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Abstract

To model diverse responses for a given post,
one promising way is to introduce a latent vari-
able into Seq2Seq models. The latent variable
is supposed to capture the discourse-level in-
formation and encourage the informativeness
of target responses. However, such discourse-
level information is often too coarse for the
decoder to be utilized. To tackle it, our idea
is to transform the coarse-grained discourse-
level information into fine-grained word-level
information. Specifically, we firstly measure
the semantic concentration of corresponding
target response on the post words by introduc-
ing a fine-grained focus signal. Then, we pro-
pose a focus-constrained attention mechanism
to take full advantage of focus in well aligning
the input to the target response. The experi-
mental results demonstrate that by exploiting
the fine-grained signal, our model can generate
more diverse and informative responses com-
pared with several state-of-the-art models.1

1 Introduction

Nowadays, developing intelligent open-domain
conversational systems has become an active re-
search field (Perez-Marin and Pascual-Nieto, 2011;
Shum et al., 2018). Compared with rule-based and
retrieval-based methods, neural generative models
have attracted increasing attention because they do
not need extensive feature engineering and have
achieved promising results recently with large-
scale conversational data (Vinyals and Le, 2015;
Sordoni et al., 2015; Shang et al., 2015).

Typically, neural generative models are trained
to learn the post-response mappings based on

1https://github.com/cuizhi555/Focus-Constrained-
Attention-Mechanism-for-CVAE-based-Response-
Generation.

the Seq2Seq architecture using maximum likeli-
hood (MLE) training objective. This kind of objec-
tive induces the model to treat the post-response
relationship as one-to-one mappings. However,
the conversations in the real world often embodies
one-to-many relationships, where a post is often as-
sociated with multiple valid responses (Zhou et al.,
2017). Due to this discrepancy, standard Seq2Seq
models tend to generate high-frequency but trivial
responses such as “I don’t know” or “I’m ok” (Li
et al., 2016).

To address this issue, one promising research
line resorts to Conditional Variational Autoencoder
(CVAE), which introduces a latent variable to
Seq2Seq models through variational learning. The
latent variable is supposed to capture the discourse-
level semantics of target response and in turn en-
courage the response informativeness. Recent lit-
erature along this line attempted to improve the
model performance by putting extra control on the
latent variable (Zhao et al., 2017; Gu et al., 2018;
Gao et al., 2019). Despite the control, these meth-
ods still relied on the discourse-level latent variable,
which is too coarse for the decoders to mine suffi-
cient guiding signals at each generation step. As
a result, these variational models are observed to
ignore the latent variable (Zhao et al., 2017; Gu
et al., 2018; Gao et al., 2019) and to generate se-
mantically irrelevant or grammatically disfluent
responses (Qiu et al., 2019).

In this paper, we propose a novel CVAE-based
model, which exploits fine-grained word-level in-
formation for diverse response generation. Firstly,
we transform the discourse-level information into
word-level signals, i.e., focus. By attending the
latent variable to the post words, the focus weight
measures the response’s correlation with the post
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words. The higher the weight, the semantics
is more likely to concentrate on the correspond-
ing word. To utilize the focus, we develop a
focus-constrained attention mechanism which bet-
ter aligns the post words with the response accord-
ing to the fine-grained signals. In this way, the
model is able to produce a semantically different
response directed by a different focus.

Our contributions can be summarized as three
folds: 1) We propose a novel CVAE-based model
for diverse response generation, by directing the
decoder with fine-grained information. 2) We in-
troduce focus to represent the fine-grained infor-
mation, and propose a focus-constrained attention
mechanism to make full use of it. 3). Experimental
results demonstrate our model outperforms several
state-of-the-art models in terms of response’s diver-
sity as well as appropriateness.

2 Related Work

The attention mechanism (Bahdanau et al., 2014;
Luong et al., 2015) has become a widely-used
component for Seq2Seq (Sutskever et al., 2014;
Cho et al., 2014) to model Short-Text Conversa-
tion (Shang et al., 2015; Vinyals and Le, 2015;
Sordoni et al., 2015). Although promising results
have been achieved, attention-based Seq2Seq mod-
els still tend to generate generic and trivial re-
sponses (Li et al., 2016).

There have been many approaches attempted to
address this problem. Li et al. (2016) reranked the
n-best generated responses based on Maximum
Mutual Information (MMI). Shao et al. (2017)
adopted segement-level reranking to encourage
diversity during early decoding steps. However,
these reranking-based methods only introduce a
few variants of decoded words. Another group of
researches attempted to encourage diversity by in-
corporating extra information. Xing et al. (2017) in-
jected topic words and Yao et al. (2017) introduced
a cue word based on Point-wise Mutual Informa-
tion (PMI) into generation models. Ghazvininejad
et al. (2018) grounded on knowledge bases to pro-
vide factual information for the decoder. However,
it is difficult to ensure these external information
are always appropriate to the conversation context.

