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Chinese Spelling Check based on

Neural Machine Translation

Jhih-Jie Chen*, Hai-Lun Tu*, Ching-Yu Yang®,

Chiao-Wen Li* and Jason S. Chang®

Abstract

We present a method for Chinese spelling check that automatically learns to correct
a sentence with potential spelling errors. In our approach, a character-based neural
machine translation (NMT) model is trained to translate the potentially misspelled
sentence into correct one, using right-and-wrong sentence pairs from newspaper
edit logs and artificially generated data. The method involves extracting sentences
contain edit of spelling correction from edit logs, using commonly confused
right-and-wrong word pairs to generate artificial right-and-wrong sentence pairs in
order to expand our training data , and training the NMT model. The evaluation on
the United Daily News (UDN) Edit Logs and SIGHAN-7 Shared Task shows that
adding artificial error data can significantly improve the performance of Chinese

spelling check system.

Keywords: Chinese Spelling Check, Artificial Error Generation, Neural Machine
Translation, Edit Log

1. Introduction

Spelling check is a common yet important task in natural language processing. It plays an
important role in a wide range of applications such as word processors, assisted writing
systems, and search engines. For example, search engine without spelling check is not
user-friendly, while assisted writing system must perform spelling check as the minimal

requirement. Web search engines such as Google (www.google.com) and Bing
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(www.bing.com) typically perform spelling check on queries, in order to retrieve documents
better meeting the user information need. The users’ queries would be corrected first by the
spelling check component in order to avoid irrelevant or low-quality search results. In contrast
to Web search engines, while Microsoft Word has a very effective spelling checker for

English, there is still considerable room to improve the one for Chinese.

Consider a sentence “ffF 2 HEAESAVE " (‘He is highly accomplished in

literature.”). In the context of this sentence, the character “i§” (pronounced ‘zhi’) is a typo.
For another sentence “fffE X2 ST HEERESHEEL - 7 , the character “#&”

[T =]

(pronounced ‘yi’) is also a typo. For these two typos, the correct character is “F5
(pronounced ‘yi’). Chinese spelling errors are due to two main reasons: one is similar sound
(e.g., ¥4 and Z5) and the other is similar shape (e.g., *§ and Z§), as pointed by Liu et al.
(2011).

Unfortunately, such spelling error is probably uneasy to correct due to limited training
data. In fact, there is a lack of training data for the Chinese spelling check task. Compared to
western languages (e.g., English and German), relatively little work has been done on Chinese
spelling check and few datasets are available. More spelling errors can be corrected with a
machine learning model trained on more data. It could be that there are some fundamental
problems such as no word boundaries, too many characters, and inconsistent use along time.

Chinese spelling check could be more practical if more training data is available.

One solution to the lack of training data is to create artificial one for training. Researches
on artificial error generation for English have shown great potential in improving underlying
models for writing error correction (Felice & Yuan, 2014; Rei, Felice, Yuan, & Briscoe, 2017).
In other words, by generating artificial errors to increase data, we might have a chance to
make spelling check models better and stronger. However, very few works have focused on

generating artificial errors for Chinese.

In this paper, we present AccuSpell, a system that automatically learns to generate the
corrected sentence for a potentially misspelled sentence using neural machine translation
(NMT) model. The system is built on a new dataset consisting of edit logs of journalists from
the United Daily News (UDN). Moreover, we collect a number of confusion set for generating
artificial errors to augment the data for training. The evaluation on the UDN Edit Logs and
SIGHAN-7 Shared Task shows that adding artificial error data can significantly improve the
performance of Chinese spelling check system. The model is deployed on Web and an
example AccuSpell searches for the sentence “%fH BIESE » A/ NG—FF 7 (‘The
moon is so beautiful tonight, and I want a drink.”) is shown in Figure 1. AccuSpell has
determined that “< it H @{EZE - FAE/NFY—FF o7 is the most probably corrected
sentence. AccuSpell learns how to effectively correct a given sentence during training by using

more data, including real edit logs and artificially generated data. We will describe how to
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create artificial data and training process in detail in Section 3.

[ AccuSpell - Chinese Spellin

C & BE | htips.//nip-ultron.cs.nthu.edu.tw

S EEERE - TN - Suggestions
|

Figure 1. An example the Web version of AccuSpell searches for input  “S#¢ 5 &
R=E » B8/ EJ—FF - ¥ ('The moon is so beautiful tonight, and | want a drink.”)

At run-time, AccuSpell starts with a sentence or paragraph submitted by the user (e.g.,
“Site A EIR3E » FAE/INST—FF -7 ), which was first divided into clauses. Each clause then
is splitted into Chinese characters before being fed to the NMT model. Finally, the model
outputs an n-best list of sentences. In our prototype, AccuSpell returns the best sentence to the
user directly (see Figure 1); alternatively, the best sentence returned by AccuSpell can be

passed on to other applications such as automatic essay rater and assisted writing systems.

The rest of the article is organized as follows. We review the related work in the next
section. Then we describe how to extract the misspelled sentences from newspaper edit logs
and how to generate artificial sentences with typos in Section 3. We also present our method
for automatically learning to correct typos in a given sentence. Section 4 describes the
resources and datasets we used in the experiment. In our evaluation, over two set of test data,
we compare the performance of several models trained on both real and artificial data with the
model trained on only real data in Section 5. Finally, we summarize and point out the future

work in Section 6.

2. Related Work

Error Correction has been an area of active research, which involves Grammatical Error
Correction (GEC) and Spelling Error Correction (SEC). Recently, researchers have begun
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applying neural machine translation models to both GEC and SEC, and gained significant
improvement (e.g., Yuan & Briscoe, 2016; Xie, Avati, Arivazhagan, Jurafsky, & Ng, 2016).
However, compared to English, relatively little work has been done on Chinese error
correction. In our work, we address the spelling error correction task, that focuses on

generating corrections related to typos in Chinese text written by native speakers.

Early work on Chinese spelling check typically uses rule-based and statistical approaches.
Rule-based approaches usually use dictionary to identify typos and confusion set to find
possible corrections, while statistical methods use the noisy channel model to find candidates
of correction for a typo and language model to calculate the likelihood of the corrected
sentences. Chang (1995) proposed an approach that combines rule-based method and
statistical method to automatically correct Chinese spelling errors. The approach involves
confusing character substitution mechanism and bigram language model. They used a
confusion set to replace each character in the given sentence with its corresponding confusing
characters one by one, and use a bigram language model built from a newspaper corpus to
score all modified sentences in an attempt to find the best corrected sentence. Zhang, Huang,
Zhou, and Pan (2000) pointed out that Chang (1995)’s method can only address character
substitution errors, other kinds of errors such as character deletion and insertion cannot be
handled. They proposed an approach using confusing word substitution and trigram language
model to extend the method proposed by Chang (1995).

In recent years, Statistical Machine Translation (SMT) has been applied to Chinese
spelling check. Wu, Chen, Yang, Ku and Liu (2010) presented a system using a new error
model and a common error template generation method to detect and correct Chinese
character errors that can reduce false alarm rate significantly. The idea of error model is
adopted from the noisy channel model, a framework of SMT, which is used in many NLP
tasks such as spelling check and machine translation. Chiu, Wu and Chang (2013) proposed a
data-driven method that detect and correct Chinese errors based on phrasal statistical machine
translation framework. They used word segmentation and dictionary to detect possible

spelling errors, and correct the errors by using SMT model built from a large corpus.

More recently, Neural Machine Translation (NMT) has been adopted in error correction
task and has achieved state-of-the-art performance. Yuan and Briscoe (2016) presented the
very first NMT model for grammatical error correction of English sentences and proposed a
two-step approach to handle the rare word problem in NMT. The word-based NMT models
usually suffer from rare word problem. Thus, a neural network-based approach using
character-based model for language correction was proposed by Xie et al. (2016) to avoid the
problem of out-of-vocabulary words. Chollampatt and Ng (2018) proposed a multilayer
convolutional encoder-decoder neural network to correct grammatical, orthographic, and

collocation errors. Until now, most work on error correction done by using NMT model aimed



Chinese Spelling Check based on Neural Machine Translation 5

at grammatical errors for English text. In contrast, we focus on correcting Chinese spelling

CITorS.

Building an error correction system using machine learning techniques typically require a
considerable amount of error-annotated data. Unfortunately, limited availability of
error-annotated data is holding back progress in the area of automatic error correction. Felice
and Yuan (2014) presented a method that generates artificial errors for correcting grammatical
mistakes made by learners of English as a second language. They are the first to use linguistic
information such as part-of-speech to refine the contexts of occurring errors and replicate
them in native error-free text, but also restricting the method to five error types. Rei et al.
(2017) investigated two alternative approaches for artificially generating all types of writing
errors. They extracted error patterns from an annotated corpus and transplanting them into
error-free text. In addition, they built a phrase-based SMT error generator to translate the

grammatically correct text into incorrect one.

In a study closer to our work, Gu and Lang (2017) applied sequence-to-sequence
(seq2seq) model to construct a word-based Chinese spelling error corrector. They established
their own error corpus for training and evaluation by transplanting errors into an error-free
news corpus. Comparing with traditional methods, their model can correct errors more

effectively.

In contrast to the previous research in Chinese spelling check, we present a system that
uses newspaper edit logs to train an NMT model for correcting typos in Chinese text. We also
propose a method to generate artificial error data to enhance the NMT model. Additionally, to
avoid rare word problem, our NMT model is trained at character level. The experiment results
show that our model achieves significantly better performance, especially at an extremely low

false alarm rate.

3. Methodology

Submitting a misspelled sentence (e.g., “SHf HEIRZE » FAE/NE—FF -7 ) to a spelling
check system with limited training data often does not work very well. Spelling check systems
typically are trained on data of limited size and scope. Unfortunately, it is difficult to obtain a
sufficiently large training set that cover most common errors, corrections, and contexts. When
encountering new and unseen errors and contexts, these systems might not be able to correct
such errors. To develop a more effective spelling check system, a promising approach is to
automatically generate artificial errors in presumably correct sentences for expanding the

training data, leading the system to cope with a wider variety of errors and contexts.
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3.1 Problem Statement

We focus on correcting spelling errors in a given sentence by formulating the Chinese spelling
check as a machine translation problem. A sentence with typos is treated as the source
sentence, which is translated into a target sentence with errors corrected. The plausible target
sentence predicted by a neural machine translation model is then returned as the output of the
system. The returned sentence can be viewed by the users directly as suggestion for correcting
a misspelled sentence, or passed on to other applications such as automatic essay rater and
assisted writing systems. Thus, it is important that the misspelled characters in a given
sentence be corrected as many as possible. At the same time, the system should avoid making
false corrections. Therefore, our purpose is to return a sentence with most spelling errors
corrected, while keeping false alarms reasonably low. We now formally state the problem that

we are addressing.

Problem Statement: We are given a possibly misspelled sentence X with n characters
X1,X2,...,Xp. Our goal is to return the correctly spelled sentence Y with m characters Yi,Y»,...,Ym.
For this, we prepare a dataset of right-and-wrong sentence pairs in order to train a neural
machine translation (NMT) model. The sentences come from real edit logs and

artificially-generated data.

In the rest of this section, we describe our solution to this problem. First, we describe the
process of automatically learning to correct misspelled sentences in Section 3.2. More
specifically, we describe the preprocessing of edit logs in Section 3.2.1, and how to artificially
generate similar sentences with edits in Section 3.2.2. We then describe the process of training
NMT model in Section 3.2.3. Finally, we show how AccuSpell corrects a given sentence at

run-time by applying NMT model in Section 3.3.

3.2 Learning to Correct Misspelled Sentence

We attempt to train a neural machine translation (NMT) model using right-and-wrong
sentence pairs from edit logs and artificial data, which to translate a misspelled sentence into a
correct one. In this training process, we first extract the sentences with spelling errors from
edit logs (Section 3.2.1) and generate artificial misspelled sentences from a set of error-free
sentences (Section 3.2.2). We then use these data to train the NMT model (Section 3.2.3).

3.2.1 Extracting Misspelled Sentences from Edit Logs

In the first stage of training process, we extract a set of sentences with spelling errors
annotated by simple edit tags (i.e., <[-, -]> for deletion and <{+, +} > for insertion). For
example, the sentence “FHE R K FHEEIE A EZHI[-E-1{+iE+8H > 7 (Hope that the
main islands will have perfect docks in the future.) contains the edit tags “[-FE-]{+HE+}"
that means the original character “F” (pronounced ’ma’) was replaced with “HE”
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(pronounced 'ma’).

[GCEETH &it#HE] 125 5EHEORRHBER - 61585 H
B EEBELEM » W[EHI9<FONT class=1 title=22 5 5 Hr i,
color=#265e8a>,</FONT>200%L (i1 B - /K B HS B4R TR » 6%
A ARER ~ 1818 EF5HVR %, (/NEEHEFZENEERE © iR
BEEESEEEAEMNE  HEEIHEN » /NS AR & E<FONT
style="TEXT-DECORATION: line-through" class=3 title=2= 52 544,
color=#555588>1fi</FONT><FONT class=1 title=$ﬁ§§¥ﬁi§,
color=#265e8a>7f</FONT>[SHHAE » HELEEIEREATPUt/Call Ratio B F »
Ty 2% 77 2848 > R @ 9<FONT class=1 title= ém%‘&%fa,
color=#265e8a>,</FONT>200%} B 22 < BRI AV LR - M TEHATE12/5H
J{E<FONT class=1 title=Z=5E 5614, color=#265e8a>%L</FONT>9<FONT
class=1 title=2E5& ¥, color=#265e8a>,</FONT>138%E EL A 5HShAY
13 - </P>

Figure 2. An example of edit logs in HTML format

REEF[-S-H+E+YE AR & RNt wty

IHAE " [-b-{+B+}Hue Monday®:[-g-]{+G+}reen Monday | *

SISO BT E BRI+ o +}- 5 1A SRR T -

[-f-){+ o+ }E H 522 HEH0ER0H »

St SRR PO EE A5 288 1 K A4 25 AR 0] R o o [-BR-{+ R +) S

1% L S+ B+ ) -1-1%% -

ETE T R S B S A BB+ BB+ FAE 6 -

{HEZRUSE- E-K+ T+ R L -

FEHIRAFBRTRESER (GENER) FEERMIN - -8 .0 53
50 - 7HEER

10. {E{H b 5 B Ay 418 [- -+ &R 88+ Y ol 22 -

11. Y AR T B 5e 2 [- - H+85+ }us -

0400 O {ED .00 19 =

Figure 3. Examples of different edit types in edit logs

The input to this stage are a set of edit logs in HTML format, containing the name of
editor, the action of edit (1 is insertion and 3 is deletion), the target content and some CSS
attributes, as shown in Figure 2. We first convert HTML files to simple text files by removing
HTML tags and using simple edit tags “{+ +}” and “[- -]” to represent the edit actions of
insertion and deletion respectively. For example, the sentence in HTML format
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“INEH A ZE<FONT style= ” TEXT-DECORATION: line-through”  class=3
title=XXX i, color=#555588>fi</FONT><FONT class=1 title=XXX ¥,
color=#265e8a>7i</FONT>fEHH4F » ”

is converted to “4NEH R EZZE[--]1{+45+)FEHE » 7 (“Foreign investment is not in a
hurry to layout next year,”).

After that, we attempt to extract the sentences that contain at least one typo. As shown in
Figure 3, the edit logs could contain many kinds of edits, including spelling correction,
content changes, and style modification (such as synonyms replacement). Among these edits,
we are only concerned with spelling correction. However, lack of edit type annotation makes
it difficult to directly identify spelling errors. Thus, we consider consecutive single-character
edit pairs of deletion and insertion (e.g., “[-ffi-]1{+fF+}” or “{+fi+}[-ffi-]") as spelling
correction, and extract the sentences containing such edit pairs. Furthermore, we use a set of
rules to filter out some kinds of edits such as time-related and digital-related. Figure 3 shows
some edited sentences, the fifth, sixth, seventh, eighth and eleventh sentences are regarded as
sentences with spelling errors according these simple rules. The output of this stage is a set of
sentences with spelling errors annotated using simple edit tags, as shown in Figure 4.

o —HEgRIRIIE (AFENHL) REEAKREZE-5-HTF+E
© BIRBERISEMR: & Z e -ol-H+ak+} -

o [N A S E AR RS -

o BUG{HE+ -1 280 R R R 0

o TNSOERBRE T BT RS I TSE -

o EHSRIE AT FE L HrE (+aCHH-4C -8 o

o —LRIBEIFER ST S EARER AR E A RS- N+ RH+135

o OGN G S S RE YR 4B B R [+ HR+ )

o tEmMmAEKIE - HEFRECIHEHDRERM -

o AEWAET G-I+ G+ ER - IR - AR E S TH

Figure 4. Example outputs for the step of extracting misspelled sentences

Although this approach for extracting the edited sentences involving spelling correction
can obtain quite a few results, there is still a room for improvement. For example, the edited
sentence “{H{H I H & IVFE[-ME-1{+545+)35[E% - 7 ('Bring millions of good gifts
home’) contains a consecutive two-character edit pair “[-3EiE-]{+44¢+}" (both
pronounced ’tong tong’), which is also spelling error correction. However, it is not extracted
because we only consider consecutive single-character edit pairs. In some cases, an edited

sentence might be wrongly regarded as misspelled sentence. For example, the sentence “i2
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TEEtE B E R RS E[-BE-{+HF+}EEET > 7 (This project will continue to raise funds
until this Christmas,’) contains an edit pair “[-B2-]{+H[+}” about style modification.
Consider the context of the edited character, the word “BEHLES” (pronounced ’sheng dan
jie’, it means the birthday of the holy child Jesus) and “HEZEE7T” (pronounced ’ye dan jie’,
it means the birthday of Jesus) are both correct, and they almost mean the same thing. For

such case, using word segmentation and meaning similarity measure of two words may be
helpful.

3.2.2 Generating Artificially Misspelled Sentences

In the second stage of training process, we create a set of artificial misspelled sentences for
expanding our training data. These generated data are expected to make the Chinese spelling
checker more effective.

procedure GenerateErrorSentence_Map(CorrectSentences)

for each Sentence in CorrectSentences
for each Word; in Sentence

(1) WrongWords = getConfusionSet(Word;)
for each WrongWord; in WrongWords
(2a) WrongSentence = Sentence
(2b) replace WrongSentence; with WrongWord,
(3a) WordPair = Word; + “||[” + WrongWord,
(3b) SentencePair = Sentence + “|||” + WrongSentence
(4) output <WordPair, SentencePair>

procedure GenerateErrorSentence_Reduce(WordPairs, SentencePairs)

(1) N=n

for each WordPairs, SentencePairs
(2) shuffle SentencePairs
(3) output top N SentencePairs

Figure 5. Generating artificial misspelled sentence

Table 1. Examples of confusion set

Correct Word Wrong Words

[===1

#i% (Carrange’, pronounced "bu shu’) e, Wm, g &

H%3E(Capologize’, pronounced ’pei zui’) BZ3E, E5E
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The input to this stage is a set of presumably error-free sentences from published texts
with word segmentation done using a word segmentation tool provided by the CKIP Project
(Ma & Chen, 2003). Artificially misspelled sentences are generated by injecting errors into
these error-free sentences. Although a correct word could be misspelled as any other Chinese
word, some right-and-wrong word pairs are more likely to happen than others. In order to
generate realistic spelling errors, we use a confusion set consisting of commonly confused
right-and-wrong word pairs (see Table 1). The wrong words in confusion set are used to
replace counterpart correct words in the sentences. For example, we use error-free sentence

“WEREEIEIE T 488"  (also apologized to the patient for ten minutes’) to generate
three misspelled sentences, as shown in Table 2. Figure 5 shows the procedure for generating

artificial misspelled sentences using the MapReduce framework to speed up the process.

Table 2. Artificial misspelled sentences for *~ #fREZHTE T 1788

Artificial Misspelled Sentence Replaced Word Wrong Word
WEREERLGE 708 EEE(E HE 3R
R E A IR o HirgR Fe IR
R EAREIR 7o Py | ay:

+ Map procedure: In Step (1), for each word in the given (presumably) error-free sentence
with length not longer than 20 words, we obtain the corresponding confused words. For
example, the confusion set of word “H%JE” contains two confused wrong words:

“B23E” and “[E5E” . The original word is then replaced with its corresponding
confused words in Steps (2a) and (2b). To work with MapReduce framework, we then
format the output data to key-value pair in Step (3a) and (3b). In order to group the
generated misspelled sentences according to replacement (e.g., “WESE~ is replaced
with  “£%3E” ), we use a right-and-wrong word pair (e.g., “HZIE|||BZ3E” ) to be
the key, and a right-and-wrong sentence pair (e.g., “thEREFHHLIE T T0||thiRE
HEEIE T 4388 ) to be the value. Finally, the key-value pair is outputted in Step (4).

Reduce procedure: In this procedure, the inputs are the key-value pairs outputted by
Mapper. For each word pair, there might be too many sentence pairs. Thus, in Step (1),
we set a threshold N to limit the number of sentences generated. In order to randomly
sample a set of sentences, we make these sentence pairs redistributed by shuffling in Step

(2), and output the first N of sentence pairs in Step (3).
The output of this stage is a set of right-and-wrong sentence pairs, as shown in Table 3.

The confusion set plays an important role in this stage, so it is critical to decide what
kinds of confusion set to use. There are several available word-level and character-level

confusion sets. However, compare to word-level, a Chinese character could be confused with
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more other characters based on shape and sound similarity. For example, the character “Hg”
is confused with 23 characters with similar shape and 21 characters with similar sound in a
character-level confusion set, while the word “HZ3E” is confused with only two words in a
word-level confusion set. Moreover, an occurring typo might involve not only the character
itself but also the context. If we use the character-level confusion set, an error-free sentence
would produce numerous and probably unrealistic artificial misspelled sentences. Therefore,
we decide to use word-level confusion sets.

Table 3. Example outputs for the step of generating artificial misspelled sentences

Right Sentence Wrong Sentence

A R e O R R S ] RN 2R LR
HEUKYIDEBE A - HEUKYINEEE) -
HAGTE A —BEE? HASIE A —RE T ?
R e B AR i A b B AR TS

7 A5 e Ryl R - 7 Mt FY 5 R B AN e -

3.2.3 Neural Machine Translation Model

In the third and final stage of training process, we train a character-based neural machine
translation (NMT) model for developing a Chinese spelling checker, which translates a

potentially misspelled sentence into a correct one.

The architecture of NMT model typically consists of an encoder and a decoder. The
encoder consumes the source sentence X = [X,X,,...,X;] and the decoder generates translated
target sentence Y = [Y,Ya,...,¥5]. For the task of correcting spelling errors, a potentially
misspelled sentence is treated as the source sentence X, which is translated into the target
sentence Y with errors corrected. To train the NMT model, we use a set of right-and-wrong
sentence pairs from edit logs (Section 3.2.1) and artificially-generated data (Section 3.2.2) as

target-and-source training sentence pairs.

In the training phase, the model is given (X, Y) pairs. At encoding time, the encoder reads
and transforms a source sentence X, which is projected to a sequence of embedding vectors e =

[e1,es,...,8/], into a context vector C:
C:q(hl,hz,...,h|) (1)
where ( is some nonlinear function.

We use a bidirectional recurrent neural network (RNN) encoder to compute a sequence
of hidden state vectors h = [h,h,,...,n]. The bidirectional RNN encoder consists of two

independent encoders: a forward and a backward RNN. The forward RNN encodes the normal
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sequence, and the backward RNN encodes the reversed sequence. A hidden state vector h; at

time i is defined as:

fhy= FOI’W&I‘dRNN(hifl,ei) 2
bh;= BackwardRNN(h,,,e;) 3)
hi = [fhi||bh;] 4

where || denotes the vector concatenation operator.

At decoding time, the decoder is trained to output a target sentence Y by predicting the

next character Y; based on the context vector ¢ and all the previously predicted characters {y,
Yo,Yj1}

J
PCY [X) =TT P(YjlYi:Y2se-es¥jo15C) (5)
j=1
The conditional probability is modeled as:
PCY; Y1 Y20 Y j15€) = 9(Y 15D}, 0) (6)

where ¢ is a nonlinear function, and h’j is the hidden state vector of the RNN decoder at time j.

We use an attention-based RNN decoder that focuses on the most relevant information in
the source sentence rather than the entire source sentence. Thus, the conditional probability in

Equation 5 is redefined as:
POY; | Yis Yasoms Vjor38) = (Y1 hj ) @)
where the hidden state vector h’j is computed as follow:

hj = f(yj_hj.ep ®)
cj =2 ajih )

;= Iexp(score(hj,hi ) (10)
Zi' 4 exp(score(h;,h;))

Unlike Equation 6, here the probability is conditioned on a different context vector ¢; for each
target character y;. The context vector C; follows the same computation as in Bahdanau, Cho,
and Bengio (2014). We use the global attention approach (Luong, Pham & Manning, 2015)

with general score function to compute the attention weight a;;:
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score(h'j ,hi) = h'jTWahi (1

Instead of implementing an NMT model from scratch, we use OpenNMT (Klein, Kim,
Deng, Senellart, & Rush, 2017), an open source toolkit for neural machine translation and
sequence modeling, to train the model. The training details and hyper-parameters of our model
will be described in Section 4.2.

