ICON 2020

17th International Conference on Natural Language
Processing

Proceedings of the TermTraction 2020 Shared Task

December 18 - 21, 2020
Indian Institute of Technology Patna, India

©2020 NLP Association of India (NLPAI)

ii

Introduction

These shared task proceedings concluded the shared task on Unsupervised Technical Domain Terms
Extraction, also named as TermTraction - 2020, launched on 7th October 2020. The shared task was
collocated with the 17th International Conference on Natural Language Processing (ICON 2020), held
at [IT-Patna, India. The goal of the shared task was to extract domain-specific terms given an English
document.

Four technical domains were chosen for this task - BioChemistry, Communication, Computer Science
and Law. The documents that were part of the training corpus did not contain any marked or annotated
domain terms. The participants were tasked to develop an unsupervised algorithm for the extraction of
the terms.

We received three system submissions and system description papers. Each system description paper
was reviewed by two members of the reviewing committee — all papers were accepted. Macro F1-score
was used as the evaluation metrics.

Two major categories of algorithms were used by the participants - Graph-based and Filter based.
Textrank was the most used graph-based technique. Rapid Automatic Keyword Extraction (RAKE) and
PYthon Automated Term Extraction (PYATE) were the filter based techniques employed by the teams.
We would like to thank the ICON-2020 organizers, the shared task participants, the authors, and the
reviewers for making this shared task successful.

Shared task page: http://ssmt.iiit.ac.in/TermTraction
Main conference page: https://www.iitp.ac.in/~ai-nlp-ml/icon2020/index.html

iii

Organizing Committee:

Dipti Misra Sharma (IIIT-Hyderabad)

Asif Ekbal (II'T-Patna)

Karunesh Arora (C-DAC, Noida)

Sudip Kumar Naskar (Jadavpur University)
Dipankar Ganguly (C-DAC, Noida)

Sobha L (AUKBC-Chennai)

Radhika Mamidi (III'T-Hyderabad)

Sunita Arora (C-DAC, Noida)

Pruthwik Mishra (III'T-Hyderabad)

Vandan Mujadia (IIIT-Hyderabad)

Table of Contents

Graph Based Automatic Domain Term Extraction
Hema Ala and Dipti Sharma e

Unsupervised Technical Domain Terms Extraction using Term Extractor
Suman Dowlagar and Radhika Mamidi.......... i i

N-Grams TextRank A Novel Domain Keyword Extraction Technique
Saransh Rajput, Akshat Gahoi, Manvith Reddy and Dipti Mishra Sharma......................

vii

Shared Task Program

Monday, December 21, 2020

+ 14:00 - 14:30 Talk by Sobha L, AUKBC-Chennai

+ 14:30 - 14:45 Shared Task Overview

Presentations

16:00 - 16:10

16:13 - 16:23

16:26 - 16:36

Graph Based Automatic Domain Term Extraction
Hema Ala and Dipti Sharma

N-Grams TextRank A Novel Domain Keyword Extraction Technique
Saransh Rajput, Akshat Gahoi, Manvith Reddy and Dipti Mishra Sharma

Unsupervised Technical Domain Terms Extraction using Term Extractor
Suman Dowlagar and Radhika Mamidi

X

Graph Based Automatic Domain Term Extraction

Hema Ala
LTRC, IIIT-Hyderabad, India

hema.ala@research.iiit.ac.in

Abstract

We present a Graph Based Approach to auto-
matically extract domain specific terms from
technical domains like Biochemistry, Commu-
nication, Computer Science and Law. Our ap-
proach is similar to TextRank with an extra
post-processing step to reduce the noise. We
performed our experiments on the mentioned
domains provided by ICON TermTraction -
2020 shared task. Presented precision, recall
and fl-score for all experiments. Further, it is
observed that our method gives promising re-
sults without much noise in domain terms.

1 Introduction

Domain Term, is a word or group of words, carry-
ing a special, possibly complex, conceptual mean-
ing, within a specific domain or subject field or
community. Because of their low ambiguity and
high specificity, these words are also particularly
useful to conceptualize a knowledge subject. For
each domain, there is an essential need to identify
the domain-specific terms as they play a vital role in
many Natural Language Processing Applications
such as Neural Machine Translation(NMT) (Dinu
et al., 2019), Information Retrieval (Chien, 1999),
Information Extraction (Yangarber et al., 2000),
Text Classification (Liu et al., 2005), etc. The task
of automatically extracting domain specific terms
from a given text of a certain academic or technical
domain, is known as Automatic Technical Domain
Term Extraction. This is a predominant task in
NLP. Extracted terms can be useful in more com-
plex tasks such as NMT (Dinu et al., 2019), Ontol-
ogy Construction (Kietz et al., 2000; Wu and Hsu,
2002), Domain Identification, Semantic Search,
Question-Answering, Word Sense Induction, etc.
Several research works have been carried out to
extract domain-specific terms. Most of them are
either rule based (Collard et al., 2018) or dictio-
nary based (Kim and Cavedon, 2011). Also, there

