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Abstract

Active learning for sentence understanding

aims at discovering informative unlabeled data

for annotation and therefore reducing the de-

mand for labeled data. We argue that the

typical uncertainty sampling method for ac-

tive learning is time-consuming and can hardly

work in real-time, which may lead to inef-

fective sample selection. We propose adver-

sarial uncertainty sampling in discrete space

(AUSDS) to retrieve informative unlabeled

samples more efficiently. AUSDS maps sen-

tences into latent space generated by the popu-

lar pre-trained language models, and discover

informative unlabeled text samples for annota-

tion via adversarial attack. The proposed ap-

proach is extremely efficient compared with

traditional uncertainty sampling with more

than 10x speedup. Experimental results on five

datasets show that AUSDS outperforms strong

baselines on effectiveness.

1 Introduction

Deep neural models become popular in natural lan-

guage processing (Peters et al., 2018; Radford et al.,

2018; Devlin et al., 2018). Neural models usually

consume massive labeled data, which requires a

huge quantity of human labors. But data are not

born equal, where informative data with high un-

certainty are decisive to decision boundary and are

worth labeling. Thus selecting such worth-labeling

data from unlabeled text corpus for annotation is

an effective way to reduce the human labors and to

obtain informative data.

Active learning approaches are a straightfor-

ward choice to reduce such human labors. Pre-

vious works, such as uncertainty sampling (Lewis

and Gale, 1994), needs to traverse all unlabeled

data to find informative unlabeled samples, which

are always near the decision boundary with large

entropy. However, the traverse process is very

time-consuming, thus cannot be executed fre-

quently (Settles and Craven, 2008). A common

choice is to perform the sampling process after

every specific period, and it samples and labels in-

formative unlabeled data then trains the model until

convergence (Deng et al., 2018).

We argue that infrequently performing uncer-

tainty sampling may lead to the “ineffective sam-

pling” problem. Because in the early phase of train-

ing, the decision boundary changes quickly, which

makes previously collected samples less effective

after several updates of the model. Ideally, uncer-

tainty sampling should be performed frequently in

the early phase of model training.

In this paper, we propose the adversarial uncer-

tainty sampling in discrete space (AUSDS) to ad-

dress the ineffective sampling problem for active

sentence learning by introducing more frequent

sampling with significantly lower costs. Specif-

ically, we propose to leverage the adversarial at-

tack (Goodfellow et al., 2014; Kurakin et al., 2016)

to the selecting of informative samples with high

uncertainty, which significantly narrows down the

search space. Fig. 1 shows the difference between

uncertainty sampling and AUSDS. The typical un-

certainty sampling (Fig. 1.a) traverses all the unla-

beled samples to obtain samples of high uncertainty

for each sampling run, which is costly with time

complexity (O(Unlabeled Data Size). AUSDS

(Fig. 1.b) first projects a labeled text to the decision

boundary, denoted as an adversarial data point, and

searches nearest neighbors of this point. The com-

putational cost of AUSDS is significantly smaller

than typical uncertainty sampling with the time

complexity O(Batch Size). But it is non-trivial

for AUSDS to perform adversarial attacks, which

requires adversarial gradients on sentences, since

texts live in a discrete space. We propose to include

a pre-trained neural encoder, such as BERT (De-

vlin et al., 2018), to map unlabeled sentences into
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Figure 1: Comparison between uncertainty sampling and AUSDS for active learning.

a continuous space, over which the adversarial at-

tack is performed. Since not every adversarial data

point in the encoding space can be mapped back

to one of the unlabeled sentences, we propose to

use the k-nearest neighbor (KNN) algorithm (Alt-

man, 1992) to find the most similar unlabeled sen-

tences (the adversarial samples) to the adversarial

data points.Besides, empirically, we mix some ran-

dom samples into the uncertainty samples to allevi-

ate the sampling bias issue mentioned by (Huang

et al., 2010). Finally, the mixed samples are sent

to an oracle annotator to obtain their label and are

appended to the labeled data set.

We deploy AUSDS for active sentence learning

and conduct experiments on five datasets across

two NLP tasks, namely sequence classification and

sequence labeling. Experimental results show that

AUSDS outperforms random sampling and uncer-

tainty sampling strategies.

Our contributions are summarized as follows:

• We propose AUSDS for active sentence learn-

ing, which first introduces the adversarial at-

tack for sentence uncertainty sampling, allevi-

ating the ineffective sampling problem.