Another line of research introduced a set of latent
responding mechanisms and generated responses
based on a selected mechanism. Zhou et al. (2017)
learned the post-response mappings as a mixture
of the mechanisms, but it is questionable that they

only relied on one single mechanism when gen-
erating responses given a new post. Chen et al.
(2019) adopted posterior selection to build one-to-
one mapping relationship between the mechanisms
and target responses. Since the target response is
missing during testing, it is hard to ensure a satis-
factory generated response by a randomly picked
mechanism.

Our work centers in the research line of con-
ditional response generation through variational
learning (Serban et al., 2017; Zhao et al., 2017).
However, the variational methods inevitably suffer
from bypassing the latent variable and generating
disfluent responses. Zhao et al. (2017) combined
CVAE with dialog acts to learn meaningful latent
variable, however the discourse-level dialog act is
hard to be captured from short conversation. Gu
et al. (2018) introduced Gaussian mixture prior net-
work, but it is hard to determine the number of
mixtures and the optimization is complicated. Gao
et al. (2019) assumed the response generation is
driven by a single word, and connected each latent
variable with words in the vocabulary. Neverthe-
less, the difficulty is how to target the driving word
for a specific post-response pair. More importantly,
all of these methods rely on the coarse-grained
discourse-level information, which might be insuf-
ficient in leading to a satisfactory response.

Notably, our work induces the response gener-
ation with focus, a fine-grained feature extracted
from the discourse-level latent variable. Compared
with the variational attention that models the align-
ment as latent variable (Bahuleyan et al., 2018;
Deng et al., 2018), we are mainly inspired by the
idea of coverage vector (Tu et al., 2016) to dynam-
ically adjust the attention based on the attention
history and the proposed focus. The difference is
that Tu et al. (2016) addressed the under/over trans-
lation problem and the decoder in their work pays
equal attention to the source words. In contrast, our
work constrains the decoder to align the decoding
attention with the fine-grained focus to generate
diverse responses.

3 Model

3.1 Preliminaries and Model Overview

A neural generative model is trained on a collec-
tion of post-response pairs {(x,y)}, and aimed
to generate a response y word-by-word given an
input x. At the basis of our approach is CVAE
where a latent variable z is considered to capture
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Figure 1: A framework of our proposed model, where the operation ⊕ denotes concatenation, the dashed arrow
lines are absent during testing, and the proposed focus-constrained mechanism is represented by the red lines.

discourse-level diversity. To extract fine-grained
information, we design focus F = {fi}|x|i=1 over the
post words, where fi measures to what extent the
latent variable z is concentrating on the post word
xi, and |x| is the length of input x. Besides, we
introduce a coverage vector Dt = {di,t}|x|i=1, where
di,t accumulates the attention weights over the post
word xi up until t-th decoding step.

Figure 1 illustrates the whole framework of our
model consisting of three components: CVAE ba-
sis, focus generator and response generator. Based
on the CVAE framework, we firstly introduce a
probabilistic distribution over the latent variable z
to model potential responses for a given x. Then,
focus generator produce the focus F by attending
the latent variable z to hidden representation hx

of the input. The obtained F is then concatenated
with hx to obtain h′x for word prediction. Specif-
ically, the decoder attentively refers to h′x and ac-
cumulates decoding attention weights through the
coverage vector Dt. To direct response generation
using the focus F , we not only optimize the vari-
ational lower bound on response generation, but
also optimize a regularization term named as focus
constraint by minimizing the divergence D and F .

3.2 Background of CVAE

Typically, the conditional variational autoencoder
(CVAE) introduces a probabilistic distribution over
the latent variable to model response diversity. Fol-
lowing CVAE, we firstly encode x and y by the
post and response encoder, respectively. The two
encoders are constructed by the shared bidirec-
tional GRUs (Cho et al., 2014) which generate a
series of hidden states {hxi}

|x|
i=1 for x and {hyi}

|y|
i=1

for y. Then, we obtain the sentence representa-
tion hx for the post x by averaging {hxi}

|x|
i=1. The

sentence representation hy for the response y is
calculated from {hyi}

|y|
i=1 in the same way.