3.3 Run-time Error Correction

Once the NMT model is automatically trained for correcting spelling errors, we apply the
model at run time. AccuSpell then corrects a given potentially misspelled sentence with the
character-based NMT model using the procedure in Figure 6.

procedure CorrectSpellingError(Sentence)

(1) sourceSentence
(2) targetSentence

tokenize(Sentence)
NMTModel(sourceSentence)

(3a) copy sourceSentence to Result
for each sourceChar; in sourceSentence:
if sourceChar; not equals to targetChar;
(3b) replace Result; with “[-sourceChar;-]{+targetChar;+}”

(4) return Result

Figure 6. Correcting spelling errors in a sentence

With a character-based NMT model, the input sentence is expected to follow the format
that tokens are space-separated. Thus, in Step (1), the characters in the given sentence are
separated with space. For example, “&ft 5 (/R > FeA8/NEG—FF 7 is transformed into

“Shte H @RS » FRAE/INE—FR o7 . In Step (2), the source sentence is fed to our NMT
model. During processing, the encoder first transforms the source sentence into a sequence of
vectors. The decoder then computes the probabilities of predicted target sentences given the
vectors of source sentence. Finally, a beam search is used to find a target sentence that
approximately maximizes the conditional probability. Table 4 shows the top three target
sentences predicted by our NMT model for the source sentence  “4Hif H (iR 3E » FAE/NGY
—#F =7 , and the highest-score one  “litf H (1R 35 » FAE/NEY—FF o7 is returned as the
correction.
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Table 4. Top three target sentences of the source sentence “S# 4 a7RE » 218/ &)
—pF - 7 predicted by NMT model

Target Sentence Predicted Score Rank
S HEIRSE - PN —FF - -0.0047 1
S A e - A NE—FF - -6.93 2
S A @RS - BN - -7.36 3

To give useful and clear feedback, we convert the correction result into a informative
expression instead present users with the output of NMT model directly. Therefore, in Steps
(3a) and (3b), we compare the source sentence with the target sentence to find out the
differences between them, and use simple edit tags to mark these differences. Finally in Step
(4), the converted result (e.g., “Shft 5 EIEE  FAE/N-J-1{HIY+}—FF" ) is returned by
AccuSpell. As shown in Figure 1, the characters to be deleted (e.g., “[-}5J-]" ) are colored in
red, while the inserted characters (e.g., “{+fJ+}" ) are colored in green.

4. Experimental Setting

AccuSpell was designed to correct spelling errors in Chinese texts written by native speakers.
As such, AccuSpell will be trained and evaluated using mainly real edit logs and a newspaper
corpus. In this section, we first give a brief description of the datasets used in the experiments
in Section 4.1, and describe the hyper-parameters for the NMT model in Section 4.2. Then
several NMT models with different experimental setting for comparing performance are
described in Section 4.3. Finally in Section 4.4, we introduce the evaluation metrics for

evaluating the performance of these models.

4.1 Dataset

United Daily News (UDN) Edit Logs: UDN Edit Logs was provided to us by UDN Digital.
This dataset records the editing actions of daily UDN news from June 2016 to January 2017.
There are 1.07 million HTML files with more than 30 million edits of various types, with
approximately 11 million insertions and 20 million deletions. However, lack of edit type
annotation makes it difficult to directly identify spelling errors. Thus, we extracted a set of
annotated sentences involving spelling error correction from this edit logs using the approach
described in Section 3.2.1. To train on NMT model, we transformed every annotated sentence
into a source-and-target parallel sentence. For example, “4N&EHAZE[-fi-1{+15+}FHH

> " s transformed into a source sentence “HNERZEMEIHSE »” and a target
sentence “INEH A EZEAGFHHHLE > 7 | In total, there are 238,585 sentences extracted from

UDN Edit Logs, and each sentence contains only edits related to spelling errors. We divided

these extracted sentences into two parts: one (226,913 sentences) for training NMT models,
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and the other (11,943 sentences) for evaluation in our experiments.

United Daily News (UDN): The UDN news dataset was also provided by UDN Digital. The
dataset consists of published newswire data from 2004 to 2017, which contains approximately
1.8 million news articles with over 530 million words. Unlike UDN Edit Logs, UDN are
composed of news articles which had been edited and published. We used the presumably

error-free sentences in this dataset to generate artificially misspelled sentences, as described in
Section 3.2.2.

Table 5. Examples of B 2#747—/F-Uniform Words List of UDN)

Recommended word Unrecommended word
EEIE (pronounced *ba’) I3 (Cdumb’) Megs Pt
E7H5 (pronounced *bei’) :i:égégﬁ:i’; blame’) g:zz 4
fl[$f (pronounced *bao’) @7k (’shaved ice”) $K
PFEE (pronounced “bei’) &= (Cmayor cup’) TmEdx:
JER% (pronounced dan’) 123 (miserable’) %55 1%
(indifferent’) NS
&M (pronounced ’ban”) FZH(boss”) R

Confusion Set: We used five distinct confusion sets collected from different sources:

- BFE % — % (Uniform Words List of UDN): The dataset of & #Rer—
provided by UDN Digital contains 1,056 easily confused word pairs. As shown in Table 5,
the confused word pairs indicate that which words are recommended and which ones
should not be used for UDN news articles. However, not all the unrecommended words are
wrong because the suggestions are just preference rules for writing news articles for the
UDN journalists. For example, a confused word pair [ “H&MF" , “mER 1C
Mayor CUP" ) in Table 5, the former is recommended and the latter is not recommended,
but they are both correct and in common use. In our work, we collect all the word pairs,
and consider them as right-and-wrong word pairs

- SR (Kwuntung Typos Dictionary): This dataset was collected from the Web
(www.kwuntung.net/check/), which contains a set of commonly confused right-and-wrong
word pairs. For each word pair, there is one distinct character with similar pronunciation or
shape between right and wrong word. We obtain 38,125 different right-and-wrong word
pairs in total, which constitutes the main part of our confusion set.

- IR E FHERIEF922(New Common Typos Diagnosis): This dataset comes from the
print publication: ¥4RsEHIFF922 (255%k, 2003) and contains 492 right-and-wrong
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word pairs.

- B REERFHIEEEH (Dictionary of Common Typos): This dataset is from a print
publication: 7 FLEERIFHEFRFH (222581, 2012). There are 601 right-andwrong word
pairs in total.

- BEd§EFF(The Typos List for Middle School): This dataset contains a set of
commonly misused right-and-wrong word pairs for middle school students. There are
1,720 word pairs in original. However, some pairs are composed of phrases (e.g., “#i&
KEE” and “BEHCOARKHEEE” ) instead of words. To ensure that all pairs are at
word level, we used some rules to transform the phrase pairs into word pairs. For example,
the right-and-wrong phrase pair [ “&HCHIARKHEE" , “HEHCOHRKMFES" ]
(’Pave the way for your own future’) is transformed to the word pair [ “§#HpE&” , “fi
#” 1 (pronounced ’pu Iu’ and ’bu Iu”). Moreover, we discarded the pairs cannot be
transformed such as [ “+RFGHIFE" , “+RKEHAIFFE” ] (A dozen brooms.”). After

that, 1,551 word pairs remained.

The confused word pairs of five confusion sets are combined into a collection with over
40,000 word pairs. However, for a given confused word pair, the judgments in different
confusion sets might be inconsistent. Consider a confused word pair [ “§#$&~ , “##
2" 1CClock’, pronounced ’zhong biao’ ). “B#§E” is right and “§#3” is wrong in
Kwuntung Typos Dictionary, while “#§#% 3" is adopted and “##$E~ is not
recommended in Uniform Words List of UDN. Furthermore, the confusion sets are not
guaranteed to be absolutely correct. To resolve these problems, we used the Chinese
dictionary published by Ministry of Education of Taiwan as the gold standard. After filtering
out the invalid word pairs, the new confusion set CFset with 33,551 distinct commonly
confused word pairs were obtained. Table 6 shows the number of word pairs of all confusion

sets.

Table 6. Number of word pairs of five confusion sets

Confusion Set Number of confused word pairs

Uniform Words List of UDN 1,056
Kwuntung Typos Dictionary 38,125
New Common Typos Diagnosis 492
Dictionary of Common Typos 601
The Typos List for Middle School 1,460

CFset 33,551
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Table 7. The statistics of test sets

UDN Edit Logs SIGHAN-7
# of sentences 1,175 6,101
# of sentences with errors 919 1,222
# of sentences without errors 256 4,879
# of error characters 919 1,266
Average # of errors in sentences with errors 1 1.04
Average length of sentences 17.47 12.16

Test Data: We used two test sets for evaluation, and Table 7 shows the statistical analysis of

them in detail:

+UDN Edit Logs: As mentioned earlier, UDN Edit Logs were partitioned into two
independent parts, for training and testing respectively. The test part contains 11,943
sentences and we only used 1,175 sentences for evaluation, 919 out of which contain at
least one error.

*SIGHAN-7: We also used the dataset provided by SIGHAN 7 Bake-off 2013 (Wu, Liu &
Lee, 2013). This dataset contains two subtasks: Subtask 1 is for error detection and
Subtask 2 is for error correction. In our work, we focus on evaluating error correction, so
we used Subtask 2 as an additional test set. There are 1,000 sentences with spelling errors
in Subtask 2, and the average length of sentences is approximately 70 characters. To be
consistent with UDN Edit Logs, we segmented these sentences into 6,101 clauses, and
1,222 of which contain at least one error.

4.2 Hyper-parameters of NMT Model

We trained several models using the same hyper-parameters in our experiments. For all
models, the source and target vocabulary sizes are limited to 10K since the models are trained
at character level. For source and target characters, the character embedding vector size is set
to 500. We trained the models with sequences length up to 50 characters for both source and
target sentences.

The encoder is a 2-layer bidirectional long-short term memory (LSTM) networks, which
consists of a forward LSTM and a backward LSTM, and the decoder is also a 2layer LSTM.
Both the encoder and the decoder have 500 hidden units. We use the Adam Algorithm
(Kingma & Ba, 2014) as the optimization method to train our models with learning rate 0.001,
and the maximum gradient norm is set to 5. Once a model is trained, beam search with beam

size set to 5 is used to find a translation that approximately maximizes the probability.
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4.3 Models Compared

Our experimental evaluation focuses on writing of native speakers. Therefore, we used UDN
Edit Logs and the artificially generated misspelled sentences as the training data. To
investigate whether adding artificially generated data improves the performance of our
Chinese spelling check system, we compared the results produced by several models trained

on different combination of datasets.

In addition, we use some additional features on source and target words in the form of
discrete labels to train the NMT model'. As Liu et al. (2011) stated, around 75% of typos were
related to the phonological similarity between the correct and the incorrect characters, and
about 45% were due to visual similarity. Thus, we use the pronunciation and shape of a

character from the Unihan Database’ as the additional feature of the source and target

[Tl ”

characters. As an example, for the character “Z5” , the pronunciation feature is “—
(without considering the tone) and the shape features are “E” and “F” . On the other
hand, a spelling error might involve not only the character itself but also the context, so we

use the context (with window size 1) of a character as additional features to train another

model.
Table 8. Features for the sentence  “ZZ8/\F/—FF - *
Feature | % 5! /N Yy - PR °
Sound AT T—% T—4% YAT - AN N
(wo) (xiang) (xiao) (zhuo) (yi) (bei)

Shape | (H) (LA Ol &S () R (NN)
Context | (BEG/R) (H/n  (&E)  (h—) @M ()  (FFEND)

Table 8§ gives an example to illustrate the pronunciation, shape, and context features.

There are totally eight models trained for comparing, and only last two were trained with

features. The eight models evaluated and compared are as follows:
*UDN-only: The model was trained on 226,913 sentence pairs from the training part of
UDN Edit Logs.
*UDN + Artificial (1:1): The model was trained on 226,913 sentence pairs from the
training part of UDN Edit Logs plus 225,985 artificially generated sentence pairs (452,871
in total).

*UDN + Artificial (1:2): The model was trained on 226,913 sentence pairs from the
training part of UDN Edit Logs plus 440,143 artificially generated sentence pairs (667,056

! https://opennmt.net/OpenNMT/data/word_features/
2 http://www.unicode.org/charts/unihan. html



Chinese Spelling Check based on Neural Machine Translation 19

in total).

+UDN + Artificial (1:3): The model was trained on 226,913 sentence pairs from the
training part of UDN Edit Logs plus 673,006 artificially generated sentence pairs (899,919

in total).

+UDN + Artificial (1:4): The model was trained on 226,913 sentence pairs from the
training part of UDN Edit Logs plus 899,385 artificially generated sentence pairs
(1,126,298 in total).

e Artificial-only: The model was trained on 899,385 artificially generated sentence pairs.
* FEAT-Sound & Shape: The model was trained on the same data in UDN +Artificial (1:3)

model with pronunciation and shape of character features.

* FEAT-Context: The model was trained on the same data in UDN + Artificial (1:3) model

with context features.

4.4 Evaluation Metrics

Chinese spelling check systems are usually compared based on two main metrics, precision
and recall. We use the metrics provided by SIGHAN-8 Bake-off 2015 for Chinese spelling
check shared task (Tseng, Lee, Chang, & Chen, 2015), which include False Positive Rate,

Accuracy, Precision, Recall, and F1, to evaluate our systems.

The confusion matrix is used for calculating these evaluation metrics. In the matrix, TP
(True Positive) is the number of sentences with spelling errors that are correctly identified by
the developed system; FP (False Positive) is the number of sentences in which non-existent
errors are identified; TN (True Negative) is the number of sentences without spelling errors
which are correctly identified as such; FN (False Negative) is the number of sentences with
spelling errors that are not correctly identified. The following metrics are calculated using TP,
FP, TN and FN:

False Positive Rate (FPR) :l (12)
FP+TN
Accuracy = TP+TN (13)
TP+FP+TN +FN
Precision :L (14)
TP+ FP
Recall =L (15)

TP+ FN
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Flo 2*Pre_c_ision*RecaII (16)
Precision + Recall
Table 9. The given test sentences with gold standards
Sentence | Sentence Gold
ID Standard
S1 7 SRS LT E C A\ E R AR AR - 0
S2 PM2.5 ¥ \BS{ERE R - 11, f&
S3 R R S LU P B A 8, &
S4 fifEcs H EE FEERRERRE 6, C
S5 W HEEE T R e —E EL B RP L E - 8, €, 17, K
S6 SERERY B LR 2 T 2 10, &
S7 RIS S FRZEHNEES] ~ BrAVEDAE 0
S8 BENSRE - B - B E RS E RS - 7, TE
Table 10. The results outputted by the system
Sentence Output Sentence Correction
ID
S1 7 SRS LT E C A\ E AR AR - 0
S2 PM2.5 B NG E X - 11, f&
S3 PR R Bl DL T B I 8, &
S4 G H CE R RRERR A 2, 6, C
S5 WIHEBIY & e E—E LLBIHT R CE - 8, &
S6 FREMY B LIS R i 22 TS 2 0
S7 KA FEFREEHRE JT ~ HTAVENAE 15, 3
S8 RN TR BRI R =2 R0 - 7, T&

For example, given 8 test sentences with gold standards shown in Table 9. Assume that

our system outputs the results as shown in Table 10, the evaluation metrics will be measured

as follows:

* FPR=0.5(=1/2)
Notes: {S7}/{S1, S7}
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* Accuracy = 0.5 (=4/8)
Notes: {S1, S2, S3, S8}/{S1, S2, S3, S4, S5, S6, S7, S8}
* Precision = 0.5 (= 3/6)
Notes: {S2, S3, S8}/{S2, S3, S4, S5, S7, S8}
* Recall =0.75 (= 3/4)
Notes: {S2, S3, S8}/{S2, S3, S6, S8}
* F1=0.6 (=2%0.5%0.75/(0.5+0.75))

5. Results and Discussion

In this section, we report the results of experimental evaluation using the resources and
metrics described in previous chapter. Specifically, we report the results of our evaluation,
which contains two test sets evaluated by false positive rate (FPR), accuracy, precision, recall,
and F1 score. First, we present the results of several models evaluated on two test sets in
Section 5.1. We then give some analysis and discussion of the errors in the two test sets in
Section 5.2.

5.1 Evaluation Results

Table 11 shows the evaluation results of UDN Edit Logs. As we can see, all models trained on
edit logs and artificially generated data perform better than the one trained on only edit logs.
Moreover, the model trained on only edit logs performs slightly worse, while the model
trained on only artificially generated data performs the very worst on all metrics. Even though
the model trained with sound and shape features performs relatively poorly on FPR, it has the

best performance on accuracy, precision, recall, and F1 score.

Table 11. Evaluation results of UDN Edit Logs

Model FPR Accuracy  Precision Recall F1
UDN-only .066 .64 .80 .64 71
UDN + Artificial (1:1) .090 .69 .84 .69 .76
UDN + Attificial (1:2) .063 71 .86 12 78
UDN + Artificial (1:3) .066 .70 .86 .69 .76
UDN + Artificial (1:4) .059 71 87 71 78
Artificial-only 137 35 43 .26 33
FEAT-Sound & Shape .098 12 .88 12 .79
FEAT-Context .059 71 .87 .70 78
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Table 12. Evaluation results of SIGHAN-7

Model FPR Accuracy Precision Recall F1
UDN-only .109 74 .19 17 18
UDN + Artificial (1:1) .089 .83 .50 .59 .54
UDN + Artificial (1:2) .081 .84 .54 .61 .57
UDN + Atrtificial (1:3) .078 .85 .56 .62 .58
UDN + Artificial (1:4) .073 .85 .58 .63 .61
Artificial-only .079 .84 .53 .58 .56
FEAT-Sound & Shape .097 .83 51 .64 .57
FEAT-Context .080 .84 .56 .61 .58

For the other test set, SIGHAN-7, the evaluation results are shown in Table 12. UDN +
Artificial (1:4) performs substantially better than the other models, noticeably improving on
all metrics. Interestingly, in contrast to the results of UDN Edit Logs, the model trained on
only edit logs has significantly worse performance than others, while the model trained on
only artificially generated data performs reasonably well. We note that there is no obvious
improvement in the performance of the model trained with additional features of either sound

and shape or context.

In general, we obtain extremely low average FPR evaluated on the two test sets. There
are three obvious differences between the results of two test sets. First, the model trained on
only edit logs (UDN-only) and the model trained on only artificially generated data
(Artificial-only) have the opposite results on UDN Edit Logs and SIGHAN-7. As we can see,
UDN-only performs well on UDN Edit Logs but very poorly on SIGHAN-7. In contrast,
Artificial-only has worst performance on UDN Edit Logs but acceptable performance on
SIGHAN-7. Second, we obtain relatively high precision compared with recall on UDN Edit
Logs, while higher recall than precision on SIGHAN-7. Third, in Table 13, it is worth noting
that the model trained with sound and shape features has significantly better accuracy, recall,
and F1 score on UDN Edit Logs. However, on SIGHAN-7, only the recall is a little better than

the model trained without using features.
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Table 13. Evaluation results related to the models trained with features

Test Set Model FPR  Accuracy Precision Recall F1
. UDN + Artificial (1:3) .066 .70 .86 .69 .76

UDN Edit
L FEAT-Sound & Shape .098 12 .88 12 .79

0gs

8 FEAT-Context 059 71 87 70 78
SIGHAN-7 UDN + Artificial (1:3) .078 .85 .56 .62 .58
FEAT-Sound & Shape .097 .83 Sl .64 .57
FEAT-Context .080 .84 .56 .61 .58

Table 14. Distribution of the relations between typos and corrections in test sets

UDN Edit Logs SIGHAN-7
# of error characters 919 1,266
Similar Sound 70% 84%
Similar Shape 36% 40%
Similar Sound and Shape 30% 30%

5.2 Error Analysis
The nature of our two test sets are different, UDN Edit Logs are produced by newspaper
editors, while SIGHAN-7 are collected from essays written by junior high students. Therefore,

we analyze and discuss the details of the two test sets in this section.

We use the confusion sets provided by SIGHAN 7 Bake-off 2013 (Wu et al., 2013),
which contains a set of characters with similar pronunciation and shape, to analyze the
relations between typos and the corresponding corrections in our test data. There are 919 typos
in UDN Edit Logs and 1,266 typos in SIGHAN-7. As shown in Table 14, the analysis results
of UDN Edit Logs and SIGHAN-7 are similar. Most of typos are related to similar
pronunciation, and over 35% of typos are due to similar shape. Moreover, around 30% of

typos are associated with similar pronunciation as well as shape.

Table 15 and 16 show some analysis of evaluation results of UDN Edit Logs and
SIGHAN-7 respectively. As we can see, according to the analysis of the errors which were not
corrected by models, there is no significant difference among these different models. In both
UDN Edit Logs and SIGHAN-7, around half of the spelling errors not corrected are related to

similar pronunciation no matter which model we used.
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Table 15. Distribution of the relations between not corrected typos and corrections of
the evaluation results using UDN Edit Logs

Model # of errors Similar Similar Similar Sound
not corrected Sound Shape and Shape
UDN-only 404 52% 7% 27%
UDN+Artificial (1:3) 340 54% 8% 26%
Artificial-only 733 43% 6% 26%
FEAT-Sound&Shape 299 57% 8% 25%

Table 16. Distribution of the relations between not corrected typos and corrections of
the evaluation results using SIGHAN-7

Model # of errors Similar Similar Similar Sound
not corrected Sound Shape and Shape
UDN-only 1,092 57% 9% 27%
UDN+Artificial (1:3) 596 60% 8% 22%
Artificial-only 641 58% 8% 24%
FEAT-Sound&Shape 597 58% 8% 24%

It is worth discussing that there are some special cases in the test sets. For example, an
error character “[fi” (pronounced ’bu’ ) occurring in some words such as “I{fit5fi”
(pronounced ’bu gao lan’ ) and “[iE" (pronounced ’bu zhi’ ) should be corrected to

“ffi”  (pronounced ’bu’ ) in SIGHAN-7. However, the correction predicted by our models
is “ffi” since we used the Chinese dictionary published by Ministry of Education of
Taiwan as the gold standards of our training data. According to the dictionary, “ffif” and

“fr5ME”  are invalid, while “ffF'®” (’decorate’ )and “AG5Ml” (bulletin board” )
are legal. Another case is related to grammatical errors. Our models aim to correct spelling
errors, but there are some sentences with grammatical errors in SIGHAN-7 such as  “ZEZ[1{A]
TEREREARIE 27 ("How to stand up again?’ ) and “WJAYAEERERYRIE 27 (How can
it stir up the beautiful spray?), where “f£”  (pronounced ’zai’ ) and “fy”

VA=

=
respectively. These kinds of errors are involved the dependency structure of sentences. In the

(pronounced ’de’ ) should be “F§” (pronounced ’zai’ ) and (pronounced *de’ )
predicted results of our models, we found that the model trained on only artificially generated
data cannot correct such errors. Other models using edit logs have slightly better performance

on correcting these kinds of errors, but there isn’t too much of a difference.

Besides the test data, we also found that the model trained with additional features could

correct some new and unseen errors. For example, the sentence  “fifi/F 3£ N H AR 5 HYE
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fig o7 withatypo “Fg" (pronounced ’zhi’ ), which is not corrected by a model trained
without features because our training data does not cover this typo. However, the sentence is
correctly translated into  “MF X2 HEAEEIVEEE " by the model trained with sound

and shape features.

6. Conclusion and Future Work

Many avenues exist for future research and improvement of our system. For example, the
method for extracting misspelled sentences from newspaper edit logs could be improved.
When extracting, we only consider the sentences contain consecutive single-character edit
pairs. However, two-character edit pairs could also involve spelling correction. Moreover, we
could investigate how to use character-level confusion sets to expand the scale of confused
word pairs. If we have more possibly confused word pairs, we could generate more
comprehensive artificial error data. Additionally, an interesting direction to explore is
expanding the scope of error correction to include grammatical errors. Yet another direction of
research would be to consider focusing on implementing the neural machine translation model

for Chinese spelling check.

In our work, we pay more attention to the aspect of data and methods of augmenting data
for CSC. We collect a series of confusion set from the Web, including ¥ 5 $&RH]=F
(Kwuntung Typos Dictionary), #r4mF F#5H]F952(New Common Typos Diagnosis),
555 (Dictionary of Common Typos), [ F$5F7%(The Typos List for Middle School).
To augment more data for training an NMT model, we develop a way of injecting artificial
errors into error-free sentences with the confusion sets. In addition, we compare the different
ratio of mixture of real and artificial data and more artificial data improves the performance.
Finally, we conduct experiments on models with additional features (e.g., pronunciation,
shape components, and context words) to show that phonological, visual, and context

information can improve the recall and reveal the ability to generalize common typos.