• We propose to map sentences into the pre-

trained LM encoding space, which makes ad-

versarial uncertainty sampling available in the

discrete sentence space.

• Experimental results demonstrate that our ac-

tive sentence learning framework by AUSDS,

which we call AUSDS learning framework,

outperforms strong baselines in sampling ef-

fectiveness with acceptable running time.

2 Related Work

This work focuses on reducing the labeled data size

with the help of pre-trained LM in solving sentence

learning tasks. The proposed AUSDS approach

is related to two different research topics, active

learning and adversarial attack.

2.1 Active Learning

Active learning algorithms can be categorized into

three scenarios, namely membership query syn-

thesis, stream-based selective sampling, and pool-

based active learning (Settles, 2009). Our work is

more related to pool-based active learning, which

assumes that there is a small set of labeled data

and a large pool of unlabeled data available (Lewis

and Gale, 1994). To reduce the demand for more

annotations, the learner starts from the labeled data

and selects one or more queries from the unlabeled

data pool for the annotation, then learns from the

new labeled data and repeats.

The pool-based active learning scenario has been

studied in many real-world applications, such as

text classification (Lewis and Gale, 1994; Hoi et al.,

2006), information extraction (Settles and Craven,

2008) and image classification (Joshi et al., 2009).

Among the query strategies of existing active learn-

ing approaches, the uncertainty sampling strat-

egy (Joshi et al., 2009; Lewis and Gale, 1994) is the

most popular and widely used. The basic idea of

uncertainty sampling is to enumerate the unlabeled

samples and compute the uncertainty measurement

like information entropy for each sample. The enu-

meration and uncertainty computation makes the

sampling process costly and cannot be performed

frequently, which induced the ineffective sampling

problem.

There are some works that focus on accelerating
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Figure 2: Overview of active sentence learning framework by AUSDS. Some notations are labeled along with

corresponding components.

the costly uncertainty sampling process. Jain et al.

(2010) propose a hashing method to accelerate the

sampling process in sub-linear time. Deng et al.

(2018) propose to train an adversarial discriminator

to select informative samples directly and avoid

computing the rather costly sequence entropy. Nev-

ertheless, the above works are still computation-

ally expensive and cannot be performed frequently,

which means the ineffective sampling problem still

exists.

2.2 Adversarial Attack

Adversarial attacks are originally designed to ap-

proximate the smallest perturbation for a given la-

tent state to cross the decision boundary (Good-

fellow et al., 2014; Kurakin et al., 2016). As ma-

chine learning models are often vulnerable to ad-

versarial samples, adversarial attacks have been

used to serve as an important surrogate to evaluate

the robustness of deep learning models before they

are deployed (Biggio et al., 2013; Szegedy et al.,

2013). Existing adversarial attack approaches can

be categorized into three groups, which are one-

step gradient-based approaches (Goodfellow et al.,

2014; Rozsa et al., 2016), iterative methods (Ku-

rakin et al., 2016) and optimization-based meth-

ods (Szegedy et al., 2013).

Inspired by the similar goal of adversarial at-

tacks and uncertainty sampling, in this paper, in-

stead of considering adversarial attacks as a threat,

we propose to combine these two approaches for

achieving real-time uncertainty sampling. Some

works share a similar but different idea with us. Li

et al. (2018) introduce active learning strategies

into black-box attacks to enhance query efficiency.

Pal et al. (2020) also use active learning strate-

gies to reduce the number of queries for model

extraction attacks. Zhu and Bento (2017) propose

to train Generative Adversarial Networks to gen-

erate samples by minimizing the distance to the

decision boundary directly, which is in the query

synthesis scenario different from us. Ducoffe and

Precioso (2018) also introduce adversarial attacks

into active learning by augmenting the training set

with adversarial samples of unlabeled data, which

is infeasible in discrete space. Note that none of

the works above share the same scenario with our

problem setting.

3 Active Sentence Learning with AUSDS

We propose AUSDS learning framework, an ef-

ficient and effective computational framework for

active sentence learning. The overview of the learn-

ing framework is shown in Fig. 2. The learning

framework consists of two blocks, a training block

and a sampling block AUSDS. The training block

learns knowledge from the labeled data, whereas

the sampling block retrieves valuable unlabeled

samples, whose latent states are close to the de-

cision boundary over the latent space, from the

unlabeled text corpus. Note that the definition of

latent spaces can be different across encoders and

tasks. The samples retrieved by the sampling block

will be further sent to an oracle annotator to obtain

their label, and the new samples with labels are

also appended to the labeled data.