In training phase, we sample a latent variable
z from the posterior distribution qR(z|x,y). The
distribution is modeled as a multivariate Gaussian
distributionN (µ,Σ), where Σ is a diagonal covari-
ance. We parameterize µ and Σ by the recogni-
tion network through a fully connected layer con-
ditioned on the concatenation [hx;hy]:[

µ
log(Σ)

]
= Wq

[
hx
hy

]
+ bq (1)

where Wq and bq are learnable parameters. To
mitigate the gap in encoding of latent variables be-
tween train and testing (Sohn et al., 2015; Yan
et al., 2015), CVAE requires the posterior distribu-
tion qR(z|x,y) to be close to the prior distribution
pP (z|x). Notably, pP (z|x) is parameterized by
the prior network and also follows a multivariate
Gaussian distribution N (µ′,Σ′) in a similar way
but only conditioned on hx. As usual, we minimize
the discrepancy between the two distributions by
the Kullback-Leibler divergence:

Lkl = KL(qR(z|x,y)||pP (z|x)) (2)

By sampling different z, the model is supposed
to output semantically different responses. How-
ever, such latent variable is too coarse to guide a
satisfactory response generation, as discussed pre-
viously.

3.3 Focus Generator
The core is how to better exploit indicative informa-
tion from the discourse-level variable for diverse
response generation. In this work, we transform the
discourse-level latent variable z into fine-grained
signal using a focus generator g(hx, z) as shown
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in the middle of Figure 1. To be specific, the focus
generator attends the latent variable z to the post
representation hx, and produces the focus distribu-
tion F = {f }|x|i=1. Similar to the standard atten-
tion (Bahdanau et al., 2014; Luong et al., 2015),
the generated focus F measures the response con-
centration a specific post word, which is calculated
by:

g(hx, z) = F = { exp(f(hxi , z))∑|x|
k=1 exp(f(hxk

, z))
}|x|i=1

(3)
where f(hxi , z) = v>f tanh(Wfhxi + Ufz) and
Wf and Uf are learnable parameters. This focus
captures to what extent the response semantics is
related to the post words, which will serve as fine-
grained signals for the decoder. Notably, the higher
the focus, the response is more likely to pay atten-
tion to the corresponding word. Compared with the
coarse-grained z, the word-level focus is of great
guiding significance when generating responses.

3.4 Focus-Guided Generation

The remaining is to properly incorporate the fine-
grained focus into response generation. Since the
focus weights imply the semantics of the target
response, they are beneficial signals indicating
whether a word is attended properly during decod-
ing.

Concretely, we develop a focus-guided mecha-
nism to facilitate the decoder adjust the attention
during the generation. To notify the decoder of the
focus, we concatenate hx and F to obtain a series
of combined hiddens of the post h′x = {h′xi

}|x|i=1

(the green and yellow vectors in Figure 1). After
integrating the extra feature fi, the devised represen-
tations h′x are then used to calculate the attention
weights. Inspired by Tu et al. (2016), we borrow the
idea of coverage attention and introduce the cover-
age vector Dt = {di,t}|x|i=1 that records the attention
history, where di,t =

∑t
k=1 αi,k accumulates the

decoding attention weights on the post word xi.
Here, αi,t stands for the attention weight on the
post word xi at t-th decoding step (t ∈ [1, |y|]),
which is calculated as:

αi,t =
exp(ei,t)∑|x|

k=1 exp(ek,t)
(4)

ei,t = v>a tanh(Wah
′
xi

+ Uast−1 + Vaat−1) (5)

at−1 =

|x|∑
i=1

di,t−1h′xi
(6)

where st−1 is decoder’s hidden state at (t− 1)-th
step, and at−1 takes into account the attention his-
tory before t-th step. At the end of each decoding
step, a predicted word ŷt is obtained by:

ŷt = softmax(Wd[st;

|x|∑
i=1

αi,thxi ] + dd) (7)

where Wd and dd are learnable parameters. Since
the focus suggests how much attention should be
paid to during each decoding step, the devised
focus-guided mechanism is able to globally deter-
mine a word based on the attention history as well
as the current state.

3.5 Focus Constraint
Nevertheless, one potential drawback is that the
decoder could still ignore the focus signals even
equipped with the focus-guided mechanism. Con-
sidering that focus measures the response’s signifi-
cance on a specific post word, it is also essential for
the decoder to concentrate on the word with higher
focus weight, and vice versa.