In summary, we have proposed a novel method for learning to correct typos in Chinese
text. The method involves combining real edit logs and artificially generated errors to train a
neural machine translation model that translates a potentially erroneous sentence into correct
one. The results prove that adding artificially generated data successfully improves the overall

performance of error correction.
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Spoken Document Summarization

Using End-to-End Modeling Techniques
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Abstract

This thesis set to explore novel and effective end-to-end extractive methods for
spoken document summarization. To this end, we propose a neural summarization
approach leveraging a hierarchical modeling structure with an attention mechanism
to understand a document deeply, and in turn to select representative sentences as
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its summary. Meanwhile, for alleviating the negative effect of speech recognition
errors, we make use of acoustic features and subword-level input representations
for the proposed approach. Finally, we conduct a series of experiments on the
Mandarin Broadcast News (MATBN) Corpus. The experimental results confirm
the utility of our approach which improves the performance of state-of-the-art ones.
BRSREE © SRS O - EngRaUM R - JEACAERS - PR AGEETOR - BRI
Keywords: Spoken Documents, Extractive Summarization, Deep Neural Networks,
Hierarchical Semantic Representations, Acoustic Features

1. 4&5% (Introduction)

FEE KBRS RAVRES - B8 H 2 mhVE A B4 PR s DLt 2 BRE& HERE - &Rt
WA E2HR T HENMERNEGVRATE R - BE5EE MBI % e & i U
REISCF &G > WA R B RE SR B SR & - TR — LR SR
FeaRie o BLAh - FEAEIRPATEMEEVEN T - AF— O EERE - HEEERECA B
BT TTENRH A AR R A EIR U R » SRR B NsE S R (B SR RE Se i it
BIE - HENIRMeE BB T R TFEAEE SR -

ERZHINIZE AT BEMEZE (Automatic Summarization) #7517 2 —IE R AL
fit > EFERESEM (Natural Language Processing, NLP) £Eig o — H &S &2 IAYIHZE
o 0 NHEEARERACCHEZEE NIRRT EA L2 A vl st iy —IH R T
YIRIE %40 (Question Answering) ~ EiflfiZE (Information Retrieval) % o 55— 5 » 2B
BrZ R PR EEENEER N 2 — » WA B S OO R A =t
HIFFER > HEEGEIFEEE - HREENE B X RER T #EEEU NG - (A
FHARGIBEEE - AR IS EREBIR IR (S - AREEBEANE -
e AP RCE A B -

HinaAE T S EEEN > MK HBEEEE S Y (Automatic Speech
Recognition, ASR) FZilfiF SR S i BIBEHY SCENE » A S SR ROl E
P > DU B ZEE 5 S 2 B Y - {H PRIER P B 58 B WS Rt T AR s s e i
i = HETPEEE TSR - (EEE B LU |IEMI R E RIS & HAh - BB
il aH — R - BEE - EEENS - MG E S R iy 25 B 5 RERsE -

AR G ST R AT Ui Ut Y 6 8% 2R B SO AT RS LAY B B SR R B T
gy Ry Witd - Eigkz0 (Extractive) HHZEAEE (Abstractive) % « Sk =\ T /AEA
s SN IR E R - HEEE WIS E R AR G AR - WRIERERREZEL B
H P EEEE R BRI AR ER  IKEN T EEN SRS - &
Fr{s FHAV R S B SO AR R A S E S - B A H E EE R AR i R L -

RAEE S SR ST LRy RS EE - HEEEE P (Automatic speech
recognition, ASR) F1H BN A% ( Automatic document summarization) - &5 3]
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—REE XM HEREE PR AR G SRR s TR R AL TR A TH T SR e
Z BB ((Acoustic model ) MBS HAY (Language model) #E{TeEH WG| Higs
S (Transcription) -« ARG ZFATEHAVE S PR A4 - SRR Z2E#E K2 E
AT AT e B ES E e E R = 8 B 2 Kee aE S WHases (Large vocabulary
continuous speech recognition system, LVCSR )(Chen, Kuo & Tsai, 2004; 2005) #{THEzE
B o RAVESR SR T AR L R LA R BES) (Data-driven) J77A R o Hr o
N DLUZEEEEYE (Deep Learning) J5 A3 BT HI¥F5] (Sequence-to-Sequence) Z2f#
(Bahdanau, Cho & Bengio, 2015; Sutskever, Vinyals & Le, 2014){FfEZ(F75 PSR %2
FIEE - LHE R AR 2 — Y PRI (Sutskever et al., 2014) » F 1L
[t 3% 2 25 26 /5 72(Chen, Zhu, Ling, Wei & Jiang, 2016; Chopra, Auli & Rush, 2016;
Nallapati, Zhou, dos Santos, Gulgehre & Xiang, 2016; Paulus, Xiong & Socher, 2017; Rush,
Chopra & Weston, 2015; See, Liu & Manning, 2017; Tan, Wan & Xiao, 2017) ; &%=\
TG AIHAR B — TR 550 (Sequence Labeling) HYREE - ¥ S & i - (EFE A {FAREC
SN HIE S AT (Cheng & Lapata, 2016; Nallapati, Zhai & Zhou, 2017) »

BEARGE S RIS R AR S R S e A — e e KX EREER
HENE R RIS B THEESERAER » A B AR5 7w 2 g
IR EE - R EERM RGN E © AN M EBNE —THEEARE - 0
ol 2R B A RENTEE - BRSPS RYERS o T —(E RIFHRE R E
[ERZE B A LA PO 22

-+ H# M (Informativity ) © 2SR AT S FOUFRVEERE - FEE TR RERTH
HEEH -

« 3CEME (Grammaticality ) © SR AERT GRES VS0OE » s Z %A 51 R
H EARTFEO0E  AIER et R R SEEEEEL (Keyword Extraction ) « [EEBE A EH
HAE RS R

- EEM (Coherency) : HLEEZFIEHVERHZ BT X EREERY » SRR A F
EEE M Qg BN E E R 7 RS TR TIFRIE S £ BT 2 -
LB ZNE SR S R K

- JEEHEM (Non-Redundancy) : &y 7 AERE LA - FERE G2 LB i 2% B4R Aa A 20AH
PHVE - HEENERR S T 2 HERE -

R AER S G 136 Bt i SO B MM E S R T am » W8 sl DR (5] 7 75
RAZFFEE PRI RAAR R - EN T EENMEE 7 RS A U — (B Y
PES g =B A A B 2 A - 2 25 R R R U 184 % ( Convolutional neural networks,
CNNs) ZBESEAE A DU R E A 48RS (Recurrent neural networks, RNNs) A H
PAGE S R HII BRI - (FEIMIRESIEE (SusB e e 30) MBSE A ik
HFEEREE R 5 HAMRMINE SR A E R I (Attention mechanism ) B #E— 425
B SCEAVER RS MR M & i - HICHP RS T M - HR ek =T



32 BR &

RGBSR T MR AN R - Nt HEE A RREE R TH Y - REASRSUNE
SRR B ) AR R RS AR A E A R 58 (L 22E (Reinforcement learning, RL ) 8
TERITIGR o fcf% By 7k TR aE o HEaskahan - FRMIE A PN 220 1A R th S sl ) R 2R
5% (Acoustic features) K ZEEAEEN (Subword information) - HPRiEEEEHES
TERMEE SR - PTCE IS RS SRR A% b TR A S 2 FRE S
M MRERIRE R T BRI sk etan - RS A T RE A TE s s P oy &
B o T AR BT AR I A M TR R B - 25 (0 2 & AR AT AT DARE F R 28 i s e I g o
AER 7 HIEREATRE R -

2. JEkEIEE (Related Work)

R R Source B #) Purpose

$ 3L (Single-document) — # (Generic)

% X (Multi-document) % 36 % & (Query-focused)
B %)

7 %€ Function ;}% _ﬁ— 7 7% Methods

R HE (Informative) i &% X (Extractive)

5 7= M (Indicative) ¥ § K (Abstractive)

HkFHE (Critical) # ) B 4 (Sentence

compression)

1. BZXFHEII T

[Figure 1. Category of Automatic document summarization]

H BN 5 A EE R IOE w3 (CAnfE 1) - mRERECE ~ HAY ~ ThRER T
EFEM T R R

© KR BRI RESFEL ST piEfaEtEE SR - BRI
W0 LA S R AT BT o SO B G A S [F T Ry DA
R EZ LS - [FRFE TR -

« B8 W R MR A R o A SR A S R R R ¢ T
AHE RS R AR T PR E B AR 10 E 8 R 2R G B2 S
L[y LR -

© DHAE | REZEEEEIZ AR EREDIEEAFSUEIRE R - R HEE
Hall e VAR RN > A G TR S A e A VEENE
B G SRR H S e AR (Metadata) 5 7% RIS & HIE R () X1
T IEEAEE S -
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© DA B R AR R AT R =R
WEi3F=0EZ ( Summarization by extraction )
BE 502 (Summarization by abstraction )
W5 A ERYE I E (Summarization by sentence compression )

sk B B U B AR A A N R AR ] - Gt R g &
JE Z f 2 ELF(Summarization ratio) » fEFE SR HEEME S HYREA) ~ EEECEE]
HERAH A2 - LB SE R R R B SR NIRRT » — R & HE A
10%AIHEZLLR] > B ER S RS R ERT 10% o iff R U2 TR
X RSEEMES > EEE LT NILREERNE T A IEFE S ATE A
EARFZEHGERNVEEE - 4% BRI > $-{F90T LA(Torres-Moreno, 2014) 7 7 {31 B4 2
EipR A B B R A B DI E R > — (B E R s g
SehE AR OCE A REES - e 2 AN S RERTR MBI H a3
BE  MATIEE B E RS > HgRIRE®SCE > W HPEY "ol | &
TR AL ETE M E B S (H L T AR B 2 i g A & R R AR N 2
HEEAEMN SR TR S A N E A B E SN BIEE S - b TE0E RAEisEE
TR EEARESN > BB LER A — B TEANERE RS It
T30k o] SefsR U I EIE A > 1 B AT R T AR Ry B R AU S — &6
5y
ARG T FEE S — MM B S Sk U AR ST o BEAMEEIR Ol S S 0y
B A0H FLAY ST S0 ( Text documents ) 5z A1 & 58 & & SHAVEE & S (( Spoken documents )
SR EISCER A - B AR AR AR A e Frs b - SCF SR B A IE — R DA
FNE R T FESE 2 > RE AR B I ST SRS TaE S S
FHIZHEAESAESERSU: B ARSI ERNEE > Hh g
G BT YA R > DI IR FEEEAVEN - NIt 0 sEE U EE L
FXREE BN > K2 sBEXHEEEETEN > TUREREREAESAERN
Bl o RE AR S R s R
PEAh > AR R BN EZN R - RS IR R 22 DA B i 4 e e A 4 i
B AT - FEEE T BB 2 BRI KR YRS 2R R RS
THEE 247 > WK EERHETTIIS » (FHAE e 2 AT i - H2eRE T T
LN R A B > ORGSR E 0 A AR 2 ER R o B
BVA] £ 5% 22 R of i A (i A A S0 T 28 IR B S 3 IERERVAS 5 - R 7R4E
SCRRER R DA i R A B

2.1 gigEEsE (Extractive Summarization)

FEERSF SR RER T - BAPTEE o] DURF EAR R oo SRR > R Ry BRMTEH SL oy
s TR RIEE o SRR R TR R AN > H2 R
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EBESAMHENEY - NARTEE B - IRTEFE RN E S EEE
il A RERIEVFLEE A A e R R -

(Cheng & Lapata, 2016) {Rf &gk =S L7 R — 1 Py e R PE i i HooAE
FHRFOAE A — P R 4R a8 f1 & A 1 = I (Attention Mechanism)FY AR 25 © &
[ RIER A E £ — g BFERERE M 4R (Convolutional Neural Networks, CNNs) >
=275 (Kim, 2014)19777% » £/ CNN SHREEAN R EFRR 5 5 8 Ry IR US4 Es
(Recurrent Neural Networks, RNNs) » & 58] [ & 50 Ry I (I e T G A iy AL > TRFRe % — (&
HF e A L B SRR A R R B AHNIR R ENS BEE A » WA
RN > HEIH—E RNN - QI RE g @At S EENENR - mkEmS—(E
RNN ¥ Ep{EsE A #E TR MESE FH TEORIH Y o BT THERY - S B R AR AR SR -
4 > (Cheng & Lapata, 2016)2E s FHEIS: AV 7 A e N B 5 U= > B RTUEECEE
HARE » FEREFE SRR R G AR AR HEEE NG 0E
PRI > R R s e S B AR F#ERE A EE © DABLTSA > (Cheng & Lapata)fY J7/AERES
FEf#(Language Understanding) & & s{#HEN (Information Extraction)f5 R g5 XK °

F# T (Cheng & Lapata, 2016)[=]HF#E1 T8 ff 2\ 22 B 88 5 =N =AY 9T4h » (Nallapati
et al., 2017)$2HHY SummaRuNNer 7R E 52k ik BB B = UE5E - Bi(Cheng & Lapata, 2016)~
[F] Z BRAE Y SummaRuNNer {F gk 2 ZAE o IR 4Rib- s es 40 - (2 2 Bl
b7 17 7 i ] RNIN 1% 50 R BT 5B A A0 Ry fel < A (DL BEAE 7S RNN HZ2FE B =y 28
Bl A Rign g > B gHIEE - En e s AR E - WEEEPERNS
HEw ) o R RS i Ry PR BR T 8gk UM 22T 7541 - (Nallapati et al., 2017)
EURiE g — B TEAERS - oUh—(E RS 5 RS N B U TS - IEoh - HHA 2L
R ERE R 2 AT ZATECHY - (Nallapati et al., 2017)$2 H—7f# &4 A B (E
B RO R - BT ARSI BB R EAH A T I R St st e A R E M
INEEFZEEHE SR AN B BER L -

W 4T % 58 (L B2 E (Reinforcement Learning)yEH] » JNAE2E R 5 (L2 H AT
B ZEH5 L > (Narayan, Cohen & Lapata, 2018a) fy i L gil i = B g = 22 A 1E
MR ARV IS - b AGR(LERE » H F S22 0 B H (Cheng & Lapata, 2016) »
NEZEENEES G esavsEamm A VEF 7 =0m A - HARKZESFEE S
5 BN EATHEVESE » FF0L RNN LA S et 5% miF EE s vk i > 7=
RES B B RN JE2E 505 © (Narayan et al., 2018a)Fr{ii FHHY5R(BERE J70% - B Ec RNy
FMEHEE (Policy Gradient): t k2 7 i85 H 15~ BEEH(Reward) 7 S B R S FE AN
(S H AR A THART AY J7 [ #ET 5/l 48 © (Narayan et al., 2018a)ffr{s8 I Ay 858, 7> B (I 78
SR FE B AR R B AL 3 B o T AR UG SRR B [EIHR R TEES - 2
—IE Bk M -

PRI » B ERSF R RS ARER - AR S S Y B R T B4 R B SR 1R oy J
FREANRRE  BEIBEE Y XA ERRNETEWE T E - RN ENES
o T E AT RETBUA SRR ERE S - BRESCHE T EHVERTE » SUAFANEAES 77 FE Ky
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FFE S HER R o A0 AR AT DU RERN B AR S (4 T REVE ? (Ren et al., 2017)§ # 1t
R —EA RN T A HAEEA A R EFROREE » INRFATREE ) LR A% HEE A
EARZ AW FERAVE SRR - [EIRF A — SR B A AERE R AN TR (GBI RS ~ [uESE)
BB EEEENREAREE - WAZEEHE R 58I HENRUMHEE
AREE o NEfEE ] DR RN EE R AR L E=RAVE 7 KREENR AN TR
DABEFRAMT O] AR > B &S 4 0922 8 178 N TRHEH BN U7 o] SRRy -

B B N i A A P 2 B BN R R E A B R R EFRRIVRER AR » BEREIA—
EC AR BV EE SN E ERE B SR o] DL MRy D70 A SR A B B S A B 2 A R - (Narayan
etal., 2018b)$zE HEHEZE )7 )4 2 SRR E B > o] DR E M 5 A S R B e B 5
FHEE » MAMMERE S A EFR TR mE ST 5 - RIMeERAMENRRY -
[fi(Narayan et al., 2018b) 3 ZFHHYEAZE M FH(Narayan et al., 2018a)8Lififk » 72 HFAE
NHEGERSNE R A BB EE A A E AL E AR HETE G AR - A 2SS s
JEREARINE IR RE AR 4T -

2.2 EEAE (Abstractive Summarization)

(Rush et al., 2015) 2 FREF MRS 2L E N B A AU I 9T > KRR 2
IR % (Bahdanau et al., 2014) $Z2HAV4RISAEIEES (Encoder-Decoder) Eily3: = JI#H] > 71
T2 R Py B ey R > W A A B8 R SN BT « T3 B I pe sBil A S A 7 il
HEZE RS E—(EETE - sE B B 2 5el AR (% - (Rush et al., 2015) HY
ZEREEL (Bahdanau et al., 2014) “R[E]Z R HAl I E(E AR 28 =& G ie 1 F R dmithes
EARRREES > T e H AR AR AT A S UE A4S (Feed-forward Neural Networks) 4547
B HEEE B HARREES - (RS 2R HIHEEL A (Bengio, Ducharme, Vincent & Jauvin, 2003)
FEHHY NNLM #1L o FEJ77AIERE )% (Sentence Summarization) (£ F1GFHHE (B 52
HIRERL - R a8 B e A P R 4 i A B 5 U B L -

BEE BB E g o IR U S A R A e B RE B (75 s S 7 i s
AA > RH(Chopra et al., 2016) FIIHE H — {58 A2 US4 HY AR Rt 25 2248 - TEH
PR EA TS b - )77 %2 (Rushetal., 2015) AYZEfH » H4RAS 230 H FERE U
R o T fEtEEs R B EAECE (Long Short-Term Memory, LSTM) (Hochreiter &
Schmidhuber, 1997) B TAE Fy il B IR A QERR VAR B TT - LSTM J& 1R A U a4
HOESAVARE > RELE A =(EREFT: & AR (input gate) ~ # =R (forget gate) Iz
(output gate) » DA —{EECIEEITT (memory cell) » FrLAR] DA 08 S A6 B (Vanishing
Gradient) 58 - FEFFEE AN B EHECBEIT > R H E L EEEN - AT EBEENH AR
MES AR &R -

BRI [E]HS » (Nallapati et al., 2016) #¢ (Rush et al., 2015) F1 (Chopra et al., 2016) &%
AR EF 26 2908 » [BIHG A i e 26 B 5 =0 2 VB A A ] R - BRI 288 2 Y (Bahdanau et al.,
2014) $RHEAYFFIEFFIBERIARLL » [FER 0 AERE 1] > 8L (Chopra et al., 2016)
A2 AR AE S H AR5 25 B a2 By (o0 A iR e =0 e a8 4 - HEA (Choetal., 2014)
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HEHHY Gated Recurrent Unit (GRU) [fjgE LSTM - GRU [E B A/ » HEEFW{E
HgH#HIMUECIRETT » HE2BENEERERE N  JISSEER/ RS > aJLitE
LSTM FE PRt S HIG/I SR - (Nallapati et al., 2016) FREI{ERE S A R & B FIR K
(Out-of-vocabulary, OOV) [H - & TR > )i A Large Vocabulary Trick (LVT)
(Jean, Cho, Memisevic & Bengio, 2014) » JEF; i 2 ¥46 /Mt (mini-batch) FI| 4 &R T E
TE gt A Gal B > [RIMERE SRR R MR S AR - [E]0F SRR A Al SRy B i /D 3 A AR T il i
R o bR T EARZERESN B = RAVRRA B —TE R AR A — S E1 MY RHEL
W EEME -~ GESESE SR AR R R RS B A R s A 0 A —EFERIES o SRR S
o o B A RO R B e I A SO AE R - i — 172275 (Vinyals, Fortunato & Jaitly, 2015)f2
Hif9 Pointer Network Z24# - & (A A #a BRI  EAES 2SI EE o] gE 9 3%
s SR ER AER P EEEN A RS2SR e nmiEEs - — R
miesin A Z B RE X ENEMEES - AEEBNS R o S mEEs S —
A—ERBER I ENEEFER > BRI EEIGEREFER - SUE R o e =651
RyrB A RN - WAE RS g A - EtEsR - B i AR X E R YRR
EMEITERMS R EME RS ER - WEREAZHEATRAFEXETS - #AR1E
(Nallapati et al., 2016) E.48H E &4 Pointer Network HYFE A4S &SRR » (HZ HHfE
AT GRIE o PR R IR BRI B A5 R (ERE 0 — -

(RIEE (See et al., 2017) $2HIVZERERE ARV IR - IEREHIRER I AR
[ 05 A6 1T 7 A el B S R A SRl sV BN - e R — R B A R4S S R & PS5
HIRER T > DABLIS B A A Ea BUAR R 74 » 5] B op 0, 2 R G ] BBy A ST PRHYRR) 5 -
[E4h > (See et al., 2017)JR 42 H —7& Coverage #/ - ARSI T2 B 1 AERE S AT
% EAESHIE OOV FIE & ERIRE - HA- SEEF R & i DR R S 2 E B 157
R NEEIRAE Fy— coverage [/ & > 4fE A/ 4RiGesIIIF B EE - MR & il RS
SE W EABEFE 06 0 BT E Rt ERDEE oA ETIRE > SR EEEE
B/ MERIZE(ESE]— coverage 182K » 1% &MU Ry al| SRHEHE VST E - BRI AT LR
EHEG IR K - WS B SR EE IV E S UM B T % - B RS
RN R L R [ A B 8k U 2 > (R R E VLR B EE A BN EE Bl e a2 - B
[ [EI R P 2 SR R ek U BRI B b B B U 2 5 Ry -

3. PEE=CE SRR (Hierarchical Neural Summarization Model)

BAPIRFEE S S R R —sE ) o BB PP R > DAIRE (RS 15 R H AT AE Foffd
HHEER > HRFFRESERMEEUEA BRI - BEEREN SR R REX
R ERE RS - It - PR —EARRE - s — B dmibas o —f#5eEs - R
T2 Ryt Ay eSS - PSSt es T AW RS - el ot B0 P RURE A E]
HENRE TR - BIEEEAFROR T EEE A EREME > TR RSN iR
B AR RSN BB S A B ALES (EHRESIRIE SRR B H R
Bl KR ) -
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BESE > By TR R EAE IR 2 B S aE e PR > PTE SN AR 2R A
Pl [E EEBFIGK » FERFEAMTIRIAE BRI 58 (LB B AT AL Sk - DAIRE
SRR BRI

3.1 HREES KfE% (Problem Formulation)

BRI S U Z T E R A — P I REEC R - R B RS S T AVsE A) T
TLRVAERY o H PR O] 5 R R SEAIIEREE > Sy RIDL 1 FD 0 =R RIBEERFIRHERS B
TE e A A DERIER > TR R ARILPIZAN: 1] B =E = A T

N
logp(y|D, 6) = ZP(Yilsi' D, 6) (1)

i=1

BRE—XME D B B (s 50)  RPMDTEGHE D i M (635
S BRI B B - RS s, € D > BMTETEH— A pOils, D,0) - 1
BEERT BRMENRE yi€01) - Z@RaREHOHEBHENI B po; =
s, D, 8) TR IMETHER - AT M (BB IE R B PR -

BN EEEE S > WATERIL T ARG
o S AN A ARSI MR S E 2 R AT 6R
o (i =[5 8 A A RS R AR N I A AR S E o et iR
o A T A S B AR
o SR BERE R T3Sk 2 HR e
REHMTG T Ll RECH AR T A FIAVSCE - B g st =L si -

3.2 EAZERE (Basic Architecture)

Document Encoder Decoder

i Convolution J Max-Pooling |
M Yz Y3 ¥Ya
* [
®
: e e e =
@ e
o \

5 52 83 5S4

Sentence Encoder ]

[B72. BB R - B

[Figure 2. Basic architecture]
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EARE T EE R mihas Kk —iu5es - IMEZ Raf A BEHLES © PR URisas 1 £
MM RE > FMTE et HOE PR AR E R B RO - Bt RRoR T 2E
FIX RV EEREE - IRARE R SERR &G RE RN RN BB R A
BT o (EHAESIRIE SRR KB TR » B KR A -

3.2.1 EA4EIESS (Sentence Encoder)

FeMF A FEREE LK 48RS (Convolutional Neural Networks, CNNs) HEEHE R [E-EERY
et R R EESREIEE REHAEFR R (Representation) © 7148 2 5T
#FUR > CNNs £ NLP SESRIIEH A E R $E1IRR(Cheng & Lapata, 2016; Collobort
et al., 2011; Kalchbrenner, Grefenstette & Blunsom, 2014; Kim, Jernite, Sontag & Rush, 2016;
Lei, Barzilay & Jaakkola, 2015; Zhang, Zhao & LeCun, 2015) - FfI{EER 1-D &
(Convolution) W43EEE h VMM (Kernel) K HEFRBFIE h (HaE5 IR
N JTHHEA (N-gram) HIRES: » AIfSEIFFEE (Feature map) f o Z1% - BT EIED
Ff P A L (Max Pooling) » i RHEE] R AV (B 1 R sB A RHEL o B TREFREI 4
HYRHE > M RSB - BEEEEA S ERENERZ - S&i e
HYFHE R —iE - Bl AsB R ERR -