In this section, we first introduce AUSDS

method by showing how AUSDS select samples

that are critical to the decision boundary over the

latent space. Then we present the computational

procedure of the full-fledged framework in detail.
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Algorithm 1 Active Sentence Learning with Adversarial Uncertainty Sampling in Discrete Space

Input: an unlabeled text corpus T0, an oracle O, a labeled data D0 = {(s,O(s))|s ∈
S0, a small initial text corpus}, pre-trained LM fe, fine-tuning interval j, and fine-tuning step k.

Output: a well-trained model f = (fe, fd)

1: Train fd on D0 with frozen fe;

2: Construct a discrete bijective mapper M , where M(s) = fe(s) ∈ H and M−1(fe(s)) = s ∈ T0;

3: Sample a training batch B0 from D0;

4: i← 0
5: while |Ti| > 0 do

6: Train decoder fd on Bi with frozen encoder fe;

7: Generate adversarial data points A ⊂ H using the adversarial attack algorithm;

8: Retrieve adversarial samples Sa = {sa = M−1(x) ∈ Ti|x ∈ KNN(A)};
9: Inject Sa with random samples Sr, where |Sa| : |Sr| = p : 1− p;

10: Select top-k ranked samples Sadd from Sa w.r.t. the information entropy;

11: Label new data Q← {(s,O(s))|s ∈ Sadd};
12: Update labeled data Di+1 ← Di ∪Q;

13: Remove newly labeled data from unlabeled dataset Ti+1 ← Ti − Sadd;

14: Sample a training batch Bi+1 from Q and Di+1 by the ratio of q : 1− q;

15: if i mod j = 0 then

16: Fine-tune f with Di+1 for k steps;

17: Update the mapper M with the fine-tuned encoder fe and text corpus Ti+1;

18: end if

19: i← i+ 1
20: end while

3.1 AUSDS

AUSDS first defines a latent space, over which sen-

tences are distinguishable according to the model’s

decision boundary. The latent space is usually de-

termined by the encoder architecture and the down-

stream task. We detail the latent space definition of

specific encoders and tasks in Sec. 4.1.

At first, we sample a batch of labeled texts and

compute their representation as well as their gra-

dients in the latent space. Using the latent states

and their gradients, we perform adversarial attacks

to generate adversarial data points A near the de-

cision boundary in the latent space. Adversarial

attacks are performed using the following existing

approaches:

• Fast Gradient Value (FGV) (Rozsa et al.,

2016): a one-step gradient-based approach

with high efficiency. The adversarial data

points are generated by:

x
′ = x+ λ · ∇xFd(x) (1)

where λ is a hyper parameter, and Fd is the

cross entropy loss on x.

• DeepFool (Moosavi-Dezfooli et al., 2016): an

iterative approach to find the minimal per-

turbation that is sufficient to change the es-

timated label.

• C&W (Carlini and Wagner, 2017): an

optimization-based approach with the opti-

mization problem defined as:

minimize D(x,x′) + c · g(x′) (2)

where g(·) is a manually designed function,

satisfying g(x) ≤ 0 if and only if x’s label is

a specific target label. D is a distance mea-

surement like Minkowski distance.

FGV is efficient in the calculation, whereas the

other two methods typically find more precise ad-

versarial data points but with larger computational

costs. We use all of them in our experimental part

to show the effectiveness of the AUSDS.

In our sentence learning scenario, the adversar-

ial data points A cannot be grounded on real nat-

ural language text samples. Thus we perform k-

nearest neighbor (KNN) search (Altman, 1992) to

find unlabeled text samples whose latent states are

k-nearest to the adversarial data points A.

We implement the KNN search using

Faiss1 (Johnson et al., 2017), an efficient

1https://github.com/facebookresearch/faiss



4912

similarity search algorithm with GPUs. The

computational cost of KNN search results from

two processes, including constructing a sample

mapper M between text and latent space, and

searching similar latent states of adversarial data

points. The sampler mapper M here is constructed

as a hash map, which is of high computational

efficiency, to memorize the mapping between an

unlabeled text s and its latent representation x.

