
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2218–2222
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2218

Service-oriented Text-to-SQL Parsing

Wangsu Hu, Jilei Tian
BMW Technology Corporation / 540 W Madison St 2400, Chicago, IL 60661

wangsu.hu@bmwna.com, jilei.tian@bmwna.com

Abstract

The information retrieval from relational
database requires professionals who has an un-
derstanding of structural query language such
as SQL. TEXT2SQL models apply natural lan-
guage inference to enable user interacting the
database via natural language utterance. Cur-
rent TEXT2SQL models normally focus on
generating complex SQL query in a precise
and complete fashion while certain features of
real-world application in the production envi-
ronment is not fully addressed. This paper
is aimed to develop a service-oriented Text-to-
SQL parser that translates natural language ut-
terance to structural and executable SQL query.
We introduce a algorithmic framework named
Semantic-Enriched SQL generator (SE-SQL)
that enables flexibly access database than rigid
API in the application while keeping the per-
formance quality for the most commonly used
cases. The qualitative result shows that the pro-
posed model achieves 88.3% execution accu-
racy on WikiSQL task, outperforming baseline
by 13% error reduction. Moreover, the frame-
work considers several service-oriented needs
including low-complexity inference, out-of-
table rejection, and text normalization.

1 Introduction

The relational database stores a vast of information
then support applications in various areas. API
and query language normally enforce access to this
data. To help retrieving information from database
based on utterance, one conventional solution is
applying Natural Language Understanding (NLU)
model firstly to extract entities as attributes to call
the downstream APIs. The extracted entities fulfill
the required slot in the pre-defined query templates
to retrieve information from the database. Such
a rule-based mechanism ensures the input value
at runtime while limiting the information retrieval
in two major aspects. First, the entity extraction
might be constrained under closed domains. It

is challenging to apply one trained NLU model
when the database is modified, e.g., the new schema
or new table. Second, creating or modifying the
query template requires numerous human labor and
limits the requested query by fixed knowledge of
API’s designer. For example, as query the weekly
average temperature via date range constraint and
aggregation operation, users won’t get the result
if there is no such pre-defined query template in
the scheme. To address such issues, TEXT2SQL
models (Liang and Potts, 2015; Zhong et al., 2017;
Xu et al., 2017; Dong and Lapata, 2018; Yu et al.,
2019; Dong et al., 2019; Bogin et al., 2019; Lee,
2019; Hwang et al., 2019; Guo and Gao, 2019)
are aimed to map natural language utterance to
executable SQL query with or without the known
database. One example of TEXT2SQL task can be
found in Table 1.

This paper aims to develop a service-oriented
Text-to-SQL parser translating natural language
utterance to structural and executable SQL query
without the limitation above. We introduce an al-
gorithmic framework named Semantic-Enriched
SQL generator (SE-SQL) with the following key
contributions:

Enable flexibly to access the database while
keeping the performance quality for the most
commonly used cases, such as SELECT, FROM,
and WHERE, including aggregators and operators.
Therefore, the coverage of the primary query is
supported.

Consider service-oriented needs, including low-
complexity inference and confidence measure for
quality when dealing with real-life scenarios.

Better user experience is obtained by improved
algorithm performance from both questions by
text normalization and schema by semantic en-
richment. Documents and codes can be found at:
github.com/nicholasadam/SESQL.

https://github.com/nicholasadam/SESQL

2219

Sports
Player Number Nationality City

AL 21 US Chicago
GL 32 US New York
BM 99 US Chicago

Question: Who is the player wearing 32 and what
country is he from?

SQL: SELECT Player, Nationality FROM Sports
WHERE No.=32

Answer: GL from US

Table 1: Example of TEXT2SQL task.

2 Semantic-enriched SQL generator

For the natural language questions collected across
users’ utterances and the table schema collected
from the database, the proposed algorithmic frame-
work processes such two types of data into SQL
query, organized by context-aware Question En-
coding Layer, semantic-enriched Table Schema
Encoding Layer, out-of-table prediction layer,
TEXT2SQL decoding layer, and SQL execution
layer as shown in Figure 1.

