline
(Kang et al., 2004; Ni et al., 2020), we com-
pute a RoBERTa (Liu et al., 2019) embed-
ding using sentence-transformers1 for each
utterance. We cluster the embeddings with

1https://github.com/UKPLab/
sentence-transformers

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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Internal TOP

Train 10,000 500
Dev 2,000 4,032
Test 5,000 8,241
Unlabeled 100,000 13,680
Src Vocab 30,160 11,873
Tgt Vocab 5,400 116

Table 1: Details of the datasets. Train is the starting
training set in our experiments. Unlabeled is the set
from which additional training examples are sampled.

k-means and set the number of clusters to the
round’s budget (i.e. if our budget is 500 ut-
terances, we create 500 clusters). Then we
randomly sample 1 example per cluster.

LEAST CONFIDENCE: Our least confidence
baseline (Lewis and Catlett, 1994; Culotta and
McCallum, 2005) selects utterances with the
lowest model confidence.

MARGIN OF CONFIDENCE: Our margin
of confidence baseline (Settles and Craven,
2008) calculates the difference in confidence
between the top two predictions in an n-best
list. Large differences between the top two
predictions indicate there is a clear top predic-
tion, while small differences indicate greater
model uncertainty. We select the examples
with the smallest difference in confidence.

UNCERTAINTY-AWARE: A less deterministic
version of Least Confidence. We use 1 - model
confidence as a weight on each utterance, pri-
oritizing utterances with low confidence.

UNCERTAINTY + CORRECTNESS: Our uncer-
tainty + correctness baseline (Ni et al., 2020)
selects the most uncertain of the predictions
that are incorrect. In practice, there are sev-
eral ways to identify an incorrect prediction,
such as checking if 1) a query fails to execute,
2) a query executes but fails to answer, or 3)
a query executes but does not return the ex-
pected answer. In our experimental setup, we
use a more favorable setting by checking the
prediction against the expected representation.

4 Datasets

We run experiments on both an internal customer
dataset and the Facebook Task Oriented Parsing

Internal what is the capital of france,
is the capital of(@ptr5)

TOP Any accidents along Culver,
[IN:GET INFO TRAFFIC

@ptr0 @ptr1 @ptr2
[SL:LOCATION @ptr3]]

Table 2: Examples from the datasets. @ptrs are point-
ers to a source token. In the first example @ptr5 refers
to the 5th token in the source, “france”.

(TOP) dataset (Gupta et al., 2018). Details and
examples are shown in Tables 1 and 2.

Our internal dataset contains open-domain fac-
tual questions asked by customers to a commercial
voice assistant. The utterances are anonymized
and labeled with a meaning representation by an
internal high-precision rule-based system. We also
calculate a count for each utterance based on how
often the utterance was asked in a given period
of time. This dataset contains only unique utter-
ances, which prevents selecting the same utterance
multiple times for annotation.

To our knowledge, there is no public semantic
parsing dataset with question frequencies, and so
we use a modified version of TOP. TOP is a seman-
tic parsing dataset of 45k crowdsourced queries
about navigation and public events. These queries
are manually labeled with a meaning representation.
In order to create a measure of representativeness,
we assume that utterances with an exact-matched
meaning representation are semantically similar.
Utterances with meaning representations that ap-
pear more often are considered more representative.
We keep one utterance per exact-matched meaning
representation, and use the counts as a measure of
how popular this type of question is among users.
This is done for experimental purposes. In a real
setting without the labels, we could use alternate
measures of semantic similarity to identify more
popular questions.

5 Experiments

For controlled experimentation, we simulate active
learning by treating a subset of our data as unla-
beled. When an unlabeled example is selected, we
reveal the label and add it to the training set. All
our experiments are run on an Nvidia Tesla v100
16GB GPU and the results are reported as exact
match accuracy.
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Figure 1: Results of the experiments. Scores are calculated as exact-match accuracy. We only report relative
change in accuracy for the internal dataset. The shaded regions represent the standard error for each point.

5.1 Internal Dataset

For our internal dataset, we start with a base train-
ing set of 10,000 utterances and set an annotation
budget of 5,000 utterances. In each round, we sam-
ple 500 utterances from the unlabeled set, append
them with their labels to the training set, and fully
retrain the model. We repeat this for 10 rounds and
report results as an average over 5 runs.

The results are shown in terms of relative change
in exact-match accuracy in Figure 1a. Our method
initially has similar performance to uncertainty-
based baselines, but after Round 4, our method
outperforms all the baselines. Table 3 has results of
paired t-tests comparing our method to each base-
line. All the p-values are<0.05, showing statistical
significance. In particular, our method outperforms
random sampling. The examples picked by the first
6 rounds of uncertainty and traffic-aware sampling
(accuracy ∆7.0% at round 6) are as valuable as
the examples picked by all 10 rounds of random
sampling (accuracy ∆6.9% at round 10), saving on
the cost of 2,000 annotations.

To better understand these results, we inspected
examples selected by each method. We found that
although the traffic-aware method picked popu-
lar utterances, annotating many similar questions
had limited gains over time. On the other hand,
uncertainty-based approaches picked more diverse
examples, but since customer datasets can be noisy,
they were prone to picking outliers that were not as
useful to the model when annotated. By combining
frequency with uncertainty, our method was able to
prioritize popular but under-represented examples,
which were both interesting for customers and in-
teresting for the model, and this gave us the best
performance.