The sample mapper is only reconstructed when the

encoder is updated, and infrequent encoder updates

contribute to efficiency. Besides, the searching

process is also fast (100× faster than generating A)

thanks to Faiss. Thus it is possible to performed

AUSDS frequently at batch-level without harming

computation.

After acquiring adversarial samples Sa using

KNN search, we mix Sa with random samples Sr

drawn from unlabeled text corpus Ti by the ratio of

p : 1− p, where p is a hyper-parameter determined

on the development set. The motivation of append-

ing random samples is to balance exploration and

exploitation, thus avoiding the model continuously

retrieve samples in a small neighborhood.

We perform top-k ranking over the information

entropy of the mixed samples to further retrieve

samples with higher uncertainty. Since the size of

the mixed samples is comparable to the batch size,

the computation cost is acceptable. The remaining

samples are further sent to an oracle annotator O

to obtain their labels.

3.2 Active Learning Framework

The overall procedure of the proposed framework

equipped with AUSDS is outlined in Algorithm 1

Initialization The initialization stage is shown

in Algorithm 1 line 1-4. We first initialize our en-

coder fe with the pre-trained LM, which can be

BERTBASE (Devlin et al., 2018) or ELMo (Pe-

ters et al., 2018). The decoder here is built upon

the latent space and is randomly initialized. After

building up the neural model architecture, we train

only the decoder on existing labeled data D0 to

compute an initial decision boundary on the latent

space. Meanwhile, we construct an initial discrete

sample mapper M used for the sampling block. Fi-

nally, we sample a training batch B0 from labeled

data corpus D0, and set current training step i to 0.

Training The training stage is shown in Algo-

rithm 1 line 6. With the defined decoders fd and a

training batch Bi, we train the decoder with a cross

entropy loss (Fig. 2.b). Note that during the train-

ing process, we freeze the encoder as well as the

latent space, where a frozen latent space contributes

to computational efficiency without reconstructing

the mapper M .

Sampling The sampling stage is shown in Algo-

rithm 1 line 7-14. As is shown in Sec. 3.1, given

the gradients on the current batch Bi w.r.t. latent

states during training, the sampling process gen-

erates the adversarial samples Sa and labels the

samples with high uncertainty from a mixture of

Sa and randomly injected unlabeled data Sr. The

labeled samples Q are removed from the unlabeled

text corpus and inserted into labeled data, resulting

in Ti+1 and Di+1 respectively. Then we create a

new training batch consist of samples from Q and

Di+1 with a ratio of q : 1 − q, which favors the

newly selected data Q, because the newly selected

ones are considered as more critical to the current

decision boundary.

Fine-Tuning The fine-tuning stage is shown in

Algorithm 1 line 15-18. We fine-tune the encoder

for k steps after j batches are trained. During the

fine-tuning process, both of the encoder and the

decoder are trained on the accumulated labeled

data set Di+1. The encoder is also fine-tuned for

enhancing overall performance. Experiments show

that the final performance is harmed a lot without

updating the encoder. Then we update the mapper

M for the future KNN search, because the fine-

tuning of the encoder corrupts the projection from

texts to latent spaces, which requires renewal of the

sampler mapper M . The algorithm terminates until

the unlabeled text corpus Ti is used up.

4 Experiments

We evaluate the AUSDS learning framework on

sequence classification and sequence labeling tasks.

For the oracle labeler O, we directly use the labels

provided by the datasets. In all the experiments, we

take average results of 5 runs with different random

seeds to alleviate the influence of randomness.

4.1 Set-up

Dataset. We use five datasets, namely Stan-

ford Sentiment Treebank (SST-2 / SST-5) (Socher

et al., 2013), Microsoft Research Paraphrase Cor-

pus (MRPC) (Dolan et al., 2004), AG’s News

Corpus (AG News) (Zhang et al., 2015) and

CoNLL 2003 Named Entity Recognition dataset
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Dataset Task Sample Size

SST-2 (Socher et al., 2013) sequence classification 11.8k sentences, 215k phrases
SST-5 (Socher et al., 2013) sequence classification 11.8k sentences, 215k phrases
MRPC (Dolan et al., 2004) sequence classification 5,801 sentence pairs
AG News (Zhang et al., 2015) sequence classification 12k sentences
CoNLL’03 (Sang and De Meulder, 2003) sequence labeling 22k sentences, 300k tokens

Table 1: 5 datasets we used for sentence learning experiments, across sequence classification and sequence labeling

tasks.