1

Dipti Misra Sharma
LTRC, IIIT-Hyderabad, India
dipti@iiit.ac.in

are few term extraction techniques which uses ma-
chine learning algorithms (Fedorenko et al., 2014),
thereby demanding a huge labelled corpus. But, the
existence of domain term annotated corpus is very
rare in case of many domains. Also, the availability
of such huge labelled corpus is almost nil for low
resource languages. Therefore, our domain term
extraction approach is motivated more by unsuper-
vised than supervised strategies. Hence, we used
a Graph Based Approach which extract not only
unigrams but also collocations. Collocations are
expressions of multiple words which commonly
co-occur in a given context than its individual word
parts. These are the phrases that express stronger
sentiment which can be easily captured with bi-
gram, trigram and so on. Hence our approach is
not restricted to just unigram extraction, it also con-
siders multi-word domain terms '. To demonstrate
the performance of our approaches, we used data
provided by ICON TermTraction - 2020 shared
task. The discussion and analysis on the perfor-
mance of the approaches are mentioned in section
4. In this paper we performed our experiments on
four domains in English. We are still in the process
of exploring the possible unsupervised approaches
to extract domain terms in a flexible and intuitive
manner. Further, it can be applicable to all domains
irrespective of any language.

2 Background & Motivation

There have been a lot of studies regarding the auto-
matic domain term extraction. But very less work
carried on unsupervised approaches that too on
technical domains like, computer science, chem-
istry, etc. Automatic domain term extraction is a
categorization or classification task where terms

!Covalent Bond, Amino Acid, Hydrophobic Hydrogen
Bond, Atrtificial Intelligence, Support Vector Machines, Natu-
ral Language Processing, etc are few examples of bigram and
trigram collocations

Proceedings of the 17th International Conference on Natural Language Processing: TermTraction 2020 Shared Task, pages 1-4
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

are categorized into a set of predefined domains
(Velardi et al., 2001; Xu et al., 2002). Further
this task is used in many NLP applications such
as domain ontology construction and NMT with
Domain Terminology by injecting custom termi-
nology into neural machine translation at run time
(Dinu et al., 2019). In order to effectively make
use of domain terms in various applications, an
ultimate approach which is fast, flexible and reli-
able is highly required. In spite of many contribu-
tions on automatic domain term extraction, very
limited study is done so far using unsupervised ap-
proaches. Most of the explorations are done using
supervised methods such as focusing on various
features like contextual, domain concepts and top-
ics to measure the semantic similarity of terms to
assign domain concepts to domain-specific terms
(Kim and Cavedon, 2011). Similarly, another ex-
perimental evaluation is done by comparing the
performance of two existing approaches for Auto-
matic Domain Term Recognition: Machine Learn-
ing Method and Voting Algorithm(Fedorenko et al.,
2014). But, the major well known drawback with
these supervised algorithms is that, they demand
huge labelled training data. Therefore, an unsuper-
vised algorithm is more preferable. Most of such
unsupervised approaches extract domain-specific
terms using frequency count (VRL, 2009). The ba-
sic underlying idea is that, in a particular domain,
domain-specific terms occur with markedly higher
frequency than they do in other domains, similar
to term frequency patterns captured by TF-IDF.
Apart from these methods, another experimental
approach for domain term extraction is executed
using Deep Learning where possible term spans
within a fixed length in the sentence, is considered
to predict a domain term. Deep Learning technique
is proven to yield high recall and a comparable
precision on term extraction task (Gao and Yuan,
2019). However, for training such Deep Learning
models, an enormous training data is mandatory.
Conversely, availability of this sort of corpus for
diverse multilingual domain is very scarce. Our
goal is to formulate a flexible and reliable approach
which successfully extracts domain terms irrespec-
tive of the domain and language of a document.
Accordingly, we present experiments which extract
domain terms in a given document disregarding
of any domain without having a dependency on
labelled corpus. Our approach , TextRank is an in-
spiration from PageRank algorithm (Brin and Page,

1998). (Mihalcea and Tarau, 2004) Introduced Tex-
tRank a graph-based ranking model for text pro-
cessing, and showed how this model can be suc-
cessfully used in natural language applications. In
particular keyword and sentence extraction. We re-
implemented TextRank from Mihalcea and Tarau
(2004) for extracting domain-specific terms from
technical domains like, computer science , chem-
istry, etc by handling noise generated in the outputs.
TextRank is merely a graph based approach where
words are considered as nodes and the relation be-
tween them as edges. Based on syntactic filters,
such as Parts of Speech (POS) Tags, words are se-
lected as nodes and relation between the words is
based on word co-occurrences . A window size
(N) is assumed for word co-occurrences. For all
words that fall in a particular window, an edge is
allocated, resulting into a graph of nodes and edges.
An undirected and unweighted graph is considered
in our approach. This is further discussed in detail
in Section 3.

3 Approach

A graph-based ranking algorithm is a way of decid-
ing on the importance of a vertex within a graph by
taking into account global information recursively
computed from the entire graph, rather than relying
only on local vertex-specific information. Apply-
ing a similar line of thinking to lexical or semantic
graphs extracted from natural language texts, re-
sults in a graph-based ranking model that can be ap-
plied to a variety of natural language processing ap-
plications, where knowledge drawn from an entire
text is used in making local ranking/selection de-
cisions. We implemented the TextRank algorithm
described in (Mihalcea and Tarau, 2004). Mihalcea
and Tarau (2004) described usage of TextRank for
keyword extraction and sentence extraction but we
adopted that technique for automatic domain term
extraction by doing few modifications in syntactic
filters, and adding a post processing step for noise
removal using top 1000 common words in English
from Wikipedia. we used Noun, Proper Nouns, Ad-
jectives as syntactic filters, window size (N = 4)is
used in all experiments and calculated precision ,
recall and F1 score.