2.1 Question Encoding Layer

We leverage BERT as the language model (Devlin
et al., 2018) for encoding the natural language ques-
tion. Each question input is encoded as:

Q = [CLS], q1, ..., qL, [SEP]

EQ = BERT (Q) = E[CLS], Eq1 , ..., EqL , E[SEP]

where qi is the i-th token of question Q, L is the to-
tal number of question tokens. [CLS], [SEP] are
special token used by BERT to indicate the start
and end index of input. EQ is the generated to-
kens’ embedding with the same length as Q. Given
feature size S of embedding vector, the generated
question embedding is a (L, S)-size matrix. The
output from the final two layers of BERT are con-
catenated and fed into TEXT2SQL layer.

2.2 Table Schema Encoding Layer

Similar to question encoding, each table schema
input is encoded as below.

H = [CLS], h1, [SEP], ..., hL, [SEP]

EH = BERT (H) = E[CLS], Eh1 , E[SEP], ..., EhL
, E[SEP]

where hj is the j-th token of table schema, L is the
total number of schema tokens. We use [SEP] to
separate tokens in the schema.

Figure 1: Algorithm Framework - High level

Low-complexity implementation: Unlike con-
ventional TEXT2SQL models (Hwang et al., 2019;
Guo and Gao, 2019), question and table schema
are separately encoded for two reasons: First, as
BERT features contextual word representation, we
generate question tokens only with its contextual
information. Second, as the question part is on-
line fed into the encoder, separate encoding of the
schema part can be done offline to reduce the infer-
ence time online greatly. In reality, we have just one
question to be encoded per request, while taking
all encoded table schema into account. Otherwise,
we have to encode pairwise instance as many as the
number of tables that makes the complexity higher.
Semantic enrichment: Another key challenge is
the alignment between user expression and schema
expression towards the target object. A user might
ask a question flexibly while headers are designed
based on a DBMS-neutral guide for naming com-
mon objects. Here we enriched schema to reduce
the mismatch condition via crawling alias and table
contents for headers. Then the language model and
transformation network are applied to produce em-
bedding sharing the same length as headers. The
final semantic representation of table schema is
calculated as below.

EHSE
= EH + EHsynonyms + EHcontent

where EHSE
is header’s embedding, EHsynonyms is

header synonyms embedding, EHcontent is selected
table content embedding. Compared to existing
content-enhance method (Guo and Gao, 2019), the
leverage of contents is constrained as it cannot af-
ford the copy of whole contents during inference
for real-world solutions. Moreover, semantic en-
richment work can be pre-processing offline.

2.3 TEXT2SQL
TEXT2SQL layer is designed on top of question
and schema encoding layers. Xu et al.(Xu et al.,
2017) applied sketch-based syntactic constraints in

2220

query generation as below:

SELECT : [(agg1, scol1), ...]FROM : [(table1)]

WHERE : [(wcol1, op1, val1), (wcol2, op2, val2), ...]

where agg, scol represent aggregator and header
in SELECT clause, wcol/op/val represent header,
operator, and value in WHERE clause respectively.
<FROM> clause: Towards a real-world applica-
tion, out-of-table rejection is required to recognize
the table in backend database for the question in-
put. One nonparametric model is introduced on
top of question embedding EQ and schema em-
bedding EH via cosine distance measurement. We
calculate the similarity between question Eqi and
schema EH . Then we conduct minimum pooling
along dimension j and take average value as the
overall similarity from question to schema.

Distancei−>H = minpoolingj
∑

S EqiEhj
/
√
E2

qi/
√
E2

hj

DistanceQ−>H =
∑

LQ
Distancei−>H/LQ

where minpoolingj samples the minimum value
along dimension j. The similarity from schema to
question is calculated using the same method to get
DistanceH−>Q.

By adding two normalized distances to repre-
sent the pairwise similarity score, we reject the
prediction if the score is lower than the threshold
Rthreshold.