3.2.2 &4EMESS (Document Encoder)

FEXE-dRiEesd > Bl R = sE4EEE  (Recurrent Neural Networks, RNNs) » 45
(&SR EE ] Fr F A RN — B E RS 2 M &R - HAEMEE S AV EZE &N - H
o Ry TR EE AR DM YRS (Vanishing Gradient) [/ » FRATEEEFE A GRU (Gated
Recurrent Unit) (Cho et al., 2014) {E % RNN (YELAETT o0 IS EHEREEE > #
S AR HY 75 2AE Buliin A (Narayan, Papasarantopoulos, Cohen & Lapata, 2017; Narayan
et al., 2018a; Narayan et al., 2018b; Sutskever et al., 2014) - FHEA{E ARV SREERHE DL
Wi R MRS ReH IRy T B i BRI FREEZE 4] RIE DUEN 05 =X ASCE - RE(E
3 RNN B EFEHGOEEE - » HibER MyER

h; = f(hyyq,s) 2
d=h, 3)

Hef fe() & RNN > h; ZfFFhaEERF RS RNN EERGERIFEEE# L - 1
s; R A EE - WA G AEIF - B LR EE by #8258 — KRR
hiy, REFREREAEARE s; - &RE TRERIREXENRSEN - BFIFRR
—ER RS by FRSFEE d o W R A A -
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3.2.3 FHEEEE2: (Summary Extractor)

eI s £ GRS ERE IR R | () B¢ 0 GREEE) - FELLE Y
HAFRE & 555 —(18 RNN » Horpbi A —HE LB & R E - aE 4 A 8 EE S S HE
HjRESEs AT A o LR B RTS S A [F 2 BRAE NS - S BEERE DU IE R A
L AT E Fpl FHITRER

0, = f*(0;_1,5)) (4)
oo=d %)
y; = softmax(MLP(o;)) (6)

Heb o, RbEEUEEL > f9C) F— RNN 224 - Hli A G & ai— s B b5 i b
0, FIERIFFEESRE oA s, o By T EEHUR R RE 2 F IR XEN T 5 » TR
WIEEMIERTE 00 SE RS E d - LB DIEIFSEEHH (BE—5Ea) KR (L
F) BVER > HILEFFIVHAIRES - IR MEER (6) STESEEINER v, &
th MLP(") F—fSEEAY A= 2 &C4d % (Feed-forward Neural Networks) 7 1% 4%t —1{F
softmax IS EIE RIS p(yils;, D,0) - WikdE p(y: = 1si, D, 0) HFH{EEE &
HETTHER > A E AU LL BB HU R & HYE A E R SE BRI S R -

Document Encoder Decoder
\ \
[ Convolution J [ Max-Pooling ]
@ (T 9 O;i C 9
g - - |
e | U o » '»_- ] (|
%EI |Q:I 0 O
alle Ojhy (Ohs |O)h; )
| T

Sentence Encoder

8 3. [BEAI AR R - GEEBEE

[Figure 3. Basic architecture with acoustic features]

3.2.4 EBELEA (Acoustic Features)

Ky T BEAm e i S AE S B sh R 1Yo B RMBR A R R Re 40 (R B S E S (Y RE
BAEMMARNZY R 2 28 NIt =7 UK R e msss & - (H151E
HIETRE I ERES 25 » USRI AURMSERUR - BRI IR DIGE ) R BN - F(EEE
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HEAHENE SR NIESBEREEER a > BFIHITETER TR

h; = f¢'(hyyq, [si;2;]) (7

0, = f¥(0;_1, [si;a;]) (8)
sGate; = g(W,[h;; a;] + b,) 9)
s/ = s; O sGate; (10)

0, = f?"(0;_1,57) (11)

2155 & (Global Embedding)

B TR mih es i AGE o B FERV R 2 LR - SRR 1R TS E R
AREE R (2) BEUKR (7) TR o FRAFTEE R L RE S0 A BN 5 FE B ) SRy 22
B HIELERMIFEEIN S e a & RN Bz halmE -
JEER & (Local Embedding)

B BN E S REE U H BN 2 R 1) [ B R L - BRI SR Es
A AHEL ) By (8) o MEIAMS RS R U B RE EREF HI R H S B Hbs 1 HI T - Al
1 2 & A R SRS ARG - P AR M B R mEl a2 -

52 0] & (Selective Embedding)

A 1% — 7 P A T W R P [B] » IR AEUA S 5 (Zhou, Yang, Wei & Zhou, 2017)f735
FEPH] (Selective Mechanism) » ELE & £ BUE A7 S AE AL AR A1 1] DA HET TEEFREV B (E
THSCERBEH FTRER R AR A 2 IR (FREFR B S BRI = - A AR ST > BT
SRR ER R RE T OCER BE Y T REAUIE B4 - 40 (9) AR - BPIESUIREmtSasivE i,
FETEZ B \RE AV a; B8 WAER gC) WA - () B—H=/EHYATE
AIAHAE RS G152 sGate, HEEBEENE 0~1 Z[E > A0 Fyaf B BB AR S E -
B IMIGEER s; T sGate; MG AGEAVEEAEE s> 40 (10) FR > Wik
H @) WA s 41 (11)  REERAFIRFILRE T /A Ry A & -

3.2.5 Fza[EE (Sub-word Information)

FEsE B S E T 5 RAYRE S R SE SR 26 F2 R R M SR R S ) S sl ol [ o (Y LA ]
S T {58 P L Pl s SR AT T 7 S s - TR R HL P R S S B LB B S s A
RTHA BN ERERY S 5 o PRI AR SCR (8 F 2 [m B B R S8 R R
DL g sa e e St A B 2 s B TR AR o R {5 P el [ B R di /N BRI AH O EE R
I s sE RN & s B R BV 45 IR - R0 P VR BRI s 5 2 A ER I 5]
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=P E > NEH A RHEEERD B ARG F 2 THI4R - [FEE AT DU 5
FEER  TNRERAR 7 B P AR YR 2 o i KTV IS8 (Bojanowski, Grave, Joulin &
Mikolov, 2017; Chen, Xu, Liu, Sun & Luan, 2015; Kim et al., 2016)3 7~ {8 FI 2z o &= IR EE
BROMFE A HAEEHEhEE =38R -

ARG M REAERIZUE  INA—(E#EsEmamiSEes (AE 4) - &
R B A5 RS SR E © A T N - SR RIS I 4R S 1
FEEGEE ) dmtses - MAERMEANXGERERFAE - 02 RIS EE LRSS o AT
MZsBAEER s WPWHERE s FRESEDREAERS s - /LA T -
B ERE L T A E B A SRR - NIEEAMTEFRLL T R E i itmE &
FHIGER R E A

si = fs(Ws"s” + Wi's + by) (12)

He s Fora B RATEE AR EM A RATEEIFROR - WS, WE Ml by Rl Z
S8 () BRI AR - REEME S s 0 sf o BRI
@) 4 1y s, AHBBEGFTHIRE AR s; HEITRZEER -

) ) Decoder
Convolution | | Max-Pooling |

Sentence Encoder Document Encoder

B A BRI - eI E

[Figure 4. Basic architecture with sub-word information]

3.2.6 7 FEJJH#&E] (Attention Mechanism)
WwEYAZEERen et al., 2017)F7R - FHE T EE2CFAVERA > Sy EMmIER
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st ) R RE S A B M R R B2 - SOOI B mI i oy By =Fd vl e - S5 — T T iEAH 2 E
(General-to-specific) | FTH5HYE S AFFRBAE G R G 2O NS » 2 1RAYNSCE E ST
PFRIARENRA AL 5 55 —FE Ry " F5E 2128 F (Specific-to-general) | » ST 5L gt B BE £
YRS R 0 BB (EARAS - IL T B &% U180 e —TEALE " REEREAHE]
F#iE (Specific-to-general-specific) | » FrHEHYE Ao El T am - AARAE F ELil R BE
XHEE - 2 FERESRMEENIAS o fEE=EER S BT DARE S EE A
IS A A — E AR - R EE . - S HA SR TN 2R A

WA REEEN S B FENEHEEREZE IR L E S EE
Y& - WL BRMOAERERENE S FE L EEEN  EZE AR b
&5 # A — E R B EEA - Fr AR E S E R M e 228 d hn A X & J1 1
(Attention Mechanism)(Bahdanau et al., 2015) - ;32 J7#&&1 0] DL 5 S (E5E =) Bt a] 1Y
BEHR M > DRIPE AP o] DU R R R R AR 5 2R -

) Document Encoder Decoder
Convolution ] 1 Max-Pooling |

B o
4
4
AR
*
e
¥
—_—
—

==
l
|

i
T
1
—_—
[ JE— |
—_—

Sentence Encoder

675, B ERE - 5B

[Figure 5. Basic architecture with attention mechanism]

B TEEEER I o DU B e S MATR E eSO T

p(yilsi, D,0) = m(s;, 04, ¢;) (13)

Hofr ¢, BB E IR B TSR R T o) ARSI
m() REHEEIEES - LT S H A - TR R 0T
RIBEE p(yils, D, 6) - TR HE TS 45 5 B 1) BRUL FTLA AR (4) 7%
Lk

0; = f%(0;-1,5;,¢;) (14)
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FEER RNN HYEHE P EG S ERE R REER 0, ~ ERIVEYRERT
si MBI E TR ¢ H B3R 8 20T B S0 G 5 25 Y B R & AR
(hy, ..., hy) HEFTHORE -

N

C; =Za'uhj (15)

Jj
M o EXmiEesiEEEE h, HENHE > IREEEEE TGHE !
_ exp(e;;)
" Sexplen) 1o
e;j = a(0;_, hj) (17)

He e; AIAGETREER s; WREEA s, AVRAREME 5 s, RS A QIHEREAEE A4 E
A ENREEE - TIFRERE AR - £ (17) B a() R AV AR 2R
Frst R AR R M o B FHEEHE —( softmax PR HEE (L A — 0~1 YEEZ (16) -
RIEAE PO 2258 AR p(yilsi, D, 0) BF - ay; BEFHRMEHEE B 2 FIAVAHBATE - [N
HIE % B A e B HEE R -

3.2.7 58{EEE (Reinforcement Learning)

R A TR o H AR — D 2 (5 S KL ZARFAE (Maximum Likelihood Estimation,
MLE) » ik 2% & K1t p(ID,0) = [1ix1 p(yilsi, D, 0) » PRI & B 58 W EL/E (Cross
Entropy) s1HEEE (loss) » HIEk=lE&E 5 NI ¢

L©®) = = ) logp(ils:, D, 6) (18)
i=1

B2 LA 5 A WA E T SRRV G - 55— R R AT E YR P AR B 1R 26 e B E 22
AIE - RIS B AR B AN - HAMER ROUGE KL ZEAVTEE - H
AR E 28 T 2R AR (N R AU E - 1T ROUGE Il 2 ELE R AU A 28 i o
MlEEREER  MENERTEANE » A RZEEHEEER R AT > Hit
NS85 AR REAME EEsF 2 R eE ) 0 SRS - v HEE
A BESER] S SEMRE (One Class Classification, OCC)(Tax, 2001) » = EEREHLE AT ZHY
KEC T wea)  MIFHE e HE R R ([ 6) » KIMERE FAIRE -
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A

One-class classification

Sentences in summary

#* Qther sentences

B 6. BF R
[Figure 6. One-class classification]

RIEE > HeffIfE FH 58 b E2E (Sutton & Barto, 1998) #BIEALGIGR - A EAH RIS
ERHI TR E R ek % (Reward Function) - b bR 8 3 B2 A AR HI B & A AL A FEOHIAY 45 2R
T Ry IR - A EMERISRIEIN SR - f 2 Al 8 o 1 SRm) ek S 5% e S 53R 55 sl oI
BraT o R i R 542 ROUGE (7 Ry Ehek 8 - sk BRI a] ek picaz/IME
SEEIEASE(E -

L(6) = —Epp, [r(?)] (19)

Hep py f45 pO/ID,6) - () RHERE - T § RLGBHUEE (Sample) TN
T - EREHMNE § WM RRST - RIVEEE XS REIFTE T4 Bt
FLELHE (A S - ISR RERERN - FILRINE (19) Bk 20) - HXIEA
L (ABEA S » A TTHREE (Gradient) EatEH (21) > (IR 3 A% 5 -

L©O) ~ () 20)
VL() ~ =) ) Vlogp(Filsi. D, ) e3)
i=1

4. BEEpsEE (Experimental Results)

4.1 EEgsE#} (Corpus)

HMFEEAH P EFE SR ERE (Mandarin Benchmark broadcast news corpus,
MATBN)(Wang, Chen, Kuo & Cheng, 2005) - MATBN 2—{EA\ G HEWHEHR—LEA
i 5 R P AHRBRAY £ L Q0EEE HEHK(Chien, 2015) ~ EERZR (Huang & Wu, 2007) 2Lk H
B2 (Liu et al., 2015; Tsai, Hung, Chen & Chen, 2016)Z - [LERIEEH T H 205 B EREHT
RSB P R 2 g FRMTPR BRI R 20 IR AE R lIs & » 87 T Y 185 R ARSI SR EE -
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ZORLIRGI IR » TD 5408 N\ TABREAT S - 117 SD AR 4G H BB 5 PR B A 1T
P> BRI SD @A ERS IR PRAE « R | BRI R R — e A 43
Kb LA+ RSP AR S BOST5A% 2 o SR Praat T ELIEIAAS S - 4451
36 (B -

F 1. HRIGEZ TR (7% & Tsai et al., 2016]
[Table 1. The statistics of MATBN]

IR A
R 185 20
ISP ERBSCTL 20 23.3
(SCIRBSET] ' 17.5 16.9
ISR BEEGL 326.0 290.3
PR 38.0% 39.4%
PR 28.8% 29.8%

IEAh > AP 2 B R EE IR 2 | > ZFIH Praat TEHEIAVEER - 4851H
36 BRI RSB oy Ry DU AL /4 -

e Pitch ¥5 :
ERMEEREERY - SR EERRHE - el bR ks R R Ag4ERE
HIRRAE S -

e Energy A& :
REE—MEIEEENNEEE E - AR IR b HEENENR - EFRMEmERE
FEER - BT EegRed  TEUGEAHKR - HmMseE SR EEE
e

e Duration FFEEHER -
Fr@ms A B U —(ERE A h iV R E - ERHEFAM R A e - AR
EHEEEEENE S -

e Peak and Formant gEittyRiE
PRI ARSI > =R SR B NI SRS - W5 S PR
RIStRIGE S LI AR > PRI NS NG BOET KBRS KiEET T > A IRiEs
ELETREa - (SRR N 25t P AR e Y
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2. BEE X T BB
[Table 2. List of acoustic features in MATBN]

BEika | 1. Pitch (min, max, diff, avg)
2. Peak normalized cross-correlation of pitch (min, max, diff, avg)

3. Energy value (min, max, diff, avg)

4. Duration value (min, max, diff, avg)

5. 1** formant value (min, max, diff, avg)
6. 2™ formant value (min, max, diff, avg)

7. 3" formant value (min, max, diff, avg)

4.2 EE4ER (Results)
B AR S e i B R AR BRI B R EAIRGR 0 2 RAEST IR 2L
AR EAE AR R R -

4.2.1 ErEEER(Baseline)

#BZ% MATBN &R i i FE & FE A [F R %2 705 b (AR ZE )7 7A( VSM, LSA ) »

FEEE U S AR 446 (SG, CBOW) HIRTE ZUSMMAS4ErE 24 (DNN, CNN) #iE A
BEGEM o R E ERIHTTRIRE B AR S L E R B g - 455k 3 -

7 3. BREERRAR
[Table 3. Results of baseline]

XF A BE X
ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-1 | ROUGE-2 | ROUGE-L
VSM 0.347 0.228 0.290 0.342 0.189 0.287
LSA 0.362 0.233 0.316 0.345 0.201 0.301
SG 0.410 0.300 0.364 0.378 0.239 0.333
CBOW 0415 0.308 0.366 0.393 0.250 0.349
DNN 0.488 0.382 0.444 0.371 0.233 0.332
CNN 0.501 0.407 0.460 0.370 0.208 0312
%gzsyin etal2018a) | 045 0.372 0.446 0.329 0.197 0.319

B e AT ARE S rh S R4 R B Z2 AL (Vector space model, VSM) £33 {F:
FIEEE S EHRIRAERRN - BTSRRI B LR T SUHEE & 550
HLAFE VSM BR LSA {E— (&l BEAYELE: - nT LIS LSA HYSE R AEIRIHBRNYE 30730
FIEEE RIS - FRFIEL VSM AV -

PRSI R E A AL B AR AU &5 SR {22 > SG(Skip-gram)f1 CBOW JEHIY
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FlISREE R EAVEZREE AR > NIt R ERCR EW B ERETILARA - A
CBOW HHE SG ZHEIE RN » (M1 —H T ANRE I S MR [ BT % -

BRI H TS T B B AU AL AR SR (RT3 - DNN BB AR 2 fe AR 20
7 CNN I (5 F AR A AR 048 > Refresh S B AR SO BLAVPE g = - Hop
FESCFSAFRIRER b - AT DIRBA R 530 = F#E T IEEE =0y 7% - LBL CNN 1Y
SR ERAF > ATRE/ZA B CNN EE DNN B REHIEI BB &R - 2 8E XL Refresh /b > #5
ZRaIeR ; ABEREE SRR b - = HHBELIRE B AR E - TR RN A HRIE
RS a2 ERE S P s aR Ay B Ry B B CHOREE -

REFEIIRATRLL Refresh HYEHR SAG R e h 2 R HET TEERE S AT

422 PR AR (Our models)

HEEBEERSTD © RIS AU REIRI A FI % DL T @I R
ERMEATR - DURERERII -

| KR

% RIVELECARRAFERARE IR - 40 FRFT AR
ST R SR H S ORI T L P T RV » (LS
RETTHIE » SEbEARSS R B T\ > TTRERDR Al L P PSR LR
e TGRS B EREAER A - BB E RIRMY
B (AR AFA R L PTDU (ROTBNTEES - (ST FIF LR ROUGE-2
Fritesh » BRI B RO it T ORI EI Raf

4. [BEAGHERL T R R

[Table 4. Results of our model with sub-word information]

XF B
ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-1 | ROUGE-2 | ROUGE-L
ﬁgﬁ;ﬁn etal.2018a) | 0453 0.372 0.446 0.329 0.197 0319
&[] & 0.526 0.473 0.520 0.380 0.262 0.370
FlaE 0.544 0.473 0.535 0.363 0.242 0.351
Bl B G 0.543 0.481 0.533 0.392 0.266 0.380

. #(tEE

A BRI > AFIRE AR & B R R T LA E RAYATREM: - I AT E SRR

Al R ENGREEE A E > 5% 5 tha] DURBABIAYE 258 L2 E NI T AT A
—ERIBSAE - ABE T MR DRSS IED » TRARERENSHRHEAE
aEE g PR - NI AINASE 2 AE S W R 8 H R SRR IA
s L ER T AU BB ety 8 P BETRE SR RE L
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5. BRI B R B

[Table 5. Results of our model with reinforcement learning]

ST BB
ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-1 | ROUGE-2 | ROUGE-L
Refresh
[Narayan et al., 2018a] 0.453 0.372 0.446 0.329 0.197 0.319
Rl-Er A & 0.543 0.481 0.533 0.392 0.266 0.380
R A E R EEEE 0.555 0.479 0.543 0.395 0.269 0.379

. BRRER(bEE

A 308 T S T B BR LS - BRAPT A] DASE SR Bl m) B m AR R ES Sy A RE R PR - T
SRR E AR T MR AR - AR FIE N EE SRR R b E
Tk e 6 > AT DASRIRAERE B S - SR EE R A 2 (5 F S Bl R 2 A
TGS AR M T UM E D LBV R E A 2 m & - I3
u DAt S A ER R R Y NS S SRR AN R TR B Ehpask s & S B
IR AN EERTRUR o (H R RE 7R e SR (B L P 2 L SO P B A RE A R TR
RE - 28I - BEASAVEEE LUy EERTEAVE RS TETS > AR AR RIS R (S AT
ST B S HAM AR -

Z 6. [BE S B BB R L

[Table 6. Results of our model with acoustic features and reinforcement learning]

PESELT B F
ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-1 | ROUGE-2 | ROUGE-L
ﬁgzsy};n etal.2018a] | 0453 0.372 0.446 0.329 0.197 0.319
TR BRI 0.479 0.400 0.469 0.352 0.226 0.342
e 0.486 0.400 0.473 0.350 0.222 0.336
IBE Gk 0.478 0.399 0.469 0.384 0.264 0.370
A E+HFE EE 0.464 0.373 0.453 0.350 0.224 0.336
BEEEE 0.448 0.371 0.439 0.350 0.213 0.334

IV. ZREeE] [ B+ I

DRI — 8] B Bt S 34 T A ER R R 5 (L 52 3 SR (RIS SR AR 2 IR MTE R
WS o UG A BN E R IRHIRVERRGER - R 7 Ta] ISR IR E A& R EANER
IR RAE S S BB - RS S B2 DLGe) A B A& SR ELRsy -
PREEREHTBUR B L Z BIHAE R - (HATRE R R B b3 Sk £ 22 X haB a2
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ERRRAIRIE  TEEEE SRS - B PRREEERAY RS - L S8 Ay 55 SRR
M - INIME B EE RAHBEGE -
1. (BT BRI e [ o+ T ]

[Table 7. Results of our model with sub-word information and attention mechanism]
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[Table 8. Results of our model with sub-word information, attention mechanism and
reinforcement learning]
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[Table 9. Comprehensive comparison of our models]
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[Figure 7. Visualization of attention weight]
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Abstract

With the rapid growth of information, browsing social media on the Internet is
becoming a part of people’s daily lives. Social platforms give us the latest
information in real time, for example, sharing personal life and commenting on
social events. However, with the vigorous development of social platforms, lots of
rumors and fake messages are appearing on the Internet. Most of the social
platforms use manual reporting or statistics to distinguish rumors, which are very
inefficient. In this paper, we propose a multimodal feature fusion approach to
rumor detection by combining image captioning model with deep attention
networks. First, for images extracted from tweets, we apply Image Caption model
to generate captions by Convolutional Neural Networks (CNNs) and
Sequence-to-Sequence (Seq2Seq) model. Second, words in captions and text
contents from tweets are represented as vectors by word embedding models and
combined with social features in tweets with early and late fusion strategies.
Finally, we design Multi-layer and Multi-cell Bi-directional Recurrent Neural
Networks (BRNNs) with attention mechanism to find word dependency and learn
the most important features for classification. From the experimental results, the
best F-measure of 0.89 can be obtained for our proposed Multi-cell BRNN based
on Gated Recurrent Units (GRUs) with attention using early fusion of all features
except for user features. This shows the potential of our proposed approach to

rumor detection. Further investigation is needed for data in larger scales.