Dataset RM US AUSDS(FGV) AUSDS(DeepFool) AUSDS(C&W)

SST-2 1061x 1x 38x 38x 28x
SST-5 1939x 1x 52x 52x 38x
MRPC 97x 1x 14x 14x 11x

AG News 1434x 1x 51x 47x 38x
CoNLL’03 45x 1x 10x — —

Table 2: The average speedup of each sampling step in comparison with US on 5 datasets with BERT as the

encoder. The statistics are collected using Tesla-V100 GPU. US scans the unlabeled data once when 2% of data

are labeled. The AUSDS using DeepFool and C&W on CoNLL’03 are omitted because these adversarial attack

methods are not suitable for sequence labeling.

(CoNLL’03) (Sang and De Meulder, 2003) for ex-

periments. The statistics can be found in Table 1.

The train/development/test sets follow the origi-

nal settings in those papers. We use accuracy for

sequence classification and f1-score for sequence

labeling as the evaluation metric.

Baseline Approaches. We use two common

baseline approaches in NLP active learning to com-

pare with our framework, namely random sam-

pling (RM) and entropy-based uncertainty sam-

pling (US). For sequence classification tasks, we

adopt the widely used Max Entropy (ME) (Berger

et al., 1996) as uncertainty measurement:

H
ME(x) = −

c∑

m=1

P (y = m|x) logP (y = m|x) (3)

where c is the number of classes. For sequence la-

beling tasks, we use total token entropy (TTE) (Set-

tles and Craven, 2008) as uncertainty measurement:

H
TTE(x) = −

N∑

i=1

l∑

m=1

P (yi = m|x) logP (yi = m|x)

(4)

where N is the sequence length and l is the number

of labels.

Latent Space Definition We use the adversarial

attack in our AUSDS learning framework to find

informative samples, which rely on a well-defined

latent space. Two types of latent spaces are defined

here based on the encoder architectures and tasks:

1. For pre-trained LMs like BERT (Devlin et al.,

2018), which has an extra token [CLS] for

sequence classification, we directly use its la-

tent state x as the representation of the whole

sentence in the latent spaceH.

2. For the other circumstances where no such

special token can be used, a mean-pooling op-

eration is applied to the encoder output, i.e.

x = 1
n

∑n
t=1 ht, where ht denotes the con-

textual word representation of the tth token

produced by the encoder. The latent spaceH
is spanned by all the latent states.

Implementation Details. We implement our

frameworks based on BERTBASE model2 and

ELMo3. The configurations of the two models are

the same as reported in (Devlin et al., 2018) and

(Peters et al., 2018) respectively. The implementa-

tion of the KNN search is introduced in section 3.3.

For the rest hyperparameters in our framework, 1)

the batch size and the size of Q is set as 32 (16 on

MRPC dataset); 2) the fine-tuning interval j and

the fine-tuning step size k are set as 50 steps; 3)

the ratio q is set as 0.3. All the tuning experiments

are performed on the dev sets of five datasets. The

accumulated labeled data set D is initialized the

same for different approaches, taking 0.1% of the

whole unlabeled data (0.5% for MRPC because the

dataset is relatively small).

2https://github.com/huggingface/pytorch-pretrained-
BERT

3https://github.com/allenai/allennlp
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Label Size 2% 4% 6% 8% 10%

SST-2
RM 87.78(.003) 89.85(.004) 89.85(.010) 89.69(.004) 90.26(.008)
US 87.74(.004) 90.25(.006) 90.38(.008) 90.25(.006) 91.27(.007)
AUSDS (FGV) 89.18(.002) 89.88(.008) 89.16(.014) 91.07(.005) 89.95(.003)
AUSDS (DeepFool) 88.74(.004) 90.06(.003) 89.84(.007) 90.74(.006) 91.58(.002)
AUSDS (C&W) 87.97(.003) 89.95(.005) 90.83(.007) 90.12(.003) 91.13(.001)

SST-5
RM 49.45(.010) 50.01(.007) 50.88(.006) 50.39(.014) 51.35(.005)
US 49.10(.008) 49.54(.009) 50.63(.008) 50.90(.012) 51.43(.005)
AUSDS (FGV) 49.57(.006) 50.36(.008) 50.09(.009) 50.19(.014) 50.62(.011)
AUSDS (DeepFool) 50.20(.012) 51.87(.003) 51.74(.012) 50.97(.012) 51.23(.007)
AUSDS (C&W) 48.28(.012) 48.78(.014) 51.58(.007) 51.40(.010) 47.42(.006)