TextRank is completely unsupervised, and un-
like other supervised systems, it relies completely
on information drawn from the text itself, which
makes it easily portable to other domains, and lan-
guages. Intuitively, TextRank works well because it

does not only rely on the local context of a text unit
(vertex), but rather it takes into account informa-
tion recursively drawn from the entire text (graph).
Through the graphs it builds on texts, TextRank
identifies connections between various entities in
a text, and implements the concept of recommen-
dation. A text unit recommends other related text
units, and the strength of the recommendation is
recursively computed based on the importance of
the units making the recommendation.

The brief explanation of each step in Text Rank
algorithms is given as follows, firstly the text is
tokenized, and annotated with part of speech tags,
for this task we used Spacy (Honnibal and Mon-
tani, 2017). To evade the excessive growth of
graph size by including all possible combinations
of sequences consisting of more than one lexi-
cal unit(word), we consider only single words as
nodes to build the graph, with multi-word domain
terms being eventually reconstructed in the post-
processing step. Following, all words that pass the
syntactic filter are added to the graph, and an edge
added between those words that co-occur within
a window of N words. After the graph construc-
tion (undirected , unweighted graph), the value of
each vertex is set to 1. Next, the ranking algorithm
will run on the graph for several iterations until it
converges usually for 20-30 iterations, at a thresh-
old of 0.0001(Mihalcea and Tarau, 2004). Once
a final score is achieved for each vertex (for each
word)in the graph, vertices are sorted in reversed
order of their score then the top K words in the
ranking are retained for post-processing. In our
experiments we take top K = n/3 where n is to-
tal number of unique words in the text. In post
processing step along with constructing n-grams
we reduce the noise using top 1000 English words
from Wikipedia. To construct n-grams from uni-
grams we get, first annotate the text with technical
domain terms we get then retrieve the terms which
occur side by side in the text.

4 Experiments & Results

We evaluate our approach on data provided by
ICON TermTraction - 2020 shared task for four do-
mains, Biochemistry, communication , Computer
Science and Law. Each domain contains files with
text related to that domain. In each domain we have
minimum 10 files and maximum 16 files. We did
experiments on individual files for the respective
domain. As our approach comes under unsuper-

File Precision Recall F1
1 0.15 045 0.22
2 0.07 0.21 0.10
3 0.17 035 0.23
4 0.16 048 0.24
5 0.07 0.67 0.13
6 0.36 0.62 045
7 0.22 0.57 0.32
8 0.17 0.63 0.26
9 0.22 0.63 0.33
10 0.24 0.54 0.33

Table 1: Scores of individual files in BioChemistry

File Precision Recall Fl1
1 0.08 054 0.14
2 0.06 0.5 0.11
3 0.06 0.31 0.10
4 0.16 0.5 0.24
5 0.12 0.77 0.20
6 0.09 0.68 0.16
7 0.05 0.69 0.09
8 0.25 0.37 0.05
9 0.06 0.56 0.11
10 0.08 0.55 0.15

Table 2: Scores of individual files in Communication

File Precision Recall Fl1
1 0.17 0.52 0.26
2 0.18 0.61 0.27
3 0.12 048 0.19
4 0.09 055 0.17
5 0.14 0.63 0.23
6 0.06 0.68 0.12
7 0.12 0.57 0.20
8 0.16 046 0.23

Table 3: Scores of individual files in Computer Science

Domain Precision Recall F1
BioChemistry 0.18 0.52 0.26
Communication 0.08 054 0.14
Computer Science 0.13 0.56 0.20
Law 0.05 0.5 0.10

Table 4: Average precision , recall and f1-scores

vised learning, there is no requirement of training
data. Results of each file in specific domain showed
in table 1, 2, 3 for Biochemistry, Communication
and Computer Science respectively. For Law do-

main also the behaviour is same as above three
domains. From the results of all domains, we can
observe that Recall is very high compared to Pre-
cision, from this we can infer our algorithm is not
producing much noise. In table 4 we have averaged
precision , recall and fl-score for each domain.
overall we got promising results for technical do-
main term extraction for all given domains.

5 Conclusion & Future Work

In this paper we showed a graph based approach for
automatic technical domain term extraction for four
technical domains(BioChemistry, Computer Sci-
ence, Communication,Law). Our approach showed
high recall in all cases for all domains, from this
we can conclude that our model has the power to
extract domain-specific terms without much noise.
Our approach doesn’t depend on any language de-
pendant resources except POS tagger, hence we
can adopt this method for any language. We plan
to extend our approach to possible Indian lan-
guages like Telugu, Hindi etc. And we would
like to improve this approach with different word
relationships(edge relations like we did using co-
occurrence of words in given window). One ap-
proach for that is like using similarity of words
using word2vec etc.

References

Sergey Brin and Lawrence Page. 1998. The anatomy
of a large-scale hypertextual web search engine.

L-F Chien. 1999. Pat-tree-based adaptive keyphrase ex-
traction for intelligent chinese information retrieval.
Information processing & management, 35(4):501—
521.