BRdEEE : sESAel - R ACAERS R R I - BB - RS

Keywords: Rumor Detection, Bi-directional Recurrent Neural Networks, Gated
Recurrent Unit, Self-attention Mechanism, Multimodal Feature Fusion
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2. }HRAIAZE (Related Work)
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LeCun % Af£H, (LeCun, Bottou, Bengio & Haffner, 1998) - Hiff & &5 B ERBAEK =

( Convolutional ) B {L4d¢% /g (Pooling) {ifim ARYEHE AT AR T SE YR - A
A A A % I A HU S AR —{E 4 FE AV R - CNN 28 5 A PR 2 ] (G R R A7 -
H R L4 H 51 2 A 5 528 S 2 1 e R AE &% SEIk > Bl #4109 VGG Net (Simonyan &
Zisserman, 2015)E1 GoogleLeNet (Szegedy et al., 2015) ZFHEZUEENIE R MES EFE B IFR
HEIRBES - K5 R N 4 IR A RIS AT © RNN g2 Elman Frigt)
(Elman, 1990) » 7% 5#% Mikolov % A (Mikolov, Karafiat, Burget, Cernocky & Khudanpur,
2010) [EFHAEEAAGES FRE S - RNN Y F 2208 A0E 1 FoR - /2 i 5 g Rt g Y i 40 4
PEA BT IR 2 T Y -

(]

O 01 % O, 1

A
4 ; 1% VT vV
SOQV 4% )Osr—f )ogr OSHI
: %74 w AW
Unfold
U U U U
X Xi-1 X Xiel

B 1. B 448428 E] (LeCunn et al., 2015)

[Figure 1. The architecture of recurrent neural networks (LeCunn et al., 2015)]

FH R O > g AERNE —BF51 - AIERHR a2 IR R E e e A 2 fE
JE R o G b — R P A B L R T — BB E 0 A o ey i
T D5 A B T SRy iy B RE L (R RTBE Ay A RE > R A A RS BE S B P Y I
HETRLEEE -

SRIM > E RNN £ 1L Back-Propagation Through Time ( BPTT) #5173l 4 el
BIRFE O SR BFEREERN A/ - 28 T — i A& - 2SS
PE T RE O AR H B RIFRINERE AR 2 BRI N - BRI HT S
JTEOR e R - B A TAR R A R AR E S (LSTM) #fTiX
= o %3 =l Gate : Input Gate ~ Forget Gate * Output Gate » FZHIEHAVRE » FEREHE
N R Ry e B2 RN A A8 Qi 72 - Cho S8 A (Cho et al., 2014) $2 4 —{El#r B 426s
T8 E Gated Recurrent Unit (GRU) » HiiE— S FH{LEHHETT - 48 Chung % A (Chung ,
Gulcehre, Cho & Bengio., 2014)1YE ERELEEET » 2830 GRU HRNfEEL LSTM —f5 0] DUf#H1
A5 e R A A A PSR B T SR R R - B e b LSTM §E4F » LSTM Eil GRU
Z 2R RN E 2(a) K 2(b)FT
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— IN \/BT}»}/—»H <IN

> OouUT e

(@) (b)

[ 2. (a) LSTM Cell £ (b) GRU Cell Z2#£/& (Chung et al., 2014)
[Figure 2. The architectures of an LSTM Cell and a GRU Cell (Chung et al., 2014)]

GRU Zi#E 2 f11J z (update gate ) Blr (reset gate ) 3 [E#2HIE FillkF I REAHYBERGIR
A5 - Update gate £ 2345 T4 2/0 LB (BORE] T —(EIFEIES © Reset gate 470G TS
/il AR - GRU BS TLAS R R BR A » B F A A 2 =X re A 4 A D Y T
% o HIMESTEAREER S - GRU B LSTM HA R ERYFRIR - 11 H GRU {EH#/ iy
gates » ZRFE RS BRI » RILEAGR SO - FeMRFEEEAL Y GRU Bl LSTM HY RNN 42
1 W ES N -

Sequence To Sequence ( Seq2Seq ) W& B F-FH Sutskever Z A B, (Sutskever et al.,
2014) » eSS B ETS - K AHYE) T (Sequence ) &KEEEY » FEAE LS —(E 4]
+- (Sequence) ° Seq2Seq 42 - Z 2 HH N {18l 2% A A &S 4Es FIT4HEY. - 47 731I%f £y Encoder
1 Decoder » HZRf#EAE 3 Fos:

f f (Ebe

N I HTH¥H1H |

[& 3. Seq2Seq ZEfE B - dg A " ABC” LUEE4"WXYZ” (Sutskever et al., 2014)
[Figure 3. The architecture of Seq2Seq Model, which outputs “WXYZ” for input
“ABC” (Sutskever et al., 2014)]

£ Encoder [&EZ - RNN RETELE i A sequence IV 1E B FI4% IRFF57( <EOS>)
B o JEHACLERR AT 1 AREBAGBH LG Decoder [IPSES » MRIERTEAVECHE - EA—ERFEZ A
THEE (W) > 2y context vector » FiF E{# A Decoder » 3| SR HHAC 48 s Y f 32T
HIES R R R - BRIHEREIERSE o Seq2Seq AEREHIEHITERT 21554 » BI41: Facebook
E[% 1Y Gehring 5 A 2 H! ConvSeq2Seq (Gehring, Auli, Grangier, Yarats & Dauphin, 2017) »
i CNN Eil Seq2Seq 4565 DAFE T SC(F B2 A 20 4 BLE S Xing 55 A\ (Xing et al., 2017)

A B C <EOS> 7
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PR (8 = RERVAIY Seq2Seq 1A » W FEFHAEIIRARES A > Kol R A% e N4 psE 2550
B8 E HABIENE - Zhao 52 A (Zhao et al., 2018) HIFESY Seq2Seq Z2fi - 45 & CNN Y
& encoder Bl LSTM HYSZ 5 decoder » H#EfTREMGHII - AGm M€ AISDIAEDE - EEEIG:
Pt FERY SO lRe 8 DUETTRE S Aol -

Bl RNN (LI > Seq2Seq ZEA 8 IR Fy el S 28 & T B B S A HI R RE - BE 7R LSTM
AR AR R RE - (HEGRAIR » EaE R I (attention) » A DA{HE (HIEL A RE AT
He (TSNS AR A R E RS  » TIR SR BIRAEAE RNN 55774
HIE5K A & - Mnih 2 A (Mnih, Heess, Graves & Kavukcuoglu, 2014) & &3 = 70
2 H1 RNN 455 [EREEG TR 2 F - Bahdanau Z A (Bahdanau, Cho & Bengio,
2015) EHAeRHEE SRR AT GBS RBEIER L - 454 1 RNN 203 2 il E
4 FfR -

% X% X% X;

B4 442 RNN )& 7% #/%/# (Bahdanau et al., 2015)
[Figure 4. The architecture of attention mechanism combining Bidirectional RNNs
(Bahdanau et al., 2015)]

WE 4 Fis o A S X, X, 0 X 208 d%f'f: Sl e [ A A A AC A B (BRNIN)
1S3 E PR BITIRRE Ry, by, ..., hy - Fohy=h], h] < [ECE T Decoder HIREE S, > Il
i A s > YRR T DI By

e; = (a(S¢—1, hy), a(Si—1, hy), .., a(Se—1, hr)) (1)

Hea Rt BRI MEAY R B BN RBOIIRE NRESE - 2K 1E48 Softmax ¥ ¥ e
TIERE > BB ENEE I Ee  EER
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exp(et;)
Yr—1exp(etk)

% i T8 7 B B {18 B Je TR Gy BT T I RE 285> 453 Encoder #Yi) HY ] E( context
vector) ¢; » Mfi{# A Decoder §7 » H/% _W%

C = j=1 asjh; 3)

ay = @)

RNN Decoder 9 hidden state & S, » E&iH & v > S F1F1—1& hidden state S, * Fij—1{&
By DUSCC 8B B £ 5T RS © ARswSCKF GRU 2 LSTM 25 RNN 2845471285 1)
M > DURR T a4 ies 3 B SRRV REAR S (3 S (I EREE 15 DUTRH ©

3. W5 7L (The Proposed Method)

Rim IR HH AR T 7y B A ER > 7Rl Ey fF}?f‘%ZFEEY (Feature Extraction) - [&
fE#ft (Image Captioning) ~ 55/#Fh& (Feature Fusion) ~ JE 1 =\ 14E4EFE (Recurrent Neural

Network) ~ 3 & JJ#4&7%(] (Attention Layer) » #[1[&E 5 ﬁﬁ?ﬁ

image
Image

Captioning

Tweets |I Feature v—bé—b Word '
Extraction Embedding 5

Feature
Fusion

Y

o2 A|In4

IOMIDN [CJNapy JuaIn
Jade L
i

JaAm] paaauu

B5. #&57HEE

[Figure 5. The system architecture of the proposed approach]

Y& 5 Fos 0 Twitter _ERJHESCSE4%5E Feature Extraction » B FANE ~ ElfE - Bl
FEEERHE - E o G R A B G U4 - KOG TEAC4ERS (Convolution Neural
Network ) B Sequence to Sequence (Seq2Seq) (HASYEREAFEETHIL » BE A IR AL B G
FNEES) « H - sBEAJBLSI R ERRE - 483 Word Embedding 47H% » 3% Feature Fusion
B EFRHERL G - B3 B E RV RHE R B A R U & 4% g (Bi-directional
Recurrent Neural Network, BRNN) - & FRR P& F 67 Mk % - M CLEE
BRNN B BLbff > 5% 5 H W 78 1 (5] 89 3E 2 05 =0 o3 il By 28 Jig 8 ) 20 2000 =X 1ot &4 40 s

(Multi-layer BRNN) ~ 2 B8 57 7] 4% 1 S 4S9 F%  (Multi-cell BRNN) © 1% - il
RIS (Attention Layer ) HYETE - ﬂﬂgﬁ?ﬁiqjég SEHIREER o Mo A —{E
(Fully Connected Layer) - DUEfTEEHEMN2E
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3.1 RFEHEEL (Feature Extraction)

—RRHESL (Twee) FIRE B & T 3CFAUM ~ BlGRE LU EFER - &5 FRAMMHEH
SO ISR - RS TE RNN > Bl U NS B SCRif% - H o mEH#Es
HEHESC T NSRS LRI R G AR - FEE i S R Ol 2 A f ik
ZEGERERE R > DIRHEER FREREEER - A RMERE S SRR Bk
HIB MR ~ HES PR SR (hashtag) ~ R E SCEIH BT - (B SCRE
GREFEANNE RSESE - FHILRME &SI > $8RA SentiWordNet (Esuli &
Sebastiani, 2006) ¥} 58 1T IE A MRIEIIREAL - BEEETE B P EETE0T B 8
NIAESE %15 RS FTR N B R - s IEH - Iz - & - HEHERENE
%8 hashtag FRURASCE R TRE > BP0 s A ER) - Wb BB EAE ZHNE
BE R B R R BFE: B - #50 - BOEE > K 7 BB SCET ALK - 72
E R EOVE D H PR EL Jin ZEA (Jin et al., 2017) MEAVRHE > B5E: EHEE
Twitter VAR B & - IBESUE - JBIEEE T B ZNELG] - 483 U R BUE S A #: Twitter
PR o BRGSO AERE - BERE - RSB B -

3.2 B (Image Captioning)
#1275 Vinyals 5 A\Fr2tHiHIZEME (Vinyals etal., 2015) > (E%5 & CNN B2 LSTM 4H 5k
[ Seq2Seq 4ER&ZRMHE - A AR Y REH ILEZ (B (52 SL SR - PR ZRRESIIE 6 FT -

[1og pi(s) | [ rog patsa) |

_ t

»
uuuuu

see —

LSTM |-[3 |-

- LSTM |-[3 ]~

b
'—
4
)

b

}_

b |
3 \J f
: t t
image IEI SN-

[E 6. [EGmIrEEZerEE (Vinyals et al., 2015)
[Figure 6. The architecture of image captioning module (Vinyals et al., 2015)]

—

WiiE 6 Fror - @ EAVE 3B Google Inception Net V3 [y CNN Z2f - HLZEREILA
42 Jg > LER T 4 A RGEE A NER - 7 DRGSR EGAE A F RS THYREC #e
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— LLATRURT i 2 o &80 Inception AR &S EN 2 1Y B {5 =) & & BL4S 4 one-hot 4
HEAY SR —[E# A LSTM 35 - HEUEBRE FEGREEERgmA—X » Z2’RE
T Fsf e G A Pl A S Rt FR Y 5551 (S3) » Sl EERE B 90 B8 s e s Y Kl 385 - [T itk
@LJ"*%’J@W\?UT B [ B ,\mﬂfﬁﬁiauﬁél’]@L AsE % e R AHRE S B

ST > FHEA T — 1IEHF‘EE¥E Kok ig - e —(ER SR g —ERE T
lf%i'uﬂ SEOERt S =i

3.3 HEFL& (Feature Fusion)

TEREHL T =0T RHE > 5 CFREC BIESRRS BB R % > PR
@ e 775K B A N EIFFEL « SO SCFFFEEREL one-hot 4RH51T 7774 > H 300 4EAT[H]
BARFOREHE TR VR o B E E G S I AR R B ) 1% o 4R AR
PSR ST ST RIS 300 4 ) & o FAPT e S SRR R REET A2 48 hashtag )
LR WSO R ENIE S - EHESUESE T - FRPRIBHEEUNISE 8 5 R =fEEm -
IEM ~ P37~ ATl o B RSB s BEE S ARy 1 RIEWBIER  &154%E 8
Sy/ANEY 00 R R &I - F51B8E B8 0 81 1 2 > IR AT o &k By
SRR BIERFE - DL S 44 B hashtag Y5 4CHH one-hot 4 1% Y [ & #E 1T S 5k
(concatenate) > BIfSE|FTHRHEINHE -

F AT B R B E A AR i EARR - BB A A [F VRl & s RHHR S
(early fusion) » FIEHARLE S (late fusion) « 75 HARR S HY SIS - FAMEEEFIF one-hot 4
05 > B BRI R & - By TR BN A E SR e A A E R > FRAFIFIA
—{ autoencoder i BERHEER 4 5 300 4 W H SR BE(E B SCRME 1% 0 LAFI SRS 4828 -
i fEmE PAR S I SRES > T DA SCRH S A RNN RUEEIH#E] - 155 — 2510
H o B ELL one-hot 4R BSHEHA A ) & > B SO H 45 R —H# A Fully

Connected Layer #175358 -

3.4 Wi ALK EE (Recurrent Neural Networks)

AT RNN #H4H {8 H] GRU Cell HUR ALK LSTM » 5%t 2 @) BRNN HEZ Y28
1 DIBRETE S EHRRUR -

B g B (o) R 2l U 2 4R ( Bi-directional Recurrent Neural Networks, or BRNNs ) &
F7ZH1 Schuster % A$ZH (Schuster & Paliwal, 1997) » 73 Il 4R At A 4 o f5— (il 31| 6k
Feol oy B a Fil{EiE (forward pass) Bil[a/{&{#1E (backward pass) ° W& 7T AEI@ILHTE
] RNN » B i a8 s A0 e 2 5 — g g - A0E 7 For -
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Output Layer

Backward Layer

Forward Layer

Input Layer

B7. B4R REE (Graves, 2012)
[Figure 7. The architecture of bi-directional recurrent neural networks (Graves,
2012)]

S AL A AR R » TP A R ) 7 2 AL 25 T PR A8 L
o —{EF -

SN B S R S RS - RSSO T DR EAT S T e
AR « 5 > S E R TR (Mutli-layer BRNN) » S5 3R
L 5 (B[ S Y B R 5 (S b 3 RO A L 4 - ZEHEA0E 8 i
-

BRNN
Layer 2

Sasess -

BRNN
Layer 1

[B7 8. 2/ 8 e E A = A RS A fE
[Figure 8. The architecture of Multi-layer BRNNS]
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% g e [ HE A R S A i A\ By L LB g BRNIN — A% - i B R 8 A (R A S
TR SHARZFANBEAE - Hf > S50 485% @R BRNN & > H
SR EACE S T S0 (A A R B [ 12 (AR BT - AL 25— BRNN Y
AR N > NMERY T IRIG Mt ed Z IR BT E e T s
—EETRRRVRE o B T BT R o PN H S Z R AR BT E— ik
> BCAOEERETR - (SR ERERAYUR S - feT T R RS R R AT ReR -

B FMaest T 50— AR S [m 4 BR (Y U705 2 BT e R A = 1 AR A
(Multi-cell BRNN) » & #37 fl BRNN R4 {5 [AHY B TEER - #ETERARETE - &l
Cell HyE & 1E R T — & Cell HYERA - [F]—{E LTI Z(E Cell [FIHFETTRYIE R
SCIRELERE o ZRAEL0ME 9 Frow

B9 2B T8 B = TR i
[Figure 9. The architecture of Multi-cell BRNNs]

% BT R AP ARE ZE RS - e AR IR A YT - AR HE S
AR TRV E R - AE R AR RS o (EHE 8 R - B A Al AR B [ 1R
IR =S - B 7 7 [E— B R B AL —(F Cell 51H1% » SHEATN —(# Cell 448
TR o ZIRIEL % e i (R A AR R A [F Y2 - BN IRV A A S R —
3 R EE > [ i (S AR B ) 1 (B AR A S B IR A 2GRS S WA (B M DL Y A A S B 2R A
H &b A TR & - BT AREEE % J8 BRNN B 28 A Bt B v 3a 2 P RBR 4
(EAHSAS O R AL B 25 B R I S ] s e A A RS U -

3.5 JEEJJ#%%] (Attention Layer)
TR I B AR R AR AR - s R Bl A A SR RAAY R (L - AE LAY
SRR ZARE  FM4EE BERE IS (Self-Attention) 2 HE 3L P T 5 2
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I e (% DUEUS- R RN Tweet oS RV B B4 51 - Self-Attention & — )3 = 7 #&H
B Attention T2 BIFERS » Self-Attention A FEEEIE 5 [ ASMELHTE AT Ry
HEAEE - (EFEREEE SIVRE M T E S HHHREENEH - EAZ
L& sE scaled dot-product attention Z24#% » /& —7# dot-product attention FYEEH > 4[E 10
Ffrm e

)
MatMul
+ L
SoftMax
)
Mask (opt.)
[}
Scale
1
MatMul

it 1

Q K V

/B7 10. Scaled Dot-Product Attention J~& /& (Vaswani et al., 2017)
[Figure 10. Scaled Dot-Product Attention (Vaswani et al., 2017)]

&%4ts Vaswani %8 A (Vaswani et al., 2017) B Tan %5 A (Tan, Wang, Xie, Chen & Shi,
2018) HYERETEALLEY - EREESRAM (A EE MM LL 0 B i A e Ay A
B /Jt%H] (Bahdanau et al., 2015) AR

Attention(Q,K,V) = softmax (%:) % 4)

o dy By key HI4ERE 5 e R A Q LK (PR th A BRI R DA — (B . Jd -
B 11 32 S 45 A > 48 softmax B AE SR IFRIL - I REREL V #5E -
L A B

Fo VIR - FeffIER A Multi-Head Attention Z54% - 41[E] 11 Fr ¢
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Linear

Concat
Lt y

Scaled Dot-Product J& h

Attention <
10 1 11
r—-m r—-‘? om
[ Linear [ Linear [ Linear
¥ 7 7
\ K Q

/& 11. Multi-Head Attention (Vaswani et al., 2017)
[Figure 11. Multi-Head Attention (Vaswani et al., 2017)]

&t h A FE s SR MEREA1% - BTLURE h ([ scaled dot-product attention fHEEHEREHET T
TTHE - R — RV FETT R R A EE— G4 M EEH1S F multi-head attention
HIGES o WNATR -
MultiHead(Q,K,V) = Concat(head, , ..., head,)W°

where head; = Attention(QWiQ, KWk, viwY) )
Hh VViQ € R¥modet Xk WK g Rmodet Xk WY € Rémodet*dv /0 g R v X dmodel o |
7T Ry 5 % scaled dot-product attention 48[ » W;°, WX, W e Ryl af e S8 A0 e -
WO Fs SR S A RE B RENE » Tidy = dy = dimoaer / h FIFRRIEMHATLER -

(R Ry self-attention T2 ¥ (&R A MY Faal B AT A 3 Tat B B8 SN ERY
ST 2 AR (7 - BGETREEFENRAREER 1 B EFEHS gt
B NG = e G — 5 45 £ RS FIR RR 8 R B EUR/ N RHE g 2
AETTTI 2 AR AR T 28 B FE R E R » TEARER SRS » input £CB&fE# RNN » DLK
self-attention Hf1% » GatE L —HEBERY output [ & - FRFTFERIATA A B AT 2
(Fully Connected Layer) » #{TH: 2RI 5H °

4. BERHESTEY (Experiments and Discussions)

Aem PR VBRI T B RORER (7 © B Gl B R e S iR - 5 - fEE B
fEat 5 - BAIE Microsoft COCO 2014 (Tan et al., 2018) BkHE - TALE GAHRITH
o B2 W P > L [ s | S R fCRE A > 400: Vinyals S8 A (Vinyals et al, 2015) 8
XuZE A (Xu et al., 2015) - ZERHEENE REGERE GH 5 A ETHmHL > 5
HRRBE AR S R — -
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HX o g saiiE - HREREUSA 5 > SR RS = TR A B
iora HLEH Ry A REMEE ZaNE BN E S BEHE - AEHHR A MediaEval 2015 ~ 2016 1%
BT iRy Twitter 3% SN ERHE - E4UE Twitter B TR - Rt a 7 &AM
SCHY 2 RS ER S S SR MR - R (E B RHREY AR AR 1 B3R 2 Foms

&L BRI ER T

[Table 1. Data distribution in image captioning dataset ]

BiHE [EIES Se =PIV AT S6s
Training Data 82783 /413915
Test Data 36454 /182270.

K 2. FBEREIEER I

[Table 2. Data distribution in rumor dataset]

Bl HECBE (event)
Training Data Real: 189 / fake: 157
Test Data Real: 21 / fake: 24

1E El G AR B B FoFIER €58 & S5¥ (5 ( Bilingual Evaluation Understudy,
BLEU) ¥ 77/ARFEE R G A58 - BLEU £ 72 H IBM #Y Papineni % A Firfg iy
(Papineni, Roukos, Ward & Zhu, 2002) » %2 R EHE B ARG RBLI 2B 26
FH{EL » BLEU HY4%E %5 &: modified n-gram precision [J44{a] 3£ (geometric mean)

BLEU = BP - exp(

N
z Wnlogpn>

n=1
BP—{l if c>r .
e ifc<r ©

HpcRREINEE  rRRSELHNEE -
Modified n-gram precision % clipped n-gram {EE&LIETA n-gram (&

P = ZCE{Candidates} Zn—gramEC Countyip (n—gram)
n

(7

B zC’E{Candidates} En—gram’eC’ CountCliP(n_graml)
Hr clipped n-gram {E#ETHE 741
Count,;, = min(Count, Max_Ref_Count) ®)

MAE S lHR B EREEEAE T B - REEBRA2ERESR (Accuracy ) ~
KA (Precision) ~ &4 (Recall) Bl F-Measure #ETT5EAl » LA T fgE s ELEA
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[FEIfRAUE 2 AR -

PrecisionxRecall
F —Measure =2 X —— Q)

Precision+Recall

AT S ROME B B - T 220 baseline ELECA G2 85 Ky Jin 5 A\FT2HIAY 7% (Jin
etal., 2017) -

4.1 BGHEMIE (The Effects of Image Captioning)

Ho o B TR E G SRR - $1 ¥ MSCOCO 2014 fy—ZE[E G &0k 48 i (52
SIS FMIFI ISR RHE R Y 3 A TR AN SR - Hifth 2 A5 S TS
56 o Sy T EEREIE - I E A Mediaeval 2015, 2016 HRHYEIGEE TS - BLEU HY
BEEHE4EE - WE 12 foR:

# Mscoco 2014 Mediaeval 2015,2016
0.7875

0.7
0.6125
0.525

0.4375

0.32
0.35
0.269 024

0.695

0.225 0217
0.18

BLEU 1-gram BLEU 2-gram BLEU 3-gram BLEU 4-gram

B 12. BB 4ER

[Figure 12. Experimental results for image captioning]

WlE 12 fR > 2L MSCOCO 2014 ERHEETISGRAVEIEEFAIE BLEU-1, BLEU-2 5¥(f
85T A Fs 0.695 F10.51 » BHEAE® MediaEval 2015, 2016 FrallSRAVEES - HAHE B
XuZE ARVEERE (Xu et al., 2015) - FH}» Mediaeval 2015, 2016 BRIEEF Tweets » BE
Twitter {YE R - Tweets IV FEE AR —E B AR L RV E G &R - H350E
B[S A —E B Z BV E GRS TR SRS E A TR AT
Y BRAFHIBIEESR - (NS EGR % H BLEU ﬁﬁﬁl%ﬁff‘ﬁi 1% B E kRl MSCOCO
2014 ErH A1 Sk CH R RS A IR 507 3 5 A MY e (G e IR -

0.2625
0.175
0.0875
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4.2 Word Embeddingdy%5 (The Effects of Word Embedding)

By THRST S B B 1A E 4Rt 07 A B 3% = (AT - B R E 2Ry )75 #ET
Ehi « BEREOIIAIRE - AR THIISREFHY Word2Vee 7B « FIEZEIE -1 ~ 1 Z[HFEHEESE
REZFFANEE R E - Z R MR I SETTIHEE - B EAIERH GoogleNews
THFISRAY Word2Vec - B [ Y 755 ] S AET T3 SR G BT « BBRsE A0S 13 Fios ¢

1 # Word2Vec Word2Vec Update # Random Update

0.9 0.861
0.8

0.749 0738 - i
0.7 =
057 1

0.6
Accuracy Precision Recall F-measure

0.5
0.4
[& 13. Embedding Layer E##iZE
[Figure 13. Experimental results for embedding layer]

0.3
0.2
0.1

il 13 For > AewmSCAriE hAst g S e B R TIsRE - AR E©nE
REA TR R B AEAFAIGER - H F-measure 52 0.822 « 638 % N HEREARET > 43R
THEEMERNZREZEILERER - 55— (1] Google News IRy Word2Vec 74 -
T8 38 () B2 FRET 2 SRR A - AR i 2= ] T I AT A BRI - 5 ARl R
I h Y 38 1 & SERERAYAE RNN s e & S T e 22
AV E R E - KR REEM TR G - BERREAEREE T - 52 f65E
SHERET - ALK HIEAE Google News ] Word2Vee 8 » H5 5%
MR RE - EEEL T 5 H A R - M TR R AR AE R - B NE 13 > MItas
B o [ Word2Vec S BAH R 5 5 56 ) S HYBCREE - 5B T THIISR - B » DL
A [E B AN el [F & R EHEARERE -

0.803 0.822

43 FEE A EEERZEBELE (The Effects of Recurrent Neural
Networks)

EIEE T » BB DR EHET R [E RNN 226827 52 = (BRI SR bRl - 2071 [ Ay
Vi
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# Jin et al., 2017 (only Text) i Single-layer BRNN (only Text)
& Multi-layer BRNN (only Text) & Multi-cell BRNN (only Text)

T

. .
Accuracy Precision Recall F-measure

B 14. FITBEAAFEGEEFIEL LB (XFHrEl)

[Figure 14. Experimental results for different recurrent neural networks (Text
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[Figure 15. Experimental results for early fusion]
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[Figure 16. Experimental results for late fusion]
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Linguistic Input and Child Vocalization of
7 Children from 5 to 30 Months:
A Longitudinal Study with LENA Automatic Analysis
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Abstract

This study examined longitudinal changes in linguistic input, conversational turns,
and child vocalizations in Chinese-speaking families using the computerized
LENA (Language Environment Analysis) software, a system that captures audio
data in children’s natural environment and parses out speech data automatically.
All-day home recordings (11-16 hours) from seven typically developing
Chinese-learning children (two males and five females) at the ages of 5, 10, 14, 21,
and 30 months were analyzed. Adult word count (AWC), conversational turn count
(CT), and child vocalization count (CV) of 70 recordings (i.e., 7 children x 5 ages x
2 recordings) were retrieved from the LENA software. These recordings included
times when families were asleep. As a result, the present study also compared the
results with and without LENA-determined silence time (i.e., quiet and sleep time).
The results showed that the percentage of silence in the recordings decreased with
age, indicating that the children’s awake time increased as they age. When the
children were awake, they listened to an average of 1734 adult words, engaged in
39 conversational turns, and produced 150 vocalizations per hour from 5 to 30
months of age. The CV and CT increased with age, while the AWC did not show a
clear pattern, which was similar to English normative estimates from Gilkerson and
Richards (2008). The CT was also found to be a more effective contributor to the
number of CV than AWC, indicating that speech produced in temporal proximity
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to children’s vocalizations or directed to children played an important role in

eliciting child vocalizations.