DistanceQ<−>H = DistanceH−>Q +DistanceQ−>H

Reject = DistanceQ<−>H > Rthreshold

<SELECT> and <WHERE> clause: Tasks are
to predict column(s) from schema headers and cor-
responding aggregator(s)/operator(s)/value(s) tied
to column(s).
Column prediction predicts column(s) via atten-
tion and Learn-To-Rank method.

s(q|h) = ET
hWEq; p(q|h) = softmax(s(q|h))

Hh =
∑N

i p(q|h)Eq

sch = maxpooling([Eh ·WHh]); ph = sigmoid(sch)

where W is the required transformation, Hh is con-
text vector of header h, sch is column score, [;] de-
notes concatenation operation, maxpooling sam-
ples max value, and ph is the probability of select-
ing header h. We choose the top k header(s) among
candidates by predicting number of columns k.

k = argmax(softmax(EQ,CLSW))

Agg/Op prediction predicts aggregator and opera-
tor tied to SELECT-column and WHERE-column,
respectively.

pz = Wtanh([Eq;Wsch); z = argmax(pz)

where z is the z-th aggregator/operator.
Value parsing predicts start and end token index
from question for the given header and operator op.

idx = argmax(softmax(WEqschVop))

where Vop is the one-hot vector of operation choice.
Text Normalization After predicting the start and
end index of parsed value, we conduct the named
entity normalization to generate a regularized repre-
sentation for objects such as time and range during
the inference. As we found in the real applica-
tion scenario, the WHERE-value parser contributes
considerable amounts of ”no result found” cases,
although the other sub-modules have the correct
prediction. Datetime range is one of the most hap-
pened entities in utterances. An un-normalized
parsing might lead to a null result. Therefore,
we leverage the named entity recognition enabler
to parse normalized WHERE-value. For exam-
ple, ”till (date)” will be translated to ”WHERE-
column (date) WHERE-operator (<=) WHERE-
value (YYYY-MM-DD)”.

3 Experiments and Results

Experiment Setup As motivated by developing a
service-oriented solution, we determine the bench-
mark dataset based on the following criteria. First,
the benchmark task should meet the basic require-
ment of real-world TEXT2SQL application, e.g.,
Spider (Yu et al., 2018) and WikiSQL (Zhong
et al., 2017). Second, the numbers of question-
table-query instances should be large enough to
ensure the generality of the model. Third, the gen-
erated SQL should cover the potential sessions in
the production environment, while high complexity
parser might introduce the processing latency in
real-world inference procedures. Here we train and
evaluate our models on WikiSQL ver. 1.1 that
was firstly introduced by Zhong et al. (Zhong
et al., 2017). WikiSQL contains a large corpus
of question-table-SQL instances from Wikipedia,
then divided into train (55k instances), dev (8k in-
stances), and test sets (16k instances). We applied a
negative sampling method to create the sub-dataset
for out-of-table rejection. Two metrics are applied
regarding models and WikiSQL dataset: 1, logical-
form accuracy(LF): exact string match with the
ground truth query. 2, execution accuracy(EX): the
executed result match.

Before training, BERT-based encoding layers are
used. During training, the TEXT2SQL layer is fine-

2221

Model LF (%) EX (%)
WikiSQL dev set

SQLNet 63.2 69.8
SQLova(baseline) 81.6 87.2

SE-SQL(ours) 82.1 (+0.5) 87.3 (+0.1)
+ Semantic enrich 83.3 (+1.7) 88.3 (+1.1)

Error reduction 13.0 8.6
WikiSQL test set

SQLNet 61.3 68.0
SQLova(baseline) 80.7 86.2

SE-SQL(ours) 81.9 (+1.2) 87.2 (+1.0)
+ Semantic enrich 82.5 (+1.8) 87.8 (+1.6)

Error reduction 9.3 11.6

Table 2: Overall performance of WikiSQL task.

tuned with ADAM optimizer with the learning rate
of 0.001. The batch size is set to 16. Both questions
and table schema are tokenized into the sub-word
level by WordPiece tokenizer (Devlin et al., 2018).
NLTK library (Loper and Bird, 2002) is applied to
generate synonyms of headers in the table schema.
Set Rthreshold as 1.1 and negative sampling size
as 11 to do out-of-table rejection. Meanwhile, the
beam search method (Wang et al., 2018) consid-
ered an execution guide for the generated query,
although widely applied for NLI evaluation, was
not used due to maintaining the low communica-
tion and processing latency between application
and database. Therefore, the reported performance
can be treated as the lower-bound one. Meanwhile,
after reviewing the open-sourced TEXT2SQL liter-
ature, we selected one of the state-of-the-art models
named ”SQLova” (Hwang et al., 2019) as the base-
line. The author claims that SQLova is the first
natural-language-to-SQL model to achieve human
performance in the WikiSQL task.
Qualitative performance The result shows that
SE-SQL outperforms the baseline by a promising
margin, as shown in Table 2. Moreover, to under-
stand the performance of SE-SQL in detail, the
breakdown accuracy of each sub-module under the
logical form metric was shown in Appendix. The
result indicates that the proposed framework shows
a promising potential of being a TEXT2SQL solu-
tion in terms of model performance.
Semantic enrichment As shown in Table 2, se-
mantic enrichment contributed a nearly 1% perfor-
mance improvement along with better user experi-
ence. Here, we let each header have 3 numbers of
synonyms and 2 numbers of table contents.