Jacob Collard, TN Bhat, Eswaran Subrahmanian,
Ram D Sriram, John T Elliot, Ursula R Kattner,
Carelyn E Campbell, and Ira Monarch. 2018. Gen-
erating domain terminologies using root-and rule-
based terms 1. Washington Academy of Sciences.
Journal of the Washington Academy of Sciences,
104(4):31-78.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
arXiv preprint arXiv:1906.01105.

Denis Fedorenko, N Astrakhantsev, and D Turdakov.
2014. Automatic recognition of domain-specific
terms: an experimental evaluation. Proceedings of
the Institute for System Programming, 26(4):55-72.

Yuze Gao and Yu Yuan. 2019. Feature-less end-to-end
nested term extraction. In CCF International Con-
ference on Natural Language Processing and Chi-
nese Computing, pages 607-616. Springer.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Jorg-Uwe Kietz, Raphael Volz, and Alexander Maed-
che. 2000. Extracting a domain-specific ontology
from a corporate intranet. In Fourth Conference on
Computational Natural Language Learning and the
Second Learning Language in Logic Workshop.

Su Nam Kim and Lawrence Cavedon. 2011. Classi-
fying domain-specific terms using a dictionary. In
Proceedings of the Australasian Language Technol-
ogy Association Workshop 2011, pages 57-65.

Tao Liu, Xiao-long Wang, Y Guan, Zhi-Ming Xu, et al.
2005. Domain-specific term extraction and its appli-
cation in text classification. In 8th Joint Conference
on Information Sciences, pages 1481-1484.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404-411.

Paola Velardi, Michele Missikoff, and Roberto Basili.
2001. Identification of relevant terms to support the
construction of domain ontologies. In Proceedings
of the ACL 2001 Workshop on Human Language
Technology and Knowledge Management.

NICTA VRL. 2009. An unsupervised approach to
domain-specific term extraction. In Australasian
Language Technology Association Workshop 2009,
page 94.

Shih-Hung Wu and Wen-Lian Hsu. 2002. Soat: a semi-
automatic domain ontology acquisition tool from
chinese corpus. In COLING 2002: The 17th Inter-
national Conference on Computational Linguistics:
Project Notes.

Feiyu Xu, Daniela Kurz, Jakub Piskorski, and Sven
Schmeier. 2002. A domain adaptive approach to
automatic acquisition of domain relevant terms and
their relations with bootstrapping. In LREC.

Roman Yangarber, Ralph Grishman, Pasi Tapanainen,
and Silja Huttunen. 2000. Automatic acquisition of
domain knowledge for information extraction. In
COLING 2000 Volume 2: The 18th International
Conference on Computational Linguistics.

Unsupervised Technical Domain Terms Extraction using Term Extractor

Suman Dowlagar
LTRC
[II'T-Hyderabad
suman.dowlagar(@
research.iiit.ac.in

Abstract

Terminology extraction, also known as term
extraction, is a subtask of information extrac-
tion. The goal of terminology extraction is to
extract relevant words or phrases from a given
corpus automatically. This paper focuses on
the unsupervised automated domain term ex-
traction method that considers chunking, pre-
processing, and ranking domain-specific terms
using relevance and cohesion functions for
ICON 2020 shared task 2: TermTraction.

1 Introduction

The aim of Automatic Term Extraction (ATE) is to
extract terms such as words, phrases, or multi-word
expressions from the given corpus. ATE is widely
used in many NLP tasks, such as machine transla-
tion, summarization, clustering the documents, and
information retrieval.

Unsupervised algorithms for domain term extrac-
tion are not labeled and trained on the corpus and
do not have any pre-defined rules or dictionaries.
They often use statistical information from the text.
Most of these algorithms use stop word lists and
can be applied to any text datasets. The standard
unsupervised automated term extraction pipeline
consists of

* Simple Rules: using chunking or POS tag-
ging to extract Noun phrases for multi-word
extraction.

* Naive counting: that counts how many terms
each word occurs in the corpus.

* Preprocessing: Removing punctuation and
common words such as stop words from the
text.

* Candidate generation and scoring: using sta-
tistical measures and ranking algorithms to
generate the possible set of domain terms

Radhika Mamidi
LTRC
[II'T-Hyderabad
radhika.mamidid@
iiit.ac.in

* Final set: Arrange the ranked terms in de-
scending order based on the scores and take
the top N keywords as the output.

Currently, there are many methods for automatic
term recognition. Evans and Lefferts (1995) used
TF-IDF measure for term extraction.Navigli and
Velardi (2002) used domain consensus which is de-
signed to recognize the terms uniformly distributed
over the whole corpus. The most popular method
C-value (Frantzi et al., 2000) is also a statistical
measure that extracts a term based on the term’s
frequency, length of the term, and the set of the
candidates that enclose the term such that the term
is in their substring. Bordea et al. (2013) proposed
the method called Basic, which is a modification of
the C-value for recognizing terms of average speci-
ficity. The successor of C-value statistic called the
NC value (Frantzi et al., 2000) considered scored
the term based on the condition if it exists in a
group of common words or if it contains nouns,
verbs, or adjectives that immediately precede or
follow the term. The methods proposed by Ahmad
et al. (1999); Kozakov et al. (2004); Sclano and
Velardi (2007) are based on extracting the terms of
a text by considering the frequency of occurrence
of terms in the general domain.