Keywords: LENA, Adult Word, Conversational Turn, Child Vocalization,
Longitudinal Study, Cross-language Comparison

1. Introduction

Child speech samples have traditionally been collected by visiting children’s homes or
inviting families into a research laboratory. LENA (Language Environment Analysis) software,
a system that collects audio data without research assistants’ presence and parses out audio
data into several categories automatically, was developed in 2004 in the United States (LENA
Research Foundation, 2020). The software has been used for observing English-speaking
individuals (Gilkerson & Richards, 2008; Greenwood, Thiemann-Bourque, Walker, Buzhardt
& Gilkerson, 2011; Suskind et al., 2013), Chinese-speaking families (Gilkerson et al., 2015;
Lee, Jhang, Relyea, Chen & Oller, 2018; Zhang et al., 2015), preterm infants (Caskey,
Stephens, Tucker & Vohr, 2011, 2014), multilingual speakers (Liu & Kager, 2017; Oller, 2010;
Orena, Polka & Srouji, 2018), individuals with disorders (Ambrose, VanDam & Moeller, 2014;
Charron et al., 2016; Oller et al., 2010; Thiemann-Bourque, Warren, Brady, Gilkerson &
Richards, 2014; VanDam, Ambrose & Moeller, 2012; Warren et al., 2010), and older adults
(Li, Vikani, Harris & Lin, 2014). The number of studies on the quantity of linguistic input,
conversational turns, and child vocalizations in Chinese-speaking home environments have
been limited. The present study observed changes in the quantity of linguistic input,
conversational turns, and child vocalizations which occur between 5 and 30 months of age in
Chinese-speaking families using LENA.

Research has shown that linguistic input, including the quantity and quality of caregiver
speech and turn taking sequences, plays an important role in the child’s vocal development
(Caskey et al., 2011; Hart & Risley, 1995; Rowe, 2012; Suskind et al., 2013). This in turn
serves as a strong predictor of their later vocabulary growth (Hart & Risley, 1995; Ramirez-
Esparza, Garcia-Sierra & Kuhl, 2014). Studies have also found that early vocal production is
associated with future speech and language development. Rescorla et al. (2000) indicated that
some children who were identified as late talkers at two years of age continued to exhibit
language delay and were identified as children with Specific Language Impairment at three
years of age. Gilkerson et al. (2018) also showed that school-age language and cognitive
outcomes (9-13 years old) and quantity of adult talk and adult-child interaction during 18 to

24 months of age are related.
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1.1 Linguistic Input and Conversational Turn

Linguistic input from adults or siblings is identified as one of the largest influences on
children’s verbal performances, including that of preterm infants (Caskey et al., 2011).
Children understand five times more words than the words they produce (Ingram, 1989),
suggesting that a substantial number of words need to be heard before a child speaks. Roy et
al. (2009) reported that adult word input frequencies and age of acquisition of words is highly
correlated. Adult word input between 10 and 36 months of age has been found to be related to
a child’s 1Q at 3 years (Hart & Risley, 1995). Gilkerson and Richards (2009) also found that
children who scored higher on language assessments tended to have talkative parents. The
number of words parents spoke to children between two and six months of age predicted
language ability at two years of age. Parents who earned at least a bachelor’s degree talked
more to their children than less educated parents. Also, first-born children were spoken to

more than later born children.

Children may be at risk of learning languages if they do not have sufficient language
exposure (Velleman & Vihman, 2002). Many scholars have claimed that language acquisition
takes place even when the linguistic input that children are exposed to is addressed to them
indirectly (Akhtar, Jipson & Callanan, 2001; Oshima-Takane, 1988; Oshima-Takane, Goodz
& Derevensky, 1996). Other scholars argued that speech addressed directly to children has a
stronger effect on children’s language learning (Oller, 2010; Pearson, Fernandez, Lewedeg &
Oller, 1997; Shneidman, Arroyo, Levine & Goldin-Meadow, 2013; Shneidman & Goldin-
Meadow, 2012; Weisleder & Fernald, 2013). The same phenomenon has been posited by
Shneidman et al. (2013) and Shneidman and Goldin-Meadow (2012), who found that direct
speech has a more important role in early word learning than indirect speech in children who

grew up in communities where indirect speech was the major linguistic input.

In addition to receiving speech and language input, children also respond to the input
(Hart & Risley, 1995). Mother-child vocal interactions have been discussed in several studies
(Gratier et al., 2015; Gros-Louis, West, Goldstein & King, 2006; Jaffe et al., 2001). From 3 to
4 months of age, infants start to use pragmatic, semantic, and syntactic factors to predict when
a conversational turn will end and begin (Gratier et al., 2015). However, studies on linguistic
input and conversational turn-taking in Chinese-speaking environments, especially
vocalizations produced in home environments, are, as of yet, few in number. Studies
investigating the relationship among linguistic input, conversational turns, and children’s
vocalizations should shed some light on our understanding of the relationship between

different types of linguistic input and language development.
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1.2 Assessing Vocal Development Using an Automated Approach

Although the LENA system was mostly utilized in American-English environments, the
system has yielded valid and reliable speech and language estimates in other languages
(French: Canault, Le Normand, Foudil, Loundon & Thai-Van, 2016; Spanish: Weisleder &
Fernald, 2013, Chinese (Mandarin and Shanghai dialect): Gilkerson et al., 2015; Zhang et al.,
2015; Korean: Pae et al., 2016; Dutch: Busch, Sangen, Vanpoucke & van Wieringen, 2018;
Vietnamese: Ganek & Eriks-Brophy, 2018). After comparing Chinese speech samples
analyzed by the LENA system with the same samples transcribed by a native Chinese
transcriber, Gilkerson et al. (2015) indicated that the validity of the LENA system in
identifying and estimating adult words, child vocalizations, and conversational turns is
reasonably accurate. Zhang et al. (2015) observed 22 Chinese-speaking families and their
typically developing children between 3 and 23 months of age in Shanghai for a period of 6
months. A total of 19 recordings were made by each family. The 22 families were divided into
two groups based on the speech output of the first three recordings. One group of families had
fewer adult words (Group A), while the other group had a higher rate of adult words (Group B)
in their first three recordings. The authors provided monthly feedback to the families
regarding strategies to increase their linguistic input to and interaction with their children. The
results overall showed that adult words and conversational turns increased during the first
three months, but decreased during the last three months. However, Group A showed
increased number of adult words in the last few recordings, which was not observed in Group
B. The study indicates that the LENA system can be used to track children’s vocal, speech,
and language development and/or treatment progress. The authors also found that their
number of conversational turns correlated positively with the MacArthur-Bates
Communicative Development Inventories - Verbal (Fensen et al., 2007) and Minnesota Child
Developmental Inventory Expressive Language (Ireton, 1992) scores for the change from
baseline to 3 months. LENA estimates have also shown reliable and valid results when
compared with scores of standardized assessments (Richards et al., 2017), including —
Preschool Language Scale — 4th Edition (Zimmerman, Steiner & Pond, 2002) and the
Receptive-Expressive Emergent Language Test — 3rd Edition (Bzoch, League & Brown,
2003).

Table 1 shows adult word count (AWC), conversational turn count (CT), and child
vocalization count (CV) per hour from various ages, settings, and population. Depending on
the children’s age and the recording environment, children received different linguistic input
and produced different number of words. AWC ranged from 889 to 1966. CT ranged from 17
to 75. CV ranged from 73 to 188 per hour. Gilkerson and Richards (2008) examined a corpus
of spontaneous speech data in English-speaking families and created normative estimates for

CV and CT each month when children were between 2 and 48 months of age. Here only



Linguistic Input and Child Vocalization of 7 Children 85
from 5 to 30 Months: A Longitudinal Study with LENA Automatic Analysis
values measured at 5, 10,14, 21, and 30 months are listed in Table 1.
Table 1. Studies reported AWC, CT, and CV per hour in families with 0-3-year-old
children
First author Population, n Age Language AWC per | CT per CV per
& Year (male/female) hour hour hour
Ambrose Hard of 12-36 English 1429 59 Not
(2014) hearing, n=28 | months Applicable
(10/18) (mo) (NA)
Gilkerson Typically 2-48 mo | English NA Smo 17 5mo 73
(2008) Developing 10 mo 23 10 mo 95
(TD), n=329 14 mo 27 14 mo 102
(167/162) 21 mo 36 21 mo 145
30 mo 40 30 mo 184
Greenwood TD, n=30 12-20 English 1095 38 143
(2013) (NA/NA) mo
Thiemann-B | Down 9-54 English Yong DS Young DS | Young DS
ourque syndrome mo, 889 18 102
(2014) (DS), n=9 young Old DS OldDS 19 | Old DS 64
(3/6), and age- | DS 9-11 1044 TD 44 TD 179
and gender- mo, old TD NA
matched TD, DS
n=9 (3/6) 25-54
mo
Warren Autism, N=26 16-48 English Autism Autism 35 | Autism 134
(2010) (22/4), and mo 1079 TD 4 TD 188
age- and TD 1138
gender-
matched TD
n=78 (66/12)
Zhang (2015) | TD, n=22 3-23 mo | Shanghai Baseline Baseline 63 | NA
(10/12) dialectand | 1758 1 mo 75
Mandarin 1 mo 1-3 mo 66
2174 4-6 mo 56
1-3 mo
1966
4-6 mo
1711

1.3 The Present Study

Because of the laborious coding required for estimating linguistic input from the ambient

environment, studies focusing on child speech development are usually based on a limited set
of recordings. To our knowledge, only three studies (Gilkerson et al., 2015; Lee et al., 2018;
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Zhang et al., 2015) reported observations in Chinese-learning children’s natural environments
using LENA. In view of this, LENA was adopted for data collection and processing in the
present study. This paper explores the relationship among children’s vocalization, the
linguistic input children received, and amount of interaction adults and children had per hour
(e.g., total number of AWC/total length of a recording). However, the recordings included
times when families were asleep. Thus, the present study investigated the research questions
using the total length of the recording without LENA-determined silence time (i.e., quiet,
sleep time) to calculate another set of average numbers of AWC, CT, and CV per hour (e.g.,
total number of AWC/(total length of a recording without silence time in the recording)).
Periods of silence were removed to ensure that the analysis only included times when children
were most likely to be awake. Analyzing results by removing periods of silence time from
LENA recordings has also been reported in several other studies (Marchman, Martinez,
Hurtado, Griiter & Fernald, 2017; Sacks et al., 2013). Since children at 0-2 years old sleep an
average of 12.7 hours a day and children at 2-3 years old sleep an average of 12 hours a day
(Galland, Taylor, Elder, & Herbison, 2012), the results of the present study could have been
influenced by long sleeping times. Therefore, the present study aimed to compare the results
when silence time was included with the results when silence time was removed from the

analyses.

The present study investigated the following questions:

1. Do adult word count (AWC), conversational turn count (CT), and child vocalization count
(CV) increase as children grow older?

2. Are there different patterns in AWC, CT, and CV when LENA-determined silence time is
removed?

3. Are both AWC and CT effective contributors to the number of CV at 5, 10, 14, 21, and 30
months?

4. Do AWC, CT, and CV show cross-language differences?

2. Methods

2.1 Participants

Seven Chinese-speaking families and their children (two males and five females) participated
in the study. The families lived in Tainan, Taiwan, an environment where Mandarin Chinese
and Southern Min (Taiwanese) were mostly spoken. All the children were born full-term
without hearing or neurodevelopmental disorders. Table 2 shows demographic information of

the participants.
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Table 2. Demographic information of the participants

Child Gender Birth order Mother’s education
A F I M.A.
B F 1 B.A.
C F I B.A.
D F 1 B.A.
E M 1™ B.A.
F M 2nd B.A.
G F 2nd B.A.

2.2 Recording Procedure
The digital language processor (DLP), a recording device developed along with the LENA Pro

system (LENA Research Foundation, 2020), was used to collect data. Before each recording
session started, a child wore a specially designed vest with a DLP (Figure 1). The caregiver
turned the DLP on to start a recording session and switched the DLP off after 16 hours of
recording. The recording file was automatically uploaded and processed (Figure 2) once the
DLP was connected to a computer with the LENA Pro software. The LENA Pro software
identified speech and other sounds from each recording and generated counts at 5-minute,
hour, day, and month intervals. The authors retrieved the counts/reports (Figure 3) from the

software for further analysis.
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Figure 1. The LENA digital language processor (DLP) placed in the
pocket of a vest
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Figure 3. Reports from the LENA Pro software

A set of two recordings were made at each age: 5, 10, 14, 21, and 30 months old. A total of 70
recordings were analyzed (i.e., 7 children x 5 ages x 2 recordings). All the recordings were 16
hours in length except for 6 of the recordings due to insufficient power of the device used on
the recording day. The 6 recordings were between 11 and 14 hours in length.

2.3 Data Processing by the LENA Software

The audio data was processed and categorized by the LENA Pro software into eight sound
categories: (1) the key child who wore a vest with the DLP, (2) other child, (3) adult male, (4)
adult female, (5) overlapping sounds, (6) noise, (7) electronic sounds (e.g., TV), and (8)
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silence (i.e., silence, quiet, or vegetative sounds such as sneezes, coughs, or snores). Each
category was further identified as clear and unclear (i.e., quiet and distant) subcategories.
After the eight sound categories were identified, the LENA system determined adult word

count (AWC), communication turn count (CT), and child vocalization count (CV).

2.3.1 Adult Word Count (AWC)

AWC measured the total number of words spoken around the key child. Using acoustic
features in speech signal (e.g., formants, pitch, segment duration, silence duration), adult
sounds were identified as phones using American-English phone parsing models. Speech
segments were identified based on differential acoustic energy patterns, and no specific adult
words were identified. AWC included both speech directed to the key child and speech
directed to others. In Mandarin Chinese, one syllable represents one spoken syllable, whereas
one word may contain one or more spoken syllables. For example, 5= chuang hu (window)
has two spoken syllables but counts as one word. Gilkerson et al. (2015) compared syllable
count (e.g., ZF chuang hu = two syllables) and word count (£5F= chuang hu = one word)
transcribed by a trained native Chinese human transcriber with AWC and found that both
comparisons showed valid and reliable estimates of adult word count. The authors suggested
that since the comparisons were both reliable, researchers can use LENA-determined AWC
(syllable count) in future studies. The authors also indicated that since all languages have
phonemes and syllables, and the acoustic features of consonants and vowels are similar across
languages, using acoustic information to estimate adult word count should not be affected by

language differences.

2.3.2 Conversational Turn Count (CT)

Conversational turn count (CT) refers to the total number of conversational turns the child
engaged in with other speakers. A conversational turn is defined as a child speaking and an
adult or a child responding, or an adult or a child speaking and the child responding within 5
seconds. Both intentional and unintentional vocal production and responses can be counted as

turns.

2.3.3 Child Vocalization Count (CV)

Child vocalization count (CV) is the total number of speech-related vocalizations the child
produces. A CV would be identified if there was a 300 millisecond or longer vocal break
between the key child’s vocalization. Cries, laughs, and vegetative sounds such as sneezes,
coughs were excluded from child vocalization count. Similar to AWC, the LENA system did
not identify specific words or syllables in utterances. If a child says “ma” or “I want that I

want that I want that” without pauses between words, each utterance is counted as one
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vocalization.

2.4 Data Analyses

Five categories retrieved from the LENA reports were used for further analyses in the present
study: (1) the length of each recording, (2) adult word count (AWC), (3) communication turn
count (CT), (4) child vocalization count (CV), and (5) length of silence in each recording. The
total number of words or sounds in each recording may differ depending on the length of the
recording. Since the length of each recording was different, the average number of AWC, CT,
and CV per hour retrieved from each recording was first calculated. Next, the average number
of AWC, CT, and CV per hour retrieved from each recording without silence were calculated.
Two sets of statistical measures were then analyzed. First, six one-way repeated measure
ANOVAs were performed to explore whether there were any changes in the three variables
(the average number of AWC, CT, and CV per hour) across time as well as when silence was
included or excluded. Next, ten multiple regressions were performed at the ages of 5, 10, 14,
21, and 30 months to examine how much AWC and CT contribute to CV at each age and
whether or not silence was included.

3. Results and Discussion

3.1 Changes of AWC, CT, and CV Overtime

Figure 4A shows the average number of adult word count (AWC), conversational turn (CT),
and child vocalization (CV) per hour and their standard deviations from the recordings made
at 5, 10, 14, 21, and 30 months. The average number of AWC per hour shows an increase from
5 to 10 months and a gradual decrease from 10 to 30 months. However, the differences among
the five ages are not statistically significant, which is similar to the finding of Gilkerson and
Richards (2008). The authors stated that AWC and chronological age in English-speaking
families were not significantly correlated. The results in the present study also showed that the
number of child vocalizations increased slowly with age, even when the child received a fair
amount of linguistic input from the environment. That is, children heard an average of 412 to
752 adult words per hour from 5 months to 30 months old. However, the average number of

child vocalizations only increased from 27 to 90 vocalizations per hour from 5 to 30 months.

The average number of CT per hour also shows a gradual increase from 5 (5 per hour) to
30 (23 per hour) months. The differences among the five ages are statistically significant [F(4,
24) =3.318, p <.05]. A post hoc analysis indicates that the average number of CT per hour at
21 months (18 per hour) is significantly higher than at 5 months (5 per hour) [t(6) = 3.716, p
< .05]. The increased number of CT indicates that the adults became more and more

responsive to their children’s utterances, and vice versa. The adults may have initiated the
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conversation when they thought that their children were ready to talk, or responded to their
child utterances right away. The children may have also learned to gain other people’s
attention by producing sounds. Or, they may have learned to respond to adults’ speech right

away as they grew older.
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Figure 4. Average adult word (AWC), conversational turn (CT), child vocalization
(CV) per hour with and without silence and standard deviations at 5, 10, 14, 21, and
30 months
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3.2 Changes of AWC, CT, and CV Overtime after Removing Silence

Periods of silence were removed from recordings to ensure that only the times when children
were most likely to be awake were included in the analysis. Figure 4B shows the average
number of AWC, CT, and CV per hour and their standard deviations after removing the
periods of LENA-determined silence from the recordings. The standard deviations of the
average AWC per hour was high at all five ages as shown in both Figures 4A and 4B.
However, the variability across families is even higher after the periods of silence were
removed. The percentage of silence (i.e., (silence time/total length of recording) x 100)
decreased with age (i.e., 5 mo: 73%, 10 mo: 66%, 14 mo: 62%, 21 mo: 59%, 30 mo: 48%),
which was in line with Galland’s et al. (2012) finding that children’ s sleep time decreased

with age.

As expected, the mean number of the three variables was at least twice as high without
silence as with silence. Without silence time, the average number of CT and CV per hour also
gradually increased from 5 (CT: 23; CV: 120 per hour) to 30 months (CT: 48; CV: 190 per
hour). But, the differences among the five ages were not statistically significant. The average
number of AWC per hour showed an increase from 5 (1733 per hour) to 10 (1945 per hour)
months and a gradual decrease from 10 to 30 (1252 per hour) months. Yet, the differences
among the five ages were not statistically significant either. Also, the average number of CT
per hour was significantly different across ages before silence was removed, but was not
significant after silence was removed. The average number of CT (i.e., increased with age),

and the periods of silence (i.e., decreased with age) may account for the change.

In addition, the AWC and CT in the present study from the data across the five ages with
silence removed (AWC: 1734; CT: 39 per hour) were more similar to Chinese-speaking data
from Zhang et al. (2015) (AWC baseline: 1758; CT baseline: 63 per hour) than the results
with silence included (AWC: 634; CT: 14 per hour). Zhang et al.’s (2015) results were more
similar to results when silence was excluded in the present study because the authors
instructed their Chinese-speaking families to record for 12 hours during the daytime. The

finding also suggests that LENA-determined silence was identified as reasonably accurate.

3.3 Relationships among AWC, CT, and CV

Multiple regressions were performed at each age to explore the relationship among AWC, CT,
and CV. The results showed that the numbers of AWC and CT could predict the numbers of
CV at 10 months and 30 months. At 10 months, the results of the regression indicated that the
model explained 88.1% of the variance and that the model was a significant predictor of the
number of CV, F(2,4) =23.306, p = .006. While the number of CT contributed significantly to
the model (B =3.677, p =.003), the number of AWC did not (B =-.008, p = .222). That is, the

increase of one unit of CT could contribute to the increase of 3.677 units of CV. At 30 months,
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the results of the regression indicated that the model explained 95% of the variance and that
the model was a significant predictor of the number of CV, F(2,4) = 57.9, p = .001. While the
number of CT contributed significantly to the model (B = 3.899, p = .002), the number of
AWC did not (B = -.044, p = .266). That is, the increase of one unit of CT could contribute to
the increase of 3.899 units of CV.

3.4 Relationships among AWC, CT, and CV after Removing Silence

Multiple regressions were performed at each age to explore the relationship among AWC, CT,
and CV after the removal of the silence. The results showed that the numbers of AWC and CT
could successfully predict the numbers of CV at 10 months, 21 months and 30 months. At 10
months, the results of the regression indicated that the model explained 85.4% of the variance
and the model was a significant predictor of the number of CV, F(2,4) = 18.614, p = .009.
While the number of CT contributed significantly to the model (B = 4.194, p = .004), the
number of AWC did not (B = -.017, p = .168). That is, the increase of one unit of CT could
contribute to the increase of 4.194 units of CV. At 21 months, the results of the regression
indicated that the model explained 91.3% of the variance and that the model was a significant
predictor of the number of CV, F(2,4) =32.397, p =.003. While the number of CT contributed
significantly to the model (B = 3.656, p = .001), the number of AWC did not (B = -.054, p
= .058). That is, the increase of one unit of CT could contribute to the increase of 3.656 units
of CV. At 30 months, the results of the regression indicated that the model explained 93.9% of
the variance and that the model was a significant predictor of the number of CV, F(2,4) =
47.429, p = .002. While the number of CT contributed significantly to the model (B =4.077, p
=.01), the number of AWC did not (B = -.028, p = .664). That is, the increase of one unit of
CT could contribute to the increase of 4.077 units of CV. Both sets of analyses indicated that
speech directed to children or speech spoken right before or after child vocalizations (i.e. CT)
imposed stronger effects to children’s vocalizations than speech that was not spoken in

temporal proximity to children’s vocalizations.