MRPC
RM 67.33(.008) 68.31(.006) 68.56(.018) 70.06(.021) 71.15(.020)
US 62.14(.090) 69.34(.005) 69.11(.010) 70.53(.017) 71.49(.016)
AUSDS (FGV) 68.89(.014) 69.30(.023) 70.28(.015) 70.06(.012) 69.30(.019)
AUSDS (DeepFool) 67.92(.009) 68.88(.017) 69.68(.017) 71.69(.014) 71.55(.012)
AUSDS (C&W) 67.91(.014) 68.53(.017) 70.46(.012) 70.49(.012) 68.89(.016)

AG News
RM 89.89(.003) 90.89(.002) 91.37(.002) 91.79(.002) 92.21(.002)
US 90.29(.006) 91.59(.007) 92.34(.003) 92.71(.001) 93.01(.001)
AUSDS (FGV) 90.75(.002) 91.55(.002) 92.26(.003) 92.62(.001) 93.16(.001)
AUSDS (DeepFool) 90.67(.004) 91.65(.004) 92.43(.004) 92.66(.004) 93.12(.002)
AUSDS (C&W) 90.24(.002) 91.29(.002) 92.30(.004) 92.90(.002) 93.10(.003)

CoNLL’03
RM 80.42(.002) 83.38(.002) 85.39(.005) 86.78(.005) 87.42(.003)
US 78.12(.002) 81.49(.019) 84.45(.004) 86.73(.008) 87.79(.004)
AUSDS (FGV) 80.65(.006) 83.60(.003) 85.98(.010) 87.10(.004) 87.83(.003)
AUSDS (DeepFool) — — — — —
AUSDS (C&W) — — — — —

Table 3: The convergence results w.r.t. the label size in the training from scratch setting with BERT as the encoder.

The label size denotes for the ratio of labeled data. The numbers are the averaged results of 5 runs on the test set.

The best results with each label size are marked as bold. The sequence classification and sequence labeling tasks

are evaluated with accuracy and f1 score, respectively. The AUSDS using DeepFool and C&W on CoNLL’03 are

omitted because these adversarial attack methods are not suitable for sequence labeling.

Label Size 2% 4% 6% 8% 10%

RM 81.58(.004) 82.90(.006) 83.53(.008) 82.15(.016) 84.40(.006)
US 78.23(.007) 80.34(.003) 81.99(.006) 82.34(.008) 82.21(.004)
AUSDS (FGV) 81.22(.004) 83.25(.001) 84.18(.005) 84.49(.004) 84.62(.009)
AUSDS (DeepFool) 82.37(.003) 83.31(.004) 83.77(.002) 84.68(.001) 84.73(.005)
AUSDS (C&W) 81.27(.006) 84.02(.007) 82.76(.002) 84.40(.002) 83.58(.012)

Table 4: The convergence results w.r.t. the label size in the training from scratch setting with ELMo as encoder on

SST-2. The label size denotes for the ratio of labeled data. The best results with each label size are marked as bold.

4.2 Sampling Effectiveness

AUSDS can achieve higher sampling effective-

ness than uncertainty sampling due to the sam-

pling bias problem. The main criteria to evaluate

an active learning approach is the sampling effec-

tiveness, namely the model performance with a

limited amount of unlabeled data being sampled

and labeled. Our AUSDS learning framework is

compared with the two baselines using the same

amount of labeled data. The limitations are set as

2%, 4%, 6%, 8%, and 10% of all labeled data in

each dataset. We only include at most 10% of the

whole training data labeled, because active learn-

ing focuses on training with a quite limited amount

of labeled data by selecting more valuable exam-

ples to label. It makes no difference whether to

perform active learning or not with enough labeled

data available. We believe that with less labeled

data, the performance gap, namely the difference

of sampling effectiveness is more obvious.