A detailed survey of the existing automated term
extraction algorithms and their evaluation are pre-
sented in papers by Astrakhantsev et al. (2015);
§ajatovié et al. (2019)

In this paper, we used the term extractor algo-
rithm (Sclano and Velardi, 2007) present in the
pyate! library for domain term extraction. The
term extractor algorithm is developed initially for
ontology extraction from large corpora. It uses
domain pertinence/relevance, domain consensus,
and lexical cohesion for extracting terms. A de-
tailed description of the modules is given in the

"https://pypi.org/project/pyate/

Proceedings of the 17th International Conference on Natural Language Processing: TermTraction 2020 Shared Task, pages 5-8
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

next section.

The paper is organized as follows. Section 2
gives a detailed description of the term extraction
algorithm used. Section 3 gives information about
the datasets used and results. Section 4 concludes
the paper.

2 Our Approach

In this section, we describe in detail the methods
used in the term extractor algorithm.

Initially, TermExtractor performs chunking and
proper name recognition and then extracts struc-
tures based on linguistic rules and patterns, in-
cluding stop words, detection of misspellings, and
acronyms. The extraction algorithm uses Domain
Pertinence, Domain Cohesion, and Lexical Cohe-
sion to decide if a term is considered a domain
term.

Domain Pertinence, or Domain Relevance (DR),
requires a contrastive corpus and compares a can-
didate’s occurrence in the documents belonging
to the target domain to its occurrence in other do-
mains, but the measure only depends on the con-
trastive domain where the candidate has the highest
frequency. The Domain Pertinence is based on a
simple formula,

tfi
maz;(tf;)

Where tf; is the frequency of the candidate
term in the input domain-specific document collec-
tion and max;(tf;) is the general corpus domain,
where the candidate has the highest frequency, and
D, is the domain in consideration.

DRp,(t) =)

Domain Consensus (DC) assumes that several
documents represent a domain. It measures the ex-
tent to which the candidate is evenly distributed on
these documents by considering normalized term
frequencies (¢),

DCp,(t) = Y ¢rlogdy ()

dieD;

Here, we assume k distinct documents for the
domain D;.

Lexical cohesion involves the choice of vocabu-
lary. It is concerned with the relationship that exists
between lexical items in a text, such as words and
phrases. It compares the in-term distribution of
words that make up a term with their out-of-term
distribution.

Domain #Train docs | #Test docs
Bio-Chemistry 229 10
Communication 127 10
Computer-Science | 201 8

Law 70 16

Table 1: Data statistics

tf; l i
L, (1) = n *Zf :f og;tf 3)
jrIw;

Where n is the number of documents in which
the term ¢ occurs.

The final weight of a term is computed as a
weighted average of the three filters above,

score(t,D;) = ax DR+ 3+« DC+~vx* LC (4)

where «, 3, v are the weights, and they are equal
to1/3

3 Experiments

This section describes the dataset used for domain
terms extraction, implementation of the above ap-
proach, followed by results, and error analysis.

3.1 Dataset

We used the dataset provided by the organizers of
TermTraction ICON-2020. The task is to extract do-
main terms from the given English documents from
the four technical domains like Computer Science,
Physics, Life Science, Law. The data statistics of
the documents in the respective domains are shown
in the table 1.

3.2 Implementation

We used Pyate (python automated term extraction
library) that contains the term extractor method
and is trained on the general corpus. With the help
of the term extraction method, we extracted the
relevant terms from the given corpus.

We have submitted two runs, one run (run 1)
is the term extractor function itself, and the other
run (run 2) is term extractor combined with NP
chunks of phrase length ; 2 obtained from NLTK
ConsecutiveNPChunkTagger?.

“ConsecutiveNPChunkTagger

Biochemistry Communication Computer Science Law
Data run run | Data run run | Data run run | Data run run
1 2 1 2 1 2 1 2
M12S1 0.247 0.222 | M2-1 0.109 0.086 | KL.2 0.220 0.225| A01 0.079 0.077
M15S2 0.208 0.195 | M2-2 0.102 0.104 | KL4 0.241 0.246 | A02 0.099 0.066
M16S2 0.224 0.207 | M2-3 0.094 0.074 | KL8 0.138 0.146 | A03 0.144 0.126
M23S3 0.266 0.233 | M3-1 0.240 0.236 | W12 0.143 0.122 | FA1 0.104 0.116
M26S2 0.096 0.081 | M3-2 0.159 0.148 | W1332 0.216 0.195| FA2 0.077 0.067
T18 0.463 0427 | M3-3 0.140 0.132 | W13 0.108 0.089 | FC1 0.082 0.073
T25 0.310 0.282 | RM16 0.101 0.088 | W1436 0.181 0.165| FC2 0.032 0.021
T39 0.265 0.247 | RM17 0.067 0.065 | W921 0.221 0.188 | FC3 0.016 0.014
T4 0.271 0.234 | RM18 0.098 0.115 FR1 0.149 0.113
T9 0.323 0.315 | SWIAW 0.120 0.113 FR2 0.144 0.112
FR3 0.073 0.062
G3 0.103 0.098
G4 0.056 0.052
R1 0.022 0.055
R2 0.033 0.026
R3 0.044 0.048

Table 2: Term Extraction macro-F1 score.

Template Sentence

Domain terms identified

can be oxidized or ionized .