3.5 Cross-language Comparison

With silence time included, the average number of AWC, CT, and CV across the five ages was
634, 14, and 52 per hour (i.e., 634*12 hr=7608, 14*12 hr=168, 52*12 hr=624 per 12-hour day)
respectively. Compared with the English normative percentile estimates for AWC, CT, and
CV in Gilkerson and Richards (2009), the Chinese-speaking families’ AWC in the present
study were at the 10™-20™ percentile, and CT and CV were below the 10™ percentile. With
silence excluded, the average number of AWC, CT, and CV across the five ages was 1734, 39,
and 150 per hour (20808, 468, 1800 per 12-hour day) respectively. Compared with the English
normative percentile estimates for AWC, CT, and CV in Gilkerson and Richards (2009), the
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Chinese-speaking families” AWC in the present study were at the 80"-90" percentile, and CV
and CT were at the 40™-50" percentile, which were much higher than when silence was
included. As discussed earlier, the results with silence excluded were more similar to Zhang et
al.’s (2015) AWC and CT baseline values; the results with silence excluded can be compared
to the results in Gilkerson and Richards (2009). These results showed that the
Chinese-speaking caregivers in the present study were on the talkative end of the English
normative estimates. However, the Chinese-speaking adults and children were not vocally
engaged at similar rates as AWC because the percentile of CT and CV were much lower than
percentile of AWC. Gilkerson and Richards (2009) found that children who were first-born,
were girls, or had parents with higher education tended to receive more adult talk each day. In
the present study, the three factors might have also contributed to high AWC in the present
study: 1) All seven mothers were highly educated, having received at least a bachelor’s degree,
2) five out of the seven children were first born, and 3) five of the seven children were girls.
However, unlike the results reported in Gilkerson and Richards (2009), the talkative

caregivers in the present study did not have talkative children.
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Figure 5. Average adult word (AWC), conversational turn (CT), child vocalization
(CV) per hour from the present study and Gilkerson and Richards (2008)

Figure 5 shows longitudinal CT and CV changes in the English-speaking families from
Gilkerson and Richards (2008) and the Chinese-speaking families from the present study.
Both groups of families showed a gradual increase with age. When silence was included, the
Chinese-speaking families showed overall lower CT and CV than the English-speaking
families. However, when silence was removed, the Chinese-speaking families showed higher
values than the English-speaking families. The group differences could be explained by the

fact that the LENA-determined silence not only included times when families were sleeping
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but also when families were awake but quiet. The results of the two sets of data would be
more comparable if the English samples also exclude LENA-determined silence. Another
possible reason for the group differences is sample size. More participants and detailed

analyses are needed to explore possible cultural differences or confirm the results.

3.6 Limitations and Future Directions

Limitations were identified in the present study and can be addressed in future research. First,
a differentiation of the number of child-initiated conversational turns and adult-initiated
conversational turns would help examine parent-child interaction patterns and identify the
relationship between CT and CV. Now, CT consists of both when a child speaks and an adult
responds, and when an adult speaks and the child responds. The LENA Advanced Data
Extractor (ADEX, LENA Research Foundation, 2020) would be useful in future research
because it provides a more detailed output, including utterances or words of male adults,
female adults, the key child, and other children.

Second, to ensure that the key child is really taking turns with another speaker or vice
versa, the content of the adult words and child vocalizations requires human coding because
the LENA system does not identify the content of the speech sample. For example, it is
possible that a parent was holding the key child while talking to another person, but the LENA
system may count this parent’s utterances as if she or he were talking to the key child. Third,
regarding the unit of speech samples, the LENA system categorizes adult and child speech
samples in different units. AWC refers to the number of individual words adults speak, while
CV means the number of speech-related utterances produced by the children. When a child
produces prelinguistic sounds in a sequence or one breath, the LENA system may count these
sounds as one CV. However, when the child starts to produce words or a mixture of babbling
and words, the LENA system may still recognize those word strings/vocalizations as one CV.
Again, human coding of the recording would be able to identify children’s utterances in word

or syllable units when the child starts to produce words.

Furthermore, the results of the present study were only compared with the English
normative estimates because Chinese normative estimates using LENA are not available.
Developing a Chinese version of the LENA normative estimates would enhance people’s
understanding of the effects of early vocal development and adult-child interactions on later
development in the Chinese-learning children. Including a larger cohort of participants (i.e.,
with different socio-economic status, later-born children, male children) to collect a corpus

would best represent the Chinese-learning children’s speech capacity at the age.
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4. Conclusion

The LENA automated approach has provided researchers with a new recording method that
has automatic parsing capacities. The researchers investigated longitudinal changes in the
average AWC, CT, and CV with and without silence time, relationship among the three
variables, and cross-language comparison in Chinese-learning families with children ranging
in age from 5 to 30 months. The percentage of LENA-determined silence decreased with age,
indicating that the children’s awake time increased as they age. The results also showed that a
typically developing Chinese-learning child in the present study listened to an average of 1734
adult words, engaged in 39 conversational turns, and produced 150 vocalizations per hour
from 5 to 30 months of age when he or she was awake. Child vocalizations and conversational
turns increased over time, but adult word count did not show a clear pattern. When the periods
of silence were included, the number of AWC and CT predicted the numbers of CV at 10
months and 30 months. After the periods of silence were removed, the results showed that the
numbers of AWC and CT predicted the numbers of CV at 10, 21, and 30 months. This result
suggests that the speech produced in temporal proximity to children’s vocalizations or directed
to children exerted a stronger influence on the number of child vocalizations than the quantity
of adult words.
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Abstract

With the rapid advancement of machine learning and deep learning, a great
breakthrough has been achieved in many areas of natural language processing in
recent years. Complex language tasks, such as article classification, abstract
extraction, question answering, machine translation, and image description

generation, have been solved by neural networks. In this paper, we propose a new
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model based on memory networks to include a multi-hop mechanism to process a
set of sentences in small quantity, and the question-answering task is used as the
verification application. The model saves the knowledge in memory first and then
finds the relevant memory through the attention mechanism, and the output module
reasons the final answer. All experiments have used the bAbI dataset provided by
Facebook. There are 20 different kinds of Q&A tasks in the data set that can be
used to evaluate the model in different aspects. This approach reduces the number
of memory associations through the calculation of associations between memories.
In addition to reducing the calculation weight of 26.8%, it can also improve the
accuracy of the model, which can increase by about 9.2% in the experiment. The
experiments also used a smaller amount of data to verify the system for improving

the case of insufficient data set.

BRSEE © SCIRAEES - ZELPRAERS - BA(RAEES  TEE IR

Keywords:Memory Networks, Multi-hop Networks, Relation Networks, Attention
Mechanism

1. 4&3% (Introduction)

RSB AR R - S RS SO TR AR e (B 28 T A
B - AEEIZES AT WO A - MSERS - AR it
ST AR G P R B T RO AR R - R
AU - HpE U N )T ST A BT, %ﬁhﬁ%¢&
SR PR ER AR RN © U A R R BTN, - P

BV HHIIIERD - (bt B T LR SE MO PR AL © 1S ﬁﬁﬁ
B -

HE YA 25 SRS DB L4 BB R ) Simgle-hop attention) 52
% BFESEREHI(Multi-hop attention) AHERETT 3t - PR B AN LA - {EHE R
RATRAGHIL T E AR HET S00A0R © [ERIE R MR T AR A IS5 TS
PHIRER « iR UM R E AR 1) - SRR G R LS 7 A S
FHEE -

AR E A R R SR T S SR I - LS
SURRSRETRAE 1] » A5 BB A - EAPRIUN NI R (F BB A 2
VL B S SRR A A B M AR R R + B R s

(—) BISE S BRRE T MR T L B TR R -
(=) DS AR S B R D RAE IS <

AL MU T © RO S S SRR « ST

P HGBRE IS - DRI R B RSUAIAS & - 1Y bADL B (Weston,
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Bordes, Chopra & Mikolov, 2016)20 TE{T-75 T ER=E » BEREREL % 0 25549 9.2% 7 45 1Y R
o BHBHENE B AR ENTIA - *ﬁttﬁ/\ﬁﬁﬁﬁﬁfﬁ%% R SRS
TFE 3 E{EEEEE - B8 T FE 26. 8% EENEE

AR BE T 2R/ NG T e B R 3 B IR A R AR BRI SR I 9T SRR 5 BB =6 Ryt gt 7 A8
Bat s A AR ST 7 B T VA — £V 0 REEE B AR B © S USRI Ry B BaaS S B A -
EEEEZ R RN o BRsS R iR R 7 ARV o7 L © ek — 6 Fyblam B/
HEGE AR S ST T A B BEL > DURCRAR T E NI 77 -

2. X BRElEE (Literature Review)

SCIE RS (Memory Networks) T Z2 8 > I Z(E B BB R AT S A E > SRATSMIECIRAY
TSR - BRI B B AR RIS IR A E > FA A A AL R
RE BB EC RS R B 2 - SUIRAERR T SR AH S TR - S EE 7 o] St & HR A
AEDTAER - AN AR BT I - DURGE S R AR B -

2.1 FEJIH#E] (Attention Mechanism)

T B 1 E](Attention mechanism) iy 5 F A B 4815, > 3 (Bahdanau, Cho & Bengio,
2015)&E A BHAS A Y - FUE PSR BIRRETS | BRER IEHIERNE A
FEE R L -

11 4 1 2= AR 2529 K (Encoder-Decoder) (Cho et al., 2014)AVHEH, » 043 7 B2l RNN
(Recurrent Neural Networks) (Elman, 1990)EH:CBIIRE - W THEBEAESEHSE
IREFEEFBHTRER o (H R RS A2 10 R R P ARY4R S R EAHE - SE0EE
A EIE P A SIERAFFLHE - BREAEANIFEEGTE S MEEIIEHIH
PR AT DUA GRS R A AR B YRR -

2.2 B4R (Memory Network)
B4 (Memory Network, MemNN) (Weston, Chopra & Bordes, 2014) Facebook A T %%
ZEm= et - BRI S S MR A R IIECIRAE T - ERIY AR E - 4
RAFRIBEBH LA - WRAVEERRESE - BOEIEREE P IEE RS - RNN 7[ DI
xﬁlﬁﬁf‘gfﬁ%%ﬁﬁﬂﬂﬁ'ﬂ%{ﬁé%% FEREE 2% E—(Eir P aE R - (HH A
BRI TEFEEENR  BISEER R EITAE - BN R YIRS E R
O] BE & 5 BEE ) 2% (gradient vanishing) EiLfHE /@ VE (gradient exploding) AVRTREZEA: » 5 EL
RNN £ RHEC R T RN ZRA - B R REAECE~EE) (Long Short-Term Memory,
LSTM) (Hochreiter & Schmidhuber, 1997)fH¥42 5 T RIEAGCIERE ST - (HE KA
PNH B IRFIFAE -
0 15 4 i B PR 1 AE 72 B 4R it AR 7 A7 A 08 BE B Y 05 = 22 3 (Strong-Supervised
Learning) » 5l| 4k F 9035 75 1R At B & S AHRHAVARSE ) » 2RI G IERT A BUiR S8 A S hr
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EEIAEE M FIRE LR TE I EA F AV BER EECR FER | o bl sl R4 S
(End-to-End Memory Networks, MemN2N)f& %I (Sukhbaatar, Szlam, Weston & Fergus, 2015) >
TEEC IR MRS IE A AR F B e » (EH A DA w7 e e - AR SEaE 7
F(Weak-Supervise Learning) B[R] 5ERHISR » A FIE A HE e 1 e FH 21K [BIRY B B0
B L o PR FI M £ B 1 (Soft Attention Mechanism) S50 1R B RE
TERAGVAZSE - A6 (F AR S Vs RS B s ki -

BHREEC B 4G EE (Dynamic Memory Networks, DMN){ERY (Kumar et al., 2016) » K S {7

INEE S e L SHI Y B S R R B AR A — 1 - 2RI DL GO IR RS R A T » 7]
75 i U 2R SR R 4R 0 FEF AR B R ~ BRI AR GG 5 - SRR 2R B e
EAERSEAELL - F 2 i PUEEARATAERE - o0 Bl Rl AfA4H - FERRAH - 1B RaCBiEd
(Episodic Memory Module) EfEZEAE - BARTAGCIEAERSHY A EAENRIE 720 o LA
B P32 0532 BE T %50 (Gate Recurrent Unit, GRU) (Chung, Gulcehre, Cho & Bengio, 2014)
GRtts - BEEIE D A HERS BT PR EOIR G  FHE R B4l 548 (Bags of word, BOW) HH]
DA R S50 2 R I e BRI g

FEFE 248 P 0 AR E (Knowledge Bases, KBs)H] LAIA TR & A A MG F
&= HEI A SRR  SATRIARBEENEER - HRBEBmEYE SR aE 2T
HESHY KB » AR EREEIA FE RV - #EEC R (Key-Value Memory Networks)
I (Miller et al., 2016){s1 F (& (key-value) Y77 = SCEE R AVERESFE T 2K - ZRIEEE
I it U s PR A AR AY - SHERER ARV IR A 7 4Rt - BRI BB S P
R R B, -

R EO S A e A5 T B ¥ U SO TR RS R U AE L - B KAV AR B SRV REFE T =K -
It U EC TR GRS 2 1 R [E A AGE R SOR GRS - M (E O IR s AE B e rY )7 =5k
0 PLEC R (key memory) BL{E ST 1R (value memory) [ A 1T - S{ERCIEAGES (ERE K A3l
GRAERE A o A SR AR T E A TGRS o BN BB A o [ A o
AR 7= 0 TN AR sal R AZEFHAVEI SR fEEH BA T HE M -

IERT B RS 4% (Recurrent Entity Networks, EntNet)f& %] (Henaff, Weston, Szlam, Bordes
& LeCun, 2017) - SCgkt SRV ERGELREEN IR T - EA M &R AR - AR AR
R EEFESC IR IT - FTIER B 2AGE S R AV REHE AR B B - HAE bAbI-10k
Hi S Children'sBook Test (CBT)##5 % single hop Hlll4k - B A2 2 J77ARB R
& -

FeM{c i3m0 (Sukhbaatar et al., 2015) (Henaff et al., 2017)d > J574  DI— TG E
PHETTE BRI » RVECREAARCE R A ER % - FI{E bAbI ZifRH & imiE 16/20
TE(EHS o (HFR A a a7 S T4k - WA IR IER - 558 &SRR S 58
i 2/20 TAIETS > HEEERASR ARG & o M insc RAE s R A0 25 a8 55 85 B 5 =Calll 4k - AHE
P9S8 E LIRS - B EFLLAIIR SR - KR TR EIashRs -

Mm&r & TR SRR A EdE - I— SIS R ATt g e ATl —T
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EERENGR > FEAAE SR E SRR - Imimsc B EAEE T 17/20 IR B
RERC IR AR AL I A 1 18/20 TR - [T & SC il i AT A (55 HU IR B By IR B A AP A 2
AP SEER R KA 0.54% - W0FR 1 FioR -

&L F/FREF 10k BHEE HERGEF

[Table 1. Experimental results of different models with 10k data]

Model MemNN MemN2N DMN EntNet
Mean Error 39.2 4.2 6.395 0.54
Failed Tasks(error>5%) 17 3 2 0

BEZAFESR 1 o EntNet {£ 10k BE & - SR/ S%REEEfIEBATA £ - HE
FEHB {3 (75 T HYSEERAIE R AN 4% - 1M B2 A R DAY 1k By SE 81T SRAvEs -
IEREREAIETEIE AR 99.5%[%%] 89.1% o RUILFER VEBIZHIIEILT » AN EEIER
AT ARy ZE [ - E R R RE TR e D B TRl RETOR - w] DUR D FISRIF R - BBk
EHIRA - MR R ERFHA R ER SR VEIEN - A LB aIRseR -

2.3 %Pk EME] (Multi-hop Attention)

2Bk EE £ (Multi-hop  Attention) Bl Ui ¥ Uiy 5T TR A RS A B Hh FRTEE Y - B8 R EREL S R
REBLE RS R - S (E AR R SRR B8 70 REFIEE A [E
AT NE B 2 PR A - F] DU bR B A HERE BE

) 2E 75 (b 49 PR #5 Y (Question  Reduction Networks, QRN) (Seo, Min, Farhadi &
Hajishirzi, 2017) fHEAUZLHE Fy RNN /Y —7fd - ]G 25 3 40 B BRI 51 RH % - 150 2
SEHUET] - 2L o ZEEIRAGE RO - RS RSB R E LR
EZGESE - AN QRN A1 AHR Y A ZCREFAE IR R (S A & I Ry _E 0171k
FET1-3 4R B HERR BT 7 AR -

AOA Reader f& %I (Attention-over-Attention) (Cui et al., 2017) » F&F§ A E 25+ 7%
(Cloze-style questions) o B i KA —RAE T AR —BRA R B I HI4E S - 5
BN REE TR HYAE R - MIRCE B —— R B IEHIET R TTE - HA0A 8 m) P2
TEPRAGLRY Sf Sle B R 58k B R REEE T T ARG - ARG [ EEEFEAH TR » 4848 softmax FTE G4
AU - IR ITRHIRET T E R e BB A U704 - T bam SR It 7 R HOR &
#1 5 document-to-query HY)FE STEUE » ETE query-to-document 1 £ & JIHEE » % F
FH WA & FEFEAR SRS BB 12 B IR EUE - WA B 1 G A AT HERE -

a5 (Trischler et al., 2016)#2H! | EpiReader fHEEAEpEAEAY - H] AR H 2858 S (175
HRYIEZZ R o EpiReader #8177 Ry il o3 » 55— 8077 2 HUii4H (Extractor) » 727
J& A LR AT PR FRAUH S TE R E A AT RE 3R A 2 5 B8 b oy Ry E A
(Reasoner) » 4 48 5 2% feg Y 56 72 L g 258 2 22 BT R 2 e U RV = SRR AR T K & P REME
FREREE L/ NER R EE S AL o A AR A R P B A R R U B R o
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TR EE 2 4 i 2315 (Neural Semantic Encoders, NSE) (Munkhdalai & Yu, 2016)Z24#
TR B 25wl HUAR I 26 Ko [ e 20 8 (EAGIRRTA B R RE 7 A [E HERR AP 3 - A LR
N AR AL B R G Haham » A e A 7 SRR e A o T A B F e
It NSE H[ ] Bh A& S B s 20 DU R LR

FLPH 67 (Sukhbaatar et al., 2015) (Henaff et al., 2017) (Seo et al., 2017) & Ex s bl 3=
FMEEH > HGEE 2 B bAl R R > DI—TEERFIS > BEBE PR EES
PRERREH AT IR = i@ S B E SR R I 8ER % - RNEIZ PR H i g B84SR -

762. QRN £ MemN2N fZZ/F /5 hop EEREH#E
[Table 2. Different hop experimental data of QRN and MemN2N models]

MemN2N QRN
Model
1 hop 2 hop 3 hop 2r 3r
Mean Error 9.58 8.45 8.15 9.9 11.3
Failed Tasks(error>5%) 17 11 11 7 5

DL5 2 i 5 HIEA#035 (Children's Book Test, CBT) Ry B g sids - % 3 B 26 fa B kol
B2 PR R B st R - B AT 2 Bk A o [R 2 BRI R Ry B BT 9E<H
SRAVEEES > AR S ZE R E sl AR (5] 07 20K 20 Bk 3 B 45 & BE DR A 1Y -
7¢ 3. Single £ Multi hop A/E/ZF CBT SR ErfetaR

[Table 3. Different models of Single and Multi hop experimental results]

Model Named Entities Common Nouns
ﬁﬁs;r F:if;:ng“age 0.439 0.577
LSTMs (context+query) 0.418 0.560
Single Pass ' Window LSTM 0.436 0.582
EntNet (general) 0.484 0.540
EntNet (simple) 0.616 0.588
MemNN 0.493 0.554
MemNN-+self-sup 0.666 0.630
Multi Pass EpiReader 0.697 0.674
AoA Reader 0.720 0.694
NSE 0.732 0.714
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2.4 BE{&4EEE (Relation Network)

(% 48i& (Relation Network) (Santoro et al., 2017) HHYLEYEBIIA I ~ ERSEUEE
7 IR GETE » PRt S S E 1R S AH T THERE - REAAEES E N B A%
(Visual Question Answering, VQA) » {i FH ffj BE IS B A A S =~ RV » Aot
NS R BCH R R B A —EWRBE - St & o B A - HiE
A RS S BT R TR < [ VB R R -

RS A ESAE N H AR 5 (TR MR - mTR EHE AR R EIAVEEIE - $2
THEIIHEEE ST o FTTER R BRI ERARR (B L o AR S E B P M A A E
EHEM R 5558 71 bADI dataset {E{EF5 i | /\{E - [fif£ Sort-of-CLEVR 1 {5
RABVEES - Bl NS FTRE 2 SRy 0 8 -

RelNet (Bansal, Neelakantan & McCallum, 2017)5 5+ E W W P4 R (G HIRE &
WA ERE AR AEEE HERSORIRE AL AT RO R B R 2 AR - B R E
Regps A A B R RS A BRI A - SCIRAYEEAAE B 2 FE 8T » 1T RelNet #5407 iR (55T
BREC R ISR o SRR A X EEEAAEE - ZRES N ETHE
AR Z MEHIRHYE - A6 R A R -

IR BT %4955 (Recurrent  Relational Networks, RRN)#%I(Palm, Paquet & Winther,
2017):8 FHETRE R G A R OB R - 78 9% MYRUENILA 81 (EEIR: - S (E TR A0 =
FREE—17 ~ FE—FEEEGFEARNE - AR R ERAVET o HEA S SE R )
EACHVAREE By {h1,h2,...,h81} » i 2% R (MLP) F H (E TR~ M AVRARE - Kist
FHAYRAREME AN > A DS B 45 RE IR RE - S (8 B REAY B85 FE_ b — (@ 2P IR AE
i A DL BE R BUE - BERBER T E AR - > t17E bAbI HB4E - Pretty-CLEVR1 &I
1B -

PA(Cui et al., 2017) (Trischler et al., 2016){i &= i B S PR LAV & B RLmtE - (5
bAbI B & 10k B 340 > A6 7 20 TEES ISR RILIGE RN S 4 - HER
FILAT R > AR ERET B A VR AL BB SRaE SRR E -

22 4. relation MEEFFEZIHLEE

[Table 4. A comparison of relation models]

Method Mean Error Rate (%)
RRN 0.46+0.77

RelNet 0.29

EntNet 9.742.6

2.5 FHFI|SEMER] (Pre-trained Model)

AT EEACH A S AR ST (5 P R B S E TR SR (Pre-train) # FHRE S AY > MR FIRIZ A AGIE
Fi > i supervised HYSNIISRE e (Fine-tuning) iS4 - i 7 3 T ELAGHE A » SREZA
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RITRLSE -
H.oh BERT f&%(Devlin, Chang, Lee & Toutanova, 2018)L K 4 %485¢ 3 » 2 BERT &
/N BlISREEERAY Albert 1584 (Lan et al. 2019) - 2 i R (LR - HISEIHEE
FHJRER
iE s O THAN SRR A I e @RI REma sy 77 =0 PILGERF S H A E S IR T
1S B OR N RE AT REFRTT » tEB AT o] DU B/ NV DRt A8 31| 4 E0 A A S 3

3. Wi5E 7% (Research Method)

SLIRMERES BRSNS IRV ERTT - L RIIECIEAVAE ST - &R M =5 L i REAE P
AYRCTRE - R IERE 2 - SCIRMEEARC TR 2 fAH 8 F - SR F R B AR IR
RIS - SN R E SRR G R AR - e A A G F e SR TEHE
LIRS 2 - AUTSEAIEEECIE Z EHIR G T R B S Pt d e - EulfE s RalEd
TR R RE Ty W AR BRI F R BRss - AR B E 5 B LR HE B AV RE
77 o BEN AR 48 A SR SRR AL 200, - W a8 SR YRR T -

3.1 t#EAIZERE (Model Architecture)

S50 2 B B EniNet B (Henaf et al., 2017) 23508 FIELE AR T IR77 40
NI H B B SELAFI R R M - 3008 P 2 B 0 AT BT BT - BRI ST A
(memory slot) 2 11 13T BHIGH3 H ETER4RAL - (R4 HARHIBHRE (relation slonpy « [FUSHELET
RO ST R A B (TR T ELA — S MBI » B3
ST ST PO AR - UM B4R S EESY  4YHI% Encoder i+ EEH
1AM 2SR S RS B R AT+ DURITERG (R S35 ¢ BARSe RO e i T
A TP FT R R ATE  FOA I ST N B P GRS B
ST NERBIBE A MBS © IRt LSRR - 30 P SRR o HEE
WHVETE - SR T 58 | SV REBI - AE: EntNet - (AR RITIOAT
Relation memory HJ3(5) » LU BB %: &S0 RBIRS101 - S0 R HOBAYE -

Encoder module Dynamic memory module : output module
HE : r““"_| :
Input 4% Label ! Position , Memory E :
Question _’ encoder _| encoder l i Output > answer
: module
Relation memory

B RS

[Figure 1. Diagram of the model architecture]
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3.2 Encoderf&4H (Encoder Module)

IEERIER AR L AN EEBE hERES P B EEER AR
BRSETE » Rt A S AEINS AR e R RTEHTP = - IR EHVER - HhEAH
73 Ry WA {lE 20 BR4REE - 754 Label encoding )2 1 f) -8R fy 85~ FH4K 48 Position encoding
LT FENEBRT IR EENR - G@IEaE - FEIEE T ATA Ry R
JE B —(E[EE 8T - SR e R T B S N e S R AR o STk
SRRV ENL% o R AR R S S R A S B P N RoR - I T PR R
G GE R AT ERY 4R 5% » (1R i Bl 55 SR e s /5y S T A 5%
{hallway:1,John:2,the:3,to:4,went:5,.:6}

John went to the hallway.—[2,5,4,3,1,6]

AR EERR - AT FE DB P AR - (BRI S BN ES - DL
B+ Fs 9 - hallway 8({E 55 1 ~ John E{E fy 2 » hallway FYR{#% Fy John » 35 i fi) A RG]
BEE 2 HAVRA R - P DAE Lo B i P R A R R SR 2R [ & TS s TR
HHIEIAYEE iR S A EIY (A & o B SeiRIB s sy A/ » T B a5 &8 A0 % S A ATl
& SHEFERAHENFEE - IR ISR e — i S Rl - FEBE
M EAES RS - ISk BN EE -

fir B 4wl (Position encoding ) HHYIEAIA T 758 2 RIEFFHIRA (% - HAAESEEY
s NIEFE AR AR » =2 A BOW I FR4EE » Het i - Esa st
PRI A ARE - (HRERESEEFEEN A EAE - HNEEEE g aRARE
FERIAR—8E » AN JTEaBIFR - AHEHEER A FEA B AR HAEEEAAEEE K -

John likes Mary.#Mary likes John.