We propose training from scratch setting to bet-

ter evaluate the sampling effectiveness, in which

models are trained from scratch using the labeled

data sampled by different approaches with various

labeled data sizes. We argue that simply training

the model until convergence after each sampling

step, which we call continuous training setting, can

easily induce the problem of sampling bias (Huang
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(a) Margin during Training (b) Margin Distribution

Figure 3: The margin of outputs on samples selected by different sampling strategies on SST-5. The margin denotes

for differences between the largest and the second-largest output probabilities on different classes. The lower the

margin is, the closer the sample is located to the decision boundary. Fig. (a) shows the average margin of each

sampling step during training. The margins of samples selected by RM and US on whole unlabeled data are also

plotted as references. Fig. (b) shows the margin distribution of samples selected from sampling step 800 to 1000,

where the average uncertainty becomes steady. US in Fig. (b) is omitted for better visualization.

et al., 2010). Biased models in the early training

phase lead to worse performance even after more

informative samples are given. Thus the perfor-

mance of models during sampling cannot reflect

the real informativeness of selected samples.

The from-scratch training results are shown in

Table 3. Our framework outperforms the random

baselines consistently because it selects more in-

formative samples for identifying the shape of the

decision boundary. Also, it outperforms the com-

mon uncertainty sampling in most cases with the

same labeled data size limits because the frequent

sampling processes in our approach alleviate the

sampling bias issue. Uncertainty sampling suffers

the sampling bias problem because of frequent vari-

ation of the decision boundary in the early phase of

training, which results in ineffective sampling. The

decision boundary is merely determined by a small

number of labeled examples in the early phase.

And the easily biased decision boundary may lead

to the sampling of high uncertainty samples given

the current model state but not that representative

to the whole unlabelled data. With the overall re-

sults on the five standard benchmarks of 2 NLP

tasks, we observe that our AUSDS can achieve

better sampling effectiveness with DeepFool for

sequence classification and FGV for sequence la-

beling. The results of CW are also included for

completeness and comparison.

To prove that our AUSDS framework does not

heavily depend on BERT, we conduct experiments

on SST-2 with ELMo as the encoder, which has a

different network structure. The results in Table 4

show that in this setting, our AUSDS framework

still achieves higher sampling effectiveness, while

the original uncertainty sampling gets stuck in a

more severe sampling bias problem. The results in

this experiment can also be evidence of the general-

ization ability of our framework to other pre-trained

LM encoding space.

4.3 Computational Efficiency

AUSDS is computationally more efficient than

uncertainty sampling. Our AUSDS is compu-

tationally efficient enough to be performed at

batch-level, thus achieving real-time effective sam-

pling. The average sampling speeds of different

approaches are compared w.r.t. US (Table 2).

We observe that uncertainty sampling can hardly

work in a real-time sampling setting because of the

costly sampling process. Our AUSDS are more

than 10x faster than common uncertainty sampling.

The larger the unlabeled data pool is, the more sig-

nificant the acceleration is. Our framework spends

longer computation time, compared with the ran-

dom sampling baseline, but still fast enough for

real-time batch-level sampling. Moreover, the ex-

perimental results on Sampling Effectiveness in

Sec. 4.2 show that the extra computation for adver-

sarial samples is worthy with obvious performance

enhancement on the same amount of labeled data.
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4.4 Samples Uncertainty

AUSDS can actually select examples with

higher uncertainty. We plot the margins of out-

puts of samples selected with different sampling

strategies on SST-5 in Fig. 3. We use margin as

the measurement of the distance to the decision

boundary. Lower margins indicate positions closer

to the decision boundary. As shown in Fig. 3(a),

the samples selected by our AUSDS with different

attack approaches achieve lower average margins

during sampling. Samples from step 800 to 1000

are collected to estimate the margin distribution, as

shown in Fig. 3(b). It is shown that our AUSDS has

better capability to capture the samples with higher

uncertainty as their margin distributions are more

to the left. The uncertainty sampling performed on

the whole unlabeled data gets the most uncertain

samples. However, it is very time-consuming and

can not be applied frequently.

In short, AUSDS achieves better sampling effec-

tiveness in comparison with US because the more

efficient batch-level sampling alleviates the prob-

lem of sampling bias. Adversarial attacks can be

an effective way to find critical data points near the

decision boundary.

5 Conclusion

Uncertainty sampling is an effective way of reduc-

ing the labeled data size in sentence learning. But

uncertainty sampling of high latency may lead to an

ineffective sampling problem. In this study, we pro-

pose adversarial uncertainty sampling in discrete

space for active sentence learning to address the in-

effective sampling problem. The proposed AUSDS

is more efficient than traditional uncertainty sam-

pling by leveraging adversarial attacks and project-

ing discrete sentences into pre-trained LM space.

Experimental results on five datasets show that the

proposed approach outperforms strong baselines in

most cases, and achieve better sampling effective-

ness.
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