Error analysis We randomly selected 50 samples
of mismatches under the logical form metric from
WikiSQL dev set between the ground-truth query
and the generated query by SE-SQL. It found that
6 numbers of ground truth errors (the annotation
failed), 10 numbers of answerable errors (the ques-
tion cannot be answered based on the provided
table) and 34 numbers of prediction error (the ques-
tion can be answered but the prediction is wrong)
exist.
Inference time SE-SQL applied separate-
encoding of question and table schema while
the conventional TEXT2SQL models applied
joint-encoding of question-table pairwise instance.
Regarding the inference time consumption, we
reported both schemes’ service response time
under the same testing environment. The system
configuration is attached in Appendix. The result
shows that SE-SQL achieved 95 seconds in total
for 15,870 requests (6ms per query) while the
other spent 2,698 seconds (170ms per query).
Out-of-table rejection Regarding confidence mea-
sure in from-clause prediction, the proposed non-
parametric prediction model achieved 85% true
positive, 55% true negative, 6% false positive, and
6% false negative. When having rejection enabled,
it rejected 9% cases. Among the 91% accepted
cases, accuracy is improved from the original 85%
to 87%. Moreover, the setting of the threshold
offers the opportunity to adjust the performance.

4 Conclusion

In this paper, we proposed a novel algorithmic
framework named SE-SQL that not only enables
access database flexibly while keeping the perfor-
mance quality for the most commonly used cases
but more importantly offer the solution towards
meeting product requirement from the lab research.
We reconstructed the previous TEXT2SQL frame-
work to introduce question-table separate contex-
tualization in a low-complexity fashion. An im-
proved algorithm performance obtains better user
experience that the proposed model outperforms
the baseline by a 13% error reduction in the Wik-
iSQL task. Moreover, the properties, including
out-of-table rejection, confidence measurement for
quality, and fast online inference, are considered
toward the production environment.

2222

References
Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.

Global reasoning over database structures for text-to-
sql parsing. arXiv preprint arXiv:1908.11214.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. arXiv preprint
arXiv:1805.04793.

Zhen Dong, Shizhao Sun, Hongzhi Liu, Jian-Guang
Lou, and Dongmei Zhang. 2019. Data-anonymous
encoding for text-to-sql generation. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5408–5417.

Tong Guo and Huilin Gao. 2019. Content enhanced
bert-based text-to-sql generation. arXiv preprint
arXiv:1910.07179.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069.

Dongjun Lee. 2019. Clause-wise and recursive decod-
ing for complex and cross-domain text-to-sql gener-
ation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6047–6053.

Percy Liang and Christopher Potts. 2015. Bringing ma-
chine learning and compositional semantics together.
Annu. Rev. Linguist., 1(1):355–376.

Edward Loper and Steven Bird. 2002. Nltk: the natural
language toolkit. arXiv preprint cs/0205028.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-
sandr Polozov, and Rishabh Singh. 2018. Robust
text-to-sql generation with execution-guided
decoding. arXiv preprint arXiv:1807.03100.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. arXiv preprint
arXiv:1909.05378.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

Appendix

Sub-modular Dev Test
select-column 98.5 98.3

select-aggregator 91.5 91.1
where-column 94.9 95.1
where-operator 98.0 97.9

where-value 97.0 97.1

Table 3: Breakdown result of Logical Form accuracy
under WikiSQL dev set

Category Description
Machine instance Azure DSVM NC6s
Core 6
RAM 112GB
GPU V100 (single GPU)
Inference samples 15,870

Table 4: System configuration