Baseline Internal TOP

Random p<.001 p=.01
Traffic-Aware p<.001 p=.008
Clustering p<.001 p=.01
Least Confidence p<.001 p=.02
Margin of Confidence p=.002 p=.004
Uncertainty-Aware p<.001 p=.02
Uncertainty + Correctness p=.001 p=.03

Table 3: Results of paired t-tests comparing our method
to each baseline. p<.05 is considered significant

5.2 TOP

We next ran experiments on TOP. Given that TOP
is a smaller and simpler dataset (e.g. target vocab
of 116 vs. 5,400), we start with a smaller base
training set of 500 examples and set an annotation
budget of 500 examples. In each round, we sample
100 examples from the unlabeled set, append them
with their labels to the training set, and fully retrain
the model. We see the effect of our method as early
as Round 1, so we stop after 5 rounds and report
results as an average over 5 runs.

The results are shown as exact-match accuracy
in Figure 1b and the p-values from paired t-tests
are in Table 3. These results again show that
our method significantly outperforms the baselines.
Even though the traffic weights in TOP are not from
customer traffic, traffic-aware sampling performs
almost as well as our method. This suggests that
MRL frequency is a helpful measure for this test set.
We also observe that some of our uncertainty-based
baselines perform worse than random sampling, in
contrast to our results on the internal dataset. We
hypothesize this could be because uncertainty is a
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less useful signal from models built with smaller
training sets (TOP: 500-1,000 training examples
vs. Internal: 10,000-15,000 training examples) or
because low confidence examples were less useful
for TOP’s test set. Uncertainty still provides some
advantage, however, as the combination with MRL
frequency leads to the best performance.

6 Conclusion

In this work, we present uncertainty and traffic-
aware active learning, a method that uses model
confidence and traffic frequency to improve a se-
mantic parsing model. We show that our method
significantly outperforms baselines on both an inter-
nal dataset and TOP. Our method achieves the same
precision as random sampling with 2,000 fewer an-
notations on our internal dataset. Based on our
results, we present our method as a way to improve
semantic parsers while reducing annotation costs
and limiting customer data shown to annotators.

References
Xi C. Chen, Adithya Sagar, Justine T. Kao, Tony Y. Li,

Christopher Klein, Stephen Pulman, Ashish Garg,
and Jason D. Williams. 2019. Active Learning for
Domain Classification in a Commercial Spoken Per-
sonal Assistant. In Proc. Interspeech 2019, pages
1478–1482.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
AAAI, volume 5, pages 746–751.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Long Duong, Hadi Afshar, Dominique Estival, Glen
Pink, Philip Cohen, and Mark Johnson. 2018. Ac-
tive learning for deep semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 43–48, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Jaeho Kang, Kwang Ryel Ryu, and Hyuk-Chul Kwon.
2004. Using cluster-based sampling to select initial
training set for active learning in text classification.
In Pacific-Asia conference on knowledge discovery
and data mining, pages 384–388. Springer.

Omri Koshorek, Gabriel Stanovsky, Yichu Zhou, Vivek
Srikumar, and Jonathan Berant. 2019. On the
limits of learning to actively learn semantic rep-
resentations. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 452–462, Hong Kong, China. Asso-
ciation for Computational Linguistics.

David D Lewis and Jason Catlett. 1994. Heterogeneous
uncertainty sampling for supervised learning. In Ma-
chine Learning Proceedings 1994, pages 148–156.
Elsevier.

Shoushan Li, Shengfeng Ju, Guodong Zhou, and Xiao-
jun Li. 2012. Active learning for imbalanced senti-
ment classification. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 139–148, Jeju Island, Korea.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Rishabh Mehrotra and Emine Yilmaz. 2015. Represen-
tative & informative query selection for learning to
rank using submodular functions. In Proceedings
of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’15, page 545–554, New York, NY, USA. As-
sociation for Computing Machinery.

Ansong Ni, Pengcheng Yin, and Graham Neubig. 2020.
Merging weak and active supervision for semantic
parsing. In Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence (AAAI), New York, USA.

Stanislav Peshterliev, John Kearney, Abhyuday Jagan-
natha, Imre Kiss, and Spyros Matsoukas. 2019. Ac-
tive learning for new domains in natural language un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Industry Papers), pages 90–
96, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! A se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

https://doi.org/10.21437/Interspeech.2019-1315
https://doi.org/10.21437/Interspeech.2019-1315
https://doi.org/10.21437/Interspeech.2019-1315
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2008
https://doi.org/10.18653/v1/P18-2008
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/K19-1042
https://doi.org/10.18653/v1/K19-1042
https://doi.org/10.18653/v1/K19-1042
https://www.aclweb.org/anthology/D12-1013
https://www.aclweb.org/anthology/D12-1013
https://doi.org/10.1145/2766462.2767753
https://doi.org/10.1145/2766462.2767753
https://doi.org/10.1145/2766462.2767753
https://arxiv.org/abs/1911.12986
https://arxiv.org/abs/1911.12986
https://doi.org/10.18653/v1/N19-2012
https://doi.org/10.18653/v1/N19-2012
https://doi.org/10.18653/v1/N19-2012


17

Burr Settles and Mark Craven. 2008. An analysis of ac-
tive learning strategies for sequence labeling tasks.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1070–1079.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017.
Deep active learning for named entity recognition.
In Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Shusen Zhou, Qingcai Chen, and Xiaolong Wang.
2010. Active deep networks for semi-supervised
sentiment classification. In COLING 2010: Posters,
pages 1515–1523, Beijing, China. COLING 2010
Organizing Committee.

https://doi.org/10.18653/v1/W17-2630
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/C10-2173
https://www.aclweb.org/anthology/C10-2173