We are not going to that , remove it completely, but nevertheless this is
an indication that , NO plus is going to be a poorer donor , compared
to carbon monoxide . So , this drastic reduction in the stretching
frequency can only happen if you have , a large population of the anti -
bonding orbitals of NO plus . And it has got a structure , which is very
similar , a structure which is very similar to the structure of nickel tetra
carbonyl . You will see that , while carbon monoxide is ionized with
15 electron volts , if you supply 15 electron volts , carbon monoxide

large population
similar

ionized

carbonyl
frequency

poorer donor

anti - bonding orbitals
indication

carbon monoxide
electron volts
nickel

plus

drastic reduction
structure

Table 3: Error analysis on the template sentence

3.3 Results and Error Analysis

We evaluated the performance of the method us-
ing average precision. The results are tabulated in
Table 2.

For the template sentence given in Table 3, our
algorithm failed to recognize the domain terms NO
plus and nickel tetra carbonyl. It considered NO
as the stop word (no or negation) and discarded
it while preprocessing. The algorithm also mis-
understood words like “similar” as domain terms
and failed to identify nickel tetra carbonyl as a

domain term. It indicates that further study is nec-
essary, which considers the candidate terms’ capi-
talization and uses better methods that support the
more reliable form of compound words or multi-
word expressions.

4 Conclusion

For domain term extraction from technical domains
like Bio-Chemistry, Law, Computer-Science, and
communication, We used the term extractor method
from pyate library for obtaining technical terms.

The term extractor method uses keywords from
the general corpora, and it considers Domain Per-
tinence, Domain Cohesion, and Lexical Cohesion
methods for extracting domain terms in the given
corpus.

As mentioned above, it did not give preference
to capitalized terms and did not consider some com-
pound words. So we have to work towards better
methods that consider capitalization, better forma-
tion of compound words for the more reliable per-
formance of the automated domain term extractor.

References

Khurshid Ahmad, Lee Gillam, Lena Tostevin, et al.
1999. University of surrey participation in trec8:
Weirdness indexing for logical document extrapola-
tion and retrieval (wilder). In TREC, pages 1-8.

Nikita A Astrakhantsev, Denis G Fedorenko, and D Yu
Turdakov. 2015. Methods for automatic term recog-
nition in domain-specific text collections: A survey.
Programming and Computer Software, 41(6):336—
349.

Georgeta Bordea, Paul Buitelaar, and Tamara Polajnar.
2013. Domain-independent term extraction through
domain modelling. In The 10th international confer-
ence on terminology and artificial intelligence (TIA
2013), Paris, France. 10th International Conference
on Terminology and Artificial Intelligence.

David A Evans and Robert G Lefferts. 1995. Clarit-
trec experiments. Information processing & man-
agement, 31(3):385-395.

Katerina Frantzi, Sophia Ananiadou, and Hideki Mima.
2000. Automatic recognition of multi-word terms:.
the c-value/nc-value method. International journal
on digital libraries, 3(2):115-130.

Lev Kozakov, Youngja Park, T Fin, Youssef Drissi, Yur-
daer Doganata, and Thomas Cofino. 2004. Glossary
extraction and utilization in the information search
and delivery system for ibm technical support. IBM
Systems Journal, 43(3):546-563.

Roberto Navigli and Paola Velardi. 2002. Semantic in-
terpretation of terminological strings. In Proc. 6th
Int’l Conf. Terminology and Knowledge Eng, pages
95-100.

Antonio Sajatovi¢, Maja Buljan, Jan Snajder, and Bo-
jana Dalbelo Basi¢. 2019. Evaluating automatic
term extraction methods on individual documents.
In Proceedings of the Joint Workshop on Multiword
Expressions and WordNet (MWE-WN 2019), pages
149-154.

Francesco Sclano and Paola Velardi. 2007. Termextrac-
tor: a web application to learn the shared terminol-
ogy of emergent web communities. In Enterprise
Interoperability II, pages 287-290. Springer.

N-Grams TextRank : A Novel Domain Keyword Extraction Technique

Saransh Rajput Akshat Gahoi

Manvith Reddy

Dipti Mishra Sharma

Language Technologies Research Center
International Institute of Information Technology, Hyderabad, India

{saransh.rajput, akshat.gahoi}@research.iiit.ac.in
manvith.reddy@students.iiit.ac.in
dipti@iiit.ac.in

Abstract

The rapid growth of the internet has given us
a wealth of information and data spread across
the web. However, as the data begins to grow
we simultaneously face the grave problem of
an Information Explosion. An abundance of
data can lead to large scale data management
problems as well as the loss of the true mean-
ing of the data. In this paper, we present an
advanced domain specific keyword extraction
algorithm in order to tackle this problem of
paramount importance. Our algorithm is based
on a modified version of TextRank(Mihalcea
and Tarau, 2004) algorithm - an algorithm
based on PageRank(Page et al., 1998) to suc-
cessfully determine the keywords from a do-
main specific document. Furthermore, this pa-
per proposes a modification to the traditional
TextRank algorithm that takes into account bi-
grams and trigrams and returns results with an
extremely high precision.

We observe how the precision and f1-score of
this model outperforms other models in many
domains and the recall can be easily increased
by increasing the number of results without af-
fecting the precision. We also discuss about
the future work of extending the same algo-
rithm to Indian languages.

