Multi-pretraining for Large-scale Text Classification
Kang-Min Kim, Bumsu Hyeon, Yeachan Kim, Jun-Hyung Park, SangKeun Lee
Abstract
Deep neural network-based pretraining methods have achieved impressive results in many natural language processing tasks including text classification. However, their applicability to large-scale text classification with numerous categories (e.g., several thousands) is yet to be well-studied, where the training data is insufficient and skewed in terms of categories. In addition, existing pretraining methods usually involve excessive computation and memory overheads. In this paper, we develop a novel multi-pretraining framework for large-scale text classification. This multi-pretraining framework includes both a self-supervised pretraining and a weakly supervised pretraining. We newly introduce an out-of-context words detection task on the unlabeled data as the self-supervised pretraining. It captures the topic-consistency of words used in sentences, which is proven to be useful for text classification. In addition, we propose a weakly supervised pretraining, where labels for text classification are obtained automatically from an existing approach. Experimental results clearly show that both pretraining approaches are effective for large-scale text classification task. The proposed scheme exhibits significant improvements as much as 3.8% in terms of macro-averaging F1-score over strong pretraining methods, while being computationally efficient.- Anthology ID:
- 2020.findings-emnlp.185
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2020
- Month:
- November
- Year:
- 2020
- Address:
- Online
- Editors:
- Trevor Cohn, Yulan He, Yang Liu
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 2041–2050
- Language:
- URL:
- https://aclanthology.org/2020.findings-emnlp.185
- DOI:
- 10.18653/v1/2020.findings-emnlp.185
- Cite (ACL):
- Kang-Min Kim, Bumsu Hyeon, Yeachan Kim, Jun-Hyung Park, and SangKeun Lee. 2020. Multi-pretraining for Large-scale Text Classification. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2041–2050, Online. Association for Computational Linguistics.
- Cite (Informal):
- Multi-pretraining for Large-scale Text Classification (Kim et al., Findings 2020)
- PDF:
- https://preview.aclanthology.org/dois-2013-emnlp/2020.findings-emnlp.185.pdf
- Data
- Billion Word Benchmark, One Billion Word Benchmark