RE SR B mIIR ISR R > BB mask HYJTEREEAIIANERRE % - A
TNHAKMPTR © e, el AT HEEFEZENVEHBRE > . ) 2T EZEEN
multiplicative mask > /& AJF/IISRAY A & (5 A E(E mask 1Y HAER I AL E &R - B
GREVEIE N E - EHEFERN AR ER - R BN m B EEAAE - EE
BRI BEREEIA Z4RIET - R EIMERRER G T EE -

se = XifiOe (1)

3.3 EjfESCERI4H (Dynamic Memory Module)

FhREEC IR A A WA (E B0 43 40 - 7 il Ry IR GE A AE BLRE A kA1 - SCIEFRELL key-value
I PRTT > key PRIFERE ~ value fRIFIREE - B SEsCBR B AE LR R Z fEnVRE
RGN > sCIEfE R AR EMAS - 2280 T AR 2 Brr o A28 EntNet
2 R B AR ZE A T BRI o il AS o EE f DA Z 4R ke -
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gate gate
key
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! ( ) if":
memory siot
update \ update
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relation slot

Whn
gate gate
key

gm _®

memory slot i : i :
update update
relation slot
~
G/ '(:HI
input input

I8 2. B R

[Figure 2. Diagram of the dynamic memory module architecture]

S RIEER U R BEAFREE G T o t HARRMES T - RIBIEF#RAZE
TE PN R T a0 TR AL B (1 - S (I S IR FH key Al value 2H 55,53 Hll Fs wi il hi> D key-value
I A RFE RN - key BFEIRFER - value B EIR{AIREE - #HIA T AR - & key
RTF T John ;Z{EE S > value fr7F T John PV EN(E - S{ECEMEEN A H CHY key 1 value
[m & 0 B A BE D key-value HYEE S o] $ 2 HE YGRS 537 E 3% S E A N SO R -

John went to hallway.=>{key:John,value:went to hallway}

B EEA T AZERIANE  25E BN E AT key ~ value 7 YR -
0 F71% sigmoid activation function » g; 52 gate » B EUEE Y 0~1 [ - FREUE Ry P
P > F DU E SR B ORFE 25/ DECIRINES o gi FH wy Fl hy JRE o RS 2 BB R P A UTHC
T2 %P~ memory (NAHRVUCELAZESE o BALECIEME B RSEHRBIAVEE ) » Frat&E
AEE ERE - AF3) A RNN #IEHEAR > FLETEHIA G TIINE - LB REE
FriEEIE A memory FAREEE o ¢ FJLUE(EENY activation function » B EG BT THE(H
FHf9E PReLU « U ~ V ~ WS B rl 3l SRMEEE, I H FTA Y gated RNN SLE0ig b (8 > jA%k
R PRI SR B — 2 58T - A EECIEMRE hy NS R IERE N A P EEElE
FEAN > B P E PR E AR - ANO)HLE S A EEHN A MR
TIAGCIERERN » M EREA S EEKEOR > B3R normalization #{H - (REFECIE R EE
{H#IE -
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gi < o(sTh; + sTw;) )
h, < o(URj + Vw; + Ws,) (3)
hi —hi+g;Oh, )
pp— )

T Inl

AU (I B (A DR S HE RO TR B A HLM A IR AVRR (7 - SR SesC B & 152t
K NE P EHEECIRAVPTEEUE - R BUE R WA SR T R L R B - AH EIRIP I
SRS H B AP R E Y] WA(OFTR « AT B VIER KRR 2R T
T g™ g7 A FIABE G BEFEARANY SO - BIA0BIRA 20 (E3L 5 -
SCIEfE | LEAn AT AV EC IR R R 19 (8B (o RHS LR (R IR IR R —(ERH (g - 20t
& SEAEREI o] B R S ERE (B L B A SO AR AV RR R - A AU(DATR -

gl =gl"glo(< spmij>) 6)
ol =9 ™
i,j

AXQ@ETERIGEHANE - FE A~ B Rl SREE - fRIBE AR A NS g
ANB]F-s P EEHHINE > fxf& LA PReLU £ activation function o 2AT(9) A BE R Hr ©
BRI BB S 3 AIREAINE » W0 IR A BE (%08 P9 25 FF DL SRR A8 e -

fij « PReLU(ArU + BSt) (®)

rj e 1+ 9i O T ©9)

3.4 wyH#E4E (Output Module)
B REEC IR A S e SO IR A h B RE (il R R IR RR OR A48 T ASEAHHERR (3 A - 2 =(0(10)
o [EE ST TR by B RE (S iy 17 A —iE - I3 b rTHl| SR EE Cat R G0 Em, - AR
75 IR R query AH BEHYp, BUE - BUE B & FAAEAME S A XA DR -
m; = C[hl’; rij] (10)
p; = Softmax(qTm;) (11)

REERJEETR EHEE - BB EAE SRE0 AR - LIRS
PLFREA B EE R - ZMERRRE AN HREFENER - HPRIRH 52
BB - query FIEE & IR IEINSRAFHY T 2 bk K (E4ERERY A& q « AbTSeE HEUE R
BIEER » ZAREFEEERHRATRENEEY -
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u= Z pim; (12)
i

y = R@(q + Hu) (13)

56 —EEURERET I3 > ZHER S B fe T HE B RE ) - AR E SR It
PRSI AMEE A > i BT BB E R D REEAHSRIN4EAY [ & u > B query [RIEAHNN -
TRy #iHY query [ & > EEAR(D2)E15H > F%—JGEHRE hop Bugin 1 - [RAHEH
&% hopl » B —KETE R hop2 » fRILIEHE - 1A AHFTR -

q=q+u (14)

3.5 & (Discussion)

ARHFE DL EntNet A iHoR R - E5lE 4SS sC BRI R > s BB >
JERERCIEME BT ELE o 1F 3.1 BirP 1 4H R AR Z04% - T2 Encode 1541 ~ BREECIERHE
4H DA R g T aE Bk - 3.2 89 M 48 S T A0l By [m) S 2 203 o (e T FE A R EI]5/| 4R
aHlE A EAVAEAR - 3.3 Hith /M 4HENRE S IR AH A ED - B E LR IRFEE IV T 0 bR TR
LR AECIERE SN - R GAVET R IABIA » (R EREC IR & a5 - 51
B IEMR G > RV R ST BEEE L B E M AN & - BRI FEEECIER
=R - TR SRR E - 3.4 67 fla D EAHIANET o & SCIRBIAE A bR kI IR
7% - i EAH ST R A SO IR TR B AH R 43 - WG HEE R R A 2 - tH9E A
IR RET BRI BB AT HEE 7575 > vVZ(EE I EIAR ERTEC B4R 250 > sl HARER
FHYZEFERIRERY | o

4. EEs (Experiments)

ACHFFEFIT A BEBR B R bADI dataset f§ 15 EFERBRAEAVBURAE » LERUEAE IS ET Facebook Al
Research (FAIR)FF {747 5 RRBRAR AT A 20K « BRI IE 055038 F 1941 P0G -
SYAT
(—) BORSEELET ~ RS  FTRETIRIE A A S %
(7) BPIEGLE AR O - 5% TR SRS T 2L -
(5) BEF - EFBEEHONR PIRE) S - = T REE S SO TR F 52438
LR -
(F9) 1 20 TEERS P HRE IKERHR ST 10K LR P PR R 2 BB 8
B BB L AORTEET » RIS -

DITBEBR R RAERENE - LIS XUBRaE = BT A R 17495 %
SR o BRI | SRR » 0 10k MBI B ) 1k - IEIB S KB
BRABCEHR. -
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4.1 BE— (IR ER E ) (Experiment 1: Multi-hop Reasoning)

HERER

HATEIE BB Rt am T > BT UG S Bkt R AR AV R S HE R i AR B ki
BRSSO B AT > 1] EntNet fRAUE R HpbERIEAL  ANEERE SR 2 Pt E
I B A T > S SR ARER A AR T RE

HERANE

AT s 5 | A 6 i 5 TR AR 1Y 25 BB HE B AN 5 988 UL U7 VR I DR 1 B 6 i 4 B2
EntNet R > B EFHCRBETRERR > HMEARETAZ RN - fliHE S
HEHEE > BEEE IS S BB RECE - R R S RS
% MEE—JOEEMGRET R R BB - AERESUEINPREE - 40 3.4 /NEiTHY
NF(14)  EBETIESIET R A BE BT ERT AT query AHIN > BURHTHY query FEL
SRBCEEIIRFIRETR » B2 XERESE I 1> FhR b bl 87 S B pkig
25 o T EReS REEHAFR 6 .2 Multi hop HiIfir -

HEREIE T LIEL - Bk E WA A A AR - E T Y AR
TR TR T RRAEES - PHssseR R BTt o sl AR ARSI SR
AERERIIRE > (TR N A BECHIEE - MBS AR T RO - #EH R
TEIELHRT PRV ERRA 2 - BUATR (e SRV & ER4S B HEE ARG HE T T IR AV R - ISR
sSTER _IEBIRRRAE R - SR AR R HE A NI LR IR HIRE T - EnliR
FHEBHERE S RETRTHREIIATCR -

4.2 B (ECIERIES) (Experiment 2: Memory Relation)

HEREH

BEE SR L EEAIF EntNet AR BIREECIRIAA - IR E SR —AVERRGER > IR EMT
S AR THEERE ST - I E e iRt R A SR Z I - MR m AR Y
BEILORFERE. - SCIREEBREYET FRE R A BRSO 18 SR A2 - AR AJHEC IR PRI P
A rse 2L - EEBE AR R EASGECE - ABREEIMrFC B ER
MR > DA INHE B A AT HIERE. - SR AL AE

'RAE

ARE R SCIE R R ARIE A ((0)s TR L B P TEEUE - FH DR TE IE R Bas i A BT HRH
25 - iR BE B FEHAAE - (R 20 EECIEME REEZEEN - S5/MES
DA REH 518 FH LAOR A RERC TR AR (5 > 4035 —(BEsC g B H A Fr A SC BB A T 5
PRIFIE —(ERE (R - BREEE B RERENS - R GRE N GBELEEE R
AR - BT RIEME Cm 2 JRRIEEEE > WAKASFTR - 20 FEEERET RS
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190 & BEl{% > FERF 190 (BB F 57 B PR {72 B REATREAIE A - EER&EEA1FE 6 12 Relation
slot M7

number of relation = CJ* (15)

bAbI BIEEE PR [ET A R B » BT B EE A S E AR i
HAREGHEE - REBEE TG - ZBHEBETEREA N850 o IR
JRAeEC BB ORTT - BeJ7 AT DU A RO 8% o 28 56 a) M nvREF: < EEEIERTAE
BEVE BB - 75 2 ERER R MRS BB R R BRI S R R e+ - 4
REHE M RIRERYE 22 M RA AV T BT 2 I i L IR RE VR T B SR NI H 2 -
{EfEF 3 EAMN TR EATAIARRT - B N BB T B0 T A0
a2 .

s S MR EFTA RET: ST 54 RelNet fEAYEEER F I 755%) » B REIFAHE E R e
Jiik o BINEENEA R MERENS EFFREE GPU FTEZENIEERA - RE
o 20 {EECIRAE R et E i 190 [ERA (% - SLE R 190 (ERR GEUEFZEUR 20 (ER G ME (R
7 HIVARFEZENER - ] UK Ry DRI E AR E 6 E(E - R EHRAE
BRIV E RN T 26.8% o BFBGAE RAVEHE o] LIS R EHEB IR AR R E >
B RERER LT HERS DR B T -

5. (RIFHTA IR AR T A T BB B LT

[Table 5. A comparision between all relation method and relation slot method]

Task All relation method Relation slot
Task 1: Single Supporting Fact 110000 80000
Task 2: Two Supporting Facts 112900 82900
Task 3: Three Supporting Facts 113400 83400
Task 4: Two Argument Relations 109400 79400
Task 5: Three Argument Relations 115200 85200
Task 6: Yes/No Questions 113400 83400
Task 7: Counting 115100 85100
Task 8: Lists/Sets 115100 85100
Task 9: Simple Negation 111100 81100
Task 10: Indefinite Knowledge 111500 81500
Task 11: Basic Coreference 111600 81600
Task 12: Conjunction 110400 80400
Task 13: Compound Coreference 111600 81600
Task 14: Time Reasoning 111700 81700
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Task 15: Basic Deduction 109700 79700
Task 16: Basic Induction 109500 79500
Task 17: Positional Reasoning 111100 81100
Task 18: Size Reasoning 110700 80700
Task 19: Path Finding 113200 83200
Task 20: Agent’s Motivations 113600 83600
Sum of all task parameters 2240200 1640200
Mean parameters 112010 82010

4.3 EE=(8kCERER) (Self memory Relation)

HERER

e duiEt R LY 190 (ERFRIZHU A RIE S EH AR RIE - BEERA T
R A TR T AR AT R - fEBIRREC IR AT ORAFT - Bl ] A B 22 AR
BrE TR - LIRFTARIGEBUEE R E W IR T - T DU BT B & S
BHE - HHE %’Mﬁiﬁ%{#ua (B BB TN IR N - A S NE BRI (RE R R R E
Ao EERECEEICIEN BB > Bl e LB R EA S mE

HERANE

BBt RO AR ER - ZhENER =S ELE - %iﬂﬁﬁiﬁﬁﬁﬁfﬂ’]?ﬂﬁ JR

$HJ/\E§JH§ FEEVER Sy R A S - Bt AT R B ARt aC B - 08 s((16)~(18)AT
BRI A ) TR S IR E R RE (5 - T AR E %Ez:ﬁﬁl A= (19)ZE

%ﬁﬁlﬁﬂ%mﬁt‘kﬁﬁﬂ’]é&% 7T Y H S AL RA S - EEREE R AIFR 6 1 2 Self memory

VAN

9ij = 9i" 9] 0(< s¢, hy >) (16)
=Zﬁb (17)

ij
7, « PReLU(Ah; + Bs;) (18)

hi «— hi + gr @ ‘F'i (19)
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6. [FIRIVHEZHIE « BraE - HEHBE T ER R 55RE)

[Table 6. Error rate of different models]

ERE F

Task Original | Multi hop | Relation Self
model (hop2) slot memory
Task 1: Single Supporting Fact 0.00% 0.00% 0.00% 0.00%
Task 2: Two Supporting Facts 20.80% 28.40% 11.60% 52.30%
Task 3: Three Supporting Facts 58.70% 56.70% 62.90% 62.10%
Task 4: Two Argument Relations 0.10% 0.20% 0.00% 0.00%
Task 5: Three Argument Relations 1.20% 1.20% 1.40% 17.20%
Task 6: Yes/No Questions 3.60% 3.50% 1.90% 11.40%
Task 7: Counting 10.10% 10.10% 6.90% 23.40%
Task 8: Lists/Sets 1.30% 2.20% 1.70% 9.10%
Task 9: Simple Negation 0.40% 0.00% 0.00% 35.60%
Task 10: Indefinite Knowledge 0.50% 3.70% 0.80% 3.80%
Task 11: Basic Coreference 8.90% 8.00% 4.20% 7.50%
Task 12: Conjunction 0.00% 0.00% 0.00% 0.60%
Task 13: Compound Coreference 5.60% 5.60% 6.20% 5.80%
Task 14: Time Reasoning 20.50% 21.30% 20.60% 55.90%
Task 15: Basic Deduction 5.10% 29.70% 0.00% 45.80%
Task 16: Basic Induction 50.00% 50.70% 51.00% 51.20%
Task 17: Positional Reasoning 41.20% 39.00% 37.70% 39.40%
Task 18: Size Reasoning 8.00% 7.60% 6.20% 8.50%
Task 19: Path Finding 87.80% 86.80% 85.30% 87.60%
Task 20: Agent’s Motivations 0.90% 0.20% 0.90% 2.90%
Mean Error 16.24%  17.74% 14.96% 26.00%
Failed Tasks(error>5%) 11 11 9 15

MBI E B ARG RAVEET - L E R P AR AL MEA D o s Rl

3
gp

SRR FET MR AMEACR - (e B ERE R REAS » K& iSRG R IR FRIRCR
N BRI o B RO - EARIER 7 REEAVEELLE - WL E T
SCIRRARE RORT A DU R DREEE SR BE(ERS v % | BREE R AR 20 B

gD
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K 1. BB % e = H 2l EATIEE LB

[Table 7. A comparision between relation slot and self memory update]

Task Relation slot Self memory update
Task 1: Single Supporting Fact 80000 70000
Task 2: Two Supporting Facts 82900 72900
Task 3: Three Supporting Facts 83400 73400
Task 4: Two Argument Relations 79400 69400
Task 5: Three Argument Relations 85200 75200
Task 6: Yes/No Questions 83400 73400
Task 7: Counting 85100 75100
Task 8: Lists/Sets 85100 75100
Task 9: Simple Negation 81100 71100
Task 10: Indefinite Knowledge 81500 71500
Task 11: Basic Coreference 81600 71600
Task 12: Conjunction 80400 70400
Task 13: Compound Coreference 81600 71600
Task 14: Time Reasoning 81700 71700
Task 15: Basic Deduction 79700 69700
Task 16: Basic Induction 79500 69500
Task 17: Positional Reasoning 81100 71100
Task 18: Size Reasoning 80700 70700
Task 19: Path Finding 83200 73200
Task 20: Agent’s Motivations 83600 73600
Sum of all task parameter 1640200 1440200
Mean parameter 82010 72010

4.4 FEp4ELE (Experiment summary)

AT = I BB rh E B ERESW (l7 /)« R ST R E - (CEMRTTEE - BB
— R A R B B B E AR TR R IR TR B s HE R R AR AE

118 5 — AV B RS R PP SRR A Rt Tt - Esm RaC B IRERVN BA B LS RE
AIHEEEAR -

Hhia R BRREC IR T s R B R REIAVRRAR ST RGP BhaC IR HRA (-
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(e E B S T B BB SRR R R > R AR (TS 2 (YRR ST -

R =R MRS - KRG TR AR S CrF RS R EIR R R B EECIER > K
MR R B RE UR T - HESwRE BRI ST R ROR SR - S RGC R RFHYREL - B AT
EERE P REFRENAE R AL - Bt RICIEHIRE (R BB EH AT - 1M
R ER AT e aC R BB E Y R B BRI - AR R S APV IR R T 0

EHEERRETHAE B EEENER)  WE N AR R AR R
HREAEEFEAHEEE G EES S > EEHERFERAERA A -

B B — RABH e P A B TR bR > B E MRS RS - FrAEBEE M T
60 HHEEHE - WER T T 26.8%1H#EE - B AR EHKRER
BRI ST T 20 HiEE -

5. 453 (Conclusions)

RS ST B R TR PR R R EU IR + 4000 o R o B T B
BHRAE S B O, « (A0 BB 8 BB 4 T UG A EC M B B - AR
51 Google Deepmind (BB 3(Santoro et al., 2017) FERH: » 8 FH S B (2 1725 (75
(Visual Question Answering, VQA) » #F ETRIRI IR BA (5 - T30 HEABRA U2 H HOTE R
R IR R B 2t SRR EHHSCAAE 17 » RelNet BRI J 4R (50
ey A EABRGF » FRFMBUMIA AT (LR B th R B A RO ER I A i SR B
SR o AT B RIS T LA R D M LR -

BE5R TR AR (LR T 20 (ERTAREM + BRAIMRIREL 190 (BB (52A0E] 20 8
B o+ BV R Tt AT DL BB T B AR T - e AT A3 (T
FIHTE R BR AN R  H RS R G B O AR B « R
TR BRREPY + AT LU RS AT T 5 I A/ + DRy L A4 P 7 T
LR -

AR BB 1T DU SRR o] DU SR » TR 7 A R IR IR
ETERIT P9 EntNet S5 » 411 5 SUB AR F 32 R GRA J PN - T3 S Ay th
DAFFIEREATIE RS LR - S ~ 3D RS R LA R -

DUAHSOR RS  RACE TR e BT R TS - BB P R DUBH R EIE
BRTHORUER R » B (R 2 SRR R B - BUER A BN IEAR - BT S
BRI B B AT HRT A (LSS - TSR e B e S PR A R ST e
(B R E B R T LRI = (R B R e — e - FIAE
B  JIBBRBLE IR = % BB IABRIE - bAL BB IR 3 B ERET SR
R - SRACE BRI A ABRIRING T - Rt R A © TR
PR R B

ST 5 S5 TE R (R BRI 5+ RS04 MR MR T i)
iR o T AAFITRE S BURITSE % B TR (Pre-train) S (Fine-tuning) #7732 » /538
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s BJHTRR (7 o BRI AR BRI - (EmiSHYEE
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==)
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REARERAGSRE AFE S
A DS AR TR R A

A ZE ) B Bndmts 7 2 PR AR A ISR - B Yt - BhREECIEAE DU HE
HFAHAVIEE - BB ERA REBIRAR AR E F R - 1M AT SR ERER > R
AR Encoder fREEHLETHIIGE - SR mIEEUR - SUE ST B GRS T 2USME - 32
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Information for Authors

International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP) invites
submission of original research papers in the area of computational linguistics and speech/text processing of
natural language. All papers must be written in English or Chinese. Manuscripts submitted must be previously
unpublished and cannot be under consideration elsewhere. Submissions should report significant new research
results in computational linguistics, speech and language processing or new system implementation involving
significant theoretical and/or technological innovation. The submitted papers are divided into the categories of
regular papers, short paper, and survey papers. Regular papers are expected to explore a research topic in full
details. Short papers can focus on a smaller research issue. And survey papers should cover emerging research
trends and have a tutorial or review nature of sufficiently large interest to the Journal audience. There is no
strict length limitation on the regular and survey papers. But it is suggested that the manuscript should not
exceed 40 double-spaced A4 pages. In contrast, short papers are restricted to no more than 20 double-spaced
A4 pages. All contributions will be anonymously reviewed by at least two reviewers.

Copyright : It is the author's responsibility to obtain written permission from both author and publisher to
reproduce material which has appeared in another publication. Copies of this permission must also be enclosed
with the manuscript. It is the policy of the CLCLP society to own the copyright to all its publications in order to
facilitate the appropriate reuse and sharing of their academic content. A signed copy of the IICLCLP copyright
form, which transfers copyright from the authors (or their employers, if they hold the copyright) to the CLCLP
society, will be required before the manuscript can be accepted for publication. The papers published by
IJCLCLP will be also accessed online via the IICLCLP official website and the contracted electronic database
services.

Style for Manuscripts: The paper should conform to the following instructions.
1. Typescript: Manuscript should be typed double-spaced on standard A4 (or letter-size) white paper using size
of 11 points or larger.
2. Title and Author: The first page of the manuscript should consist of the title, the authors' names and
institutional affiliations, the abstract, and the corresponding author's address, telephone and fax numbers, and
e-mail address. The title of the paper should use normal capitalization. Capitalize only the first words and such
other words as the orthography of the language requires beginning with a capital letter. The author's name
should appear below the title.
3. Abstracts and keywords: An informative abstract of not more than 250 words, together with 4 to 6 keywords
is required. The abstract should not only indicate the scope of the paper but should also summarize the author's
conclusions.
4. Headings: Headings for sections should be numbered in Arabic numerals (i.e. 1..2....) and start form the lefi-
hand margin. Headings for subsections should also be numbered in Arabic numerals (i.e. 1.1. 1.2..).
5. Footnotes: The footnote reference number should be kept to a minimum and indicated in the text with
superscript numbers. Footnotes may appear at the end of manuscript
6. Equations and Mathematical Formulas: All equations and mathematical formulas should be typewniticn or
written clearly in ink. Equations should be numbered serially on the right-hand side by Arabic numerals
parentheses.
7. References: All the citations and references should follow the APA format. The basic form for a reference
looks like
Authora, A. A., Authorb, B. B., & Authorc, C. C. (Year). Title of articClet e
of Periodical, volume number(issue number), pages.
Here shows an example.
Scruton, R. (1996). The eclipse of listening. The New Criterion, I5{SU} TS
The basic form for a citation looks like (Authora, Authorb, and Authorc, Year). Here shows an cxampis
(Scruton, 1996).
Please visit the following websites for details.
(1) APA Formatting and Style Guide (http://owl.english.purdue.edu/owl/resource/560/01/)
(2) APA Stytle (http://www.apastyle.org/)

No page charges are levied on authors or their institutions.

Final Manuscripts Submission: If a manuscript is accepted for publication, the author will be asked & ssopts
final manuscript in MS Word or PDF files to clp@hp.iis.sinica.edu.tw

Online Submission: http://www.aclclp.org.tw/journal/submit.php
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