1 Introduction

Graph based ranking algorithms have proved to be
useful for tasks which involve ranking or ordering.
This includes important tasks like citation analysis
and ranking webpage results. Graph based ranking
Algorithms are used in many key areas even today.
PageRank, an algorithm developed by the founders
of Google, was the primary algorithm used to rank
webpage searches until 2018.

The fundamental idea behind any graph based
ranking algorithm is make use of global knowledge
for making local decisions. To determine the im-
portance of a node in a graph, we recursively look

9

at other nodes to gain more information.

More recently, the applications of graph based
algorithms have extended to other domains as well,
including Natural Language Processing. This in-
cludes the use of Textrank algorithms for summari-
sation, word sense disambiguation(Mihalcea et al.,
2004) and keyword extraction tasks. Knowledge
extracted from the whole text is considered while
making local decisions.

In this paper we introduce and evaluate an unsu-
pervised approach for the task of domain terminol-
ogy extraction. We employ the Textrank algorithm
for this task with a few modifications. Taking into
account that domain terms are often multi-worded
expressions, we consider bigrams and trigrams as
nodes in the graph with suitable additional weight
to these nodes. Furthermore, terms are filtered
based on their POS(Manning, 2011) tags in order
to remove excessive domain-less words.

2 Pre-processing and Data

For our study we used a dataset that contained a
collection of over 800 domain specific documents.
The dataset featured documents from 4 distinct do-
mains namely : Bio-Chemistry, Communication,
Computer Science and Law.

Before passing a document through the model,
it was crucial to carry out fundamental preprocess-
ing in order to achieve a high standard of results.
We first removed non-essential punctuations and
tokenized the the document. In addition to the ele-
mentary NLTK(Bird, 2006)/Spacy Stop word list,
we curated an additional specific list of common
words that we observed added no meaning to our al-
gorithm. POS Tagging(Brants, 2002) was a critical
part of our model and was based on the powerful
assumption that if a term is domain specific then
it is often a Noun or a Verb, which we made after

Proceedings of the 17th International Conference on Natural Language Processing: TermTraction 2020 Shared Task, pages 9—12
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

analyzing the data meticulously. The addition of
a POS tagger gave us a significant increase in the
f1-score.

3 TextRank

TextRank is a graph-based ranking model(like
HITS(Kleinberg, 1999)) for text processing which
can be used in order to find the most relevant key-
words in a text. TextRank is an algorithm based on
PageRank which we will explain briefly.

PageRank is an algorithm used for computing a
ranking for every web page based on the graph of
the web and helps in measuring the relative impor-
tance of specific web pages. We can take all web
pages to be directed graph(Georgiadis et al., 2014).
In this graph, a node is a webpage. If webpage A
has the link to web page B, it can be represented as
a directed edge from A to B. After we construct the
whole graph, we can assign weights for web pages
by the following formula.

S(Vj)

SW)=(-d)+dx 3 Fias

jGITL(’Ui)

(1

where S represents the weight of a webpage, d
represents a damping factor, In(V;) represents the
set of nodes having an edge directed to node i and
Out(V;) represents the set of nodes which have an
incoming edge from node i.

TextRank is conceptually the same algorithm
as PageRank with the difference being that nodes
in the graph are words rather than webpages. In
order to find relevant keywords, the TextRank al-
gorithm constructs this word graph. The graph is
constructed by looking which words follow one
another. An edge is set up between two words
if they are located within a window of a size of
our choice, the link gets a higher weight if these 2
words occur more frequently next to each other in
the text. As we can see, preprocessing plays a huge
part in the TextRank algorithm without which the
results would easily be skewed towards common
stop words and punctuations.

4 Our Implementation

In our model(Code can be found here '), we
began the process by passing a document through
our preprocessing pipeline. An input document

'nttps://github.com/akshatgui/Domain_
Teminology_Extraction

10

was first split into sentences on the basis of
end of sentence punctuation marks and then
further tokenized using the SpaCy tokenizer. Stop
Words were filtered out using the SpaCy stop
words list along with our extensive custom list of
domain-less terminology. Furthermore, we use the
powerful tool of POS tagging in order to filter out
irrelevant words and make the computation of our
model much quicker. After extensive research we
determined that Nouns and Verbs contained most
of the important domain related terminology.

We are now left with tokenized sentences of
each document. We further extract Unigrams,
Bigrams and Trigrams from these documents
and take them as seperate nodes in our TextRank
Graph. We initialize our TextRank graph with
a window-size of 4, which means that 4 words
around every n-gram will be considered eligible
to have an edge with the n-gram. After extensive
trial and error, we observed that using a larger
window size significantly increased the execution
time of the model without much improvement in
results. In some cases, an edge was added between
two totally unrelated nodes due to large window
size. Inspecting equation will reveal that we
need to set a damping factor to assign how much
relative importance to give the score calculated
by the graph. After multiple runs, we achieved
the greatest results with a damping factor of 0.85
which gives great importance to the score churned
out by the TextRank Graph. We further set our
convergence threshold at 10e-5 for our termination
condition.

Once built, this graph is then used to calculate
weights for each node. The weight of a node es-
sentially represents its contribution to the docu-
ment. We observed that although multi word do-
main terms are important to the document and con-
tribute significantly, they are usually less frequent.
Often they can get replaced by pronoun terms as
well. In order to counter this neglection of the
n-gram nodes, we introduce a novel weighting sys-
tem to the traditional TextRank Algorithm. The
weights of Bigram and Trigram nodes are taken as
a parameter to our model and our multiplied to the
final score returned by the traditional TextRank Al-
gorithm. This imporves our results astronomically
with many key bigrams and trigrams showing up as
aresult. These weights are useful in the hands of a

[Domain [Run | Precision [Recall [F-1
Law Runl 04 0.32 0.355
Run?2 0.266 0.32 0.29
Run3 0.133 0.285 0.181
Communication | Runl 0.25 0.208 0.227
Run?2 0.233 0.291 0.259
Run3 0.1 0.125 0.111
ComputerScience| Runl 0.251 0.13 0.174
Run2 0.3 0.134 0.185
Run3 0.466 0.152 0.229
Bio—Chemistry | Runl 0.501 0.131 0.208
Run?2 0.3 0.173 0.219
Run3 0.466 0.184 0.264

Table 1: Results for the task of Domain Extraction for different Bigram and Trigram Weights

domain expert who would be able to determine the
right weights for each domain in order to get the
best results.

Across the many domains, our Law Domain re-
sults were of extremely high quality and showed
that both high precision and recall can be attained
by our model.

5 Results and Evaluation

The model was tested on 10 domain specific
documents of Bio-Chemistry, Communica-
tion,Computer Science and Law. We ran three
different runs of the model, each with varying
bigram and trigram weights. Run 1 featured a
bigram weight of '1.8" and trigram weight of
’1.5°. Run 2 featured a bigram weight of 1.8’ and
trigram weight of °2.5’. Run 3 featured a bigram
weight of "1.8° and trigram weight of *2.5” along
with lemmatization.

The precision we got for each domain is very
high. Although we attained a much lower recall
score, this was mostly due to the fact that we re-
turned only 20 results for each document. Increas-
ing the number of terms our model would return
would drastically increase Recall. We further no-
ticed that Recall is often document specific. Low
Recall was observed in Computer Science and Bio-
Chemistry which both featured much longer docu-
ments. We came to a conclusion that adjusting the
number of results produced by our model to be a
function of the length of the document would be a
great idea.

Across the many domains, our Law Domain re-
sults were of extremely high quality and showed
that both high precision and recall can be attained
by our model.

Observing our results for various runs, we can

11

see varied results for each domain. We notice that
weights for bigrams and trigrams can be changed
according to the domain in order to attain the best
results. Domain Knowledge will help in particu-
lar, as a domain specialist can identify whether a
specific domain will be having more bigrams or
trigrams than unigrams so that there weights can
be increased.

One particularly interesting thing to note was
that the longer papers did much better when they
were preprocessed with a lemmatizer. In domains
like law and communication where we observed
that words with same roots are used in different
places differently, we see a negative impact of lem-
matisation.

6 Future Work

We have evaluated the model for English, but the
model can be made to work with pretty much any
language with very minor modifications. Since we
are considering the words as nodes and using a
graph based approach to assign weights to these
nodes, we are not concerned with what the word
means or represents. We’re only interested in its
node weight. This allows our model to work with
pretty much any language, given that tools for pre-
processing text in that language are available. Re-
strictions can be made on number of letters for a
specific language. Furthermore, transliteration can
help to improve our scores. Transliterating the doc-
uments can help the results if a script of a language
is unknown to the system. It will help to clearly
distinguish between similar looking words. Further
study of bigrams and trigrams weight in a specific
language will also help the model. Ideally, the
model should be able to learn the factor by which
the bigram and trigram node weights need to be
bumped. These bumping factors will not be same

across different domains or even different docu-
ments, since it is not a reasonable assumptions that
different documents will have a similar distribution
of multi word terms.

References

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 69-72, Syd-
ney, Australia. Association for Computational Lin-
guistics.

Thorsten Brants. 2002. Tnt: A statistical part-of-
speech tagger. ANLP.

Loukas Georgiadis, Giuseppe Italiano, Luigi Laura,
and Nikos Parotsidis. 2014. 2-vertex connectivity
in directed graphs.

Jon M. Kleinberg. 1999. Authoritative sources in a hy-
perlinked environment. Journal of the ACM (JACM),
46(5):604-632.

Christopher D. Manning. 2011.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 404—411, Barcelona, Spain.
Association for Computational Linguistics.

Rada Mihalcea, Paul Tarau, and Elizabeth Figa. 2004.
PageRank on semantic networks, with application
to word sense disambiguation. In COLING 2004:
Proceedings of the 20th International Conference
on Computational Linguistics, pages 1126-1132,
Geneva, Switzerland. COLING.

Larry Page, Sergey Brin, R. Motwani, and T. Winograd.
1998. The pagerank citation ranking: Bringing order
to the web.

12

Author Index

Ala, Hema, 1
Dowlagar, Suman, 5
Gahoi, Akshat, 9

Mamidi, Radhika, 5
Mishra Sharma, Dipti, 9

Rajput, Saransh, 9
Reddy, Manvith, 9

Sharma, Dipti, 1

13

	Program
	Graph Based Automatic Domain Term Extraction
	Unsupervised Technical Domain Terms Extraction using Term Extractor
	N-Grams TextRank A Novel Domain Keyword Extraction Technique