To prevent the decoder bypassing the focus sig-
nal, we design a focus constraint to regulate the
learning of post-response pairs by taking into ac-
count the focus weights. As shown in the right
side of Figure 1, the focus constraint requires the
model to minimize the discrepancy between the
focus weight distribution F and decoding attention
distribution D. To implement it, we define the fo-
cus constraint Lfoc as the Euclidean norm distance
between D and F :

Lfoc = || 1

|y|
D − F ||2 (8)

where D sums up all the decoding attention weights
over the post words and |y| is the total number of
decoding steps. Considering

∑|x|
i=1 fi = 1, a divi-

sion of |y| from D makes the two terms being com-
pared at the same magnitude. We name this con-
strained decoding attention as Focus-Constrained
Attention Mechanism. Such a constraint will
make the decoder draw attention by globally con-
sulting the focus F and distribute the attention dy-
namically. For example, given a distribution F ,
if the hidden output hxi has been attended to a
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certain degree di,t−1 ≈ fi, the model will discour-
age the decoder to overly emphasize on hxi after
the t-th step. In contrast, if the hidden output hxi

has been hardly attended compared with its focus
weight (di,t−1 � fi), the model will encourage the
decoder to pay more attention onto hxi afterwards.

3.6 Optimization and Testing

Overall, all the modules described above are jointly
trained in an end-to-end way by minimizing the
total loss:

Ltotal = Lseq + Lfoc + γLkl + Lbow (9)

Here, Lseq is the sequence cross entropy be-
tween the generated response ŷ and the correspond-
ing ground truth y. Lfoc is the proposed focus con-
straint as described above. To address the problem
of vanishing latent variable, we follow Bowman
et al. (2015) and adopt the annealing weight γ for
KL divergence Lkl, where γ is gradually increased
during training phase. We also employ the auxil-
iary bag-of-word loss Lbow to further alleviate the
vanishing issue (Zhao et al., 2017).

At testing phase, an intermediate focus F will
be obtained with the prior network and focus gener-
ator. Notably, this enables us to generate diverse re-
sponses by sampling multiple latent variables from
the prior network, where each sampled z leads to a
semantically distinct response.

4 Experiment

4.1 Dataset

We conduct experiments on the Weibo bench-
mark2 (Shang et al., 2015), a single-round con-
versational dataset where a post is associated with
multiple responses. We follow the default prepro-
cessing step, and obtain 205,164 unique posts and
4,142,299 training post-response pairs in total. Af-
ter random spilt, we acquire 101,794 post-response
pairs for evaluation, and 1,000 distinct posts for
testing. Here, each testing post has 5 reference
responses for evaluation.

4.2 Implementation Details

We implement our model with Tensorflow and run
it on NVIDIA Telsa V100. Specifically, the vo-
cabulary size is 50,003 including PAD, UNK and
EOS. The word embedding size is 720 as same

2https://www.weibo.com/

as the size of latent variable. We build two-layer
GRUs for the two parameter-shared encoders as
well as for the decoder. In all, our model contains
around 130M parameters, which are all randomly
initialized with a uniform distribution [−1, 1]. We
train our model with a batch size of 1,024 by Adam
optimizer (Kingma and Ba, 2014). We increase the
learning rate from 0 up to 0.0008 within the first
8,000 warmup steps and proportionally decrease it
to the inverse square root of step number (Vaswani
et al., 2017).

4.3 Baseline Models

To demonstrate the necessity and effectiveness of
our proposed mechanism alone, we build it on
Seq2Seq and exclude as many other interferences
as possible when comparing with the following
state-of-the-art baseline models:
S2S (Bahdanau et al., 2014): It trains a Seq2Seq
model with the standard attention and adopts beam
search decoding to generate responses.
MMI (Li et al., 2016): It is a backward Seq2Seq
trained from response to post, and reranks the beam
searched candidates under MMI criterion.
MARM (Zhou et al., 2017): It is a Seq2Seq model
which additionally contains a diverter that consists
of 5 latent responding mechanisms. During train-
ing, these mechanisms are learned as a mixture by
the weighted average.
CMHAM (Tao et al., 2018): It is a Seq2Seq model,
which is augmented with Constrained-Multi-Head-
Attention-Mechanism. The attention heads are con-
strained by orthogonality and each of them is ex-
pected to attend a certain aspect of the post. We set
the head number as 5.
CVAE (Zhao et al., 2017): It is a vanilla CVAE
Seq2Seq trained along with the bag-of-word loss.
During testing phase, we take 3 samplings from the
prior network to generate each response.
DCVAE (Gao et al., 2019): It is a CVAE-based
Seq2Seq model trained with discrete latent vari-
ables, where the latent variables are connected with
words in the vocabulary. To follow their paper, we
use their original implementation and pre-train the
model with extracted keywords. During testing
phase, we adopt their two-stage sampling strategy
to generate each response.
Ours: In addition, we implement two variants of
our proposed model Ours-FocConstrain, i.e., 1)
Ours-Foc introduces the focus F , but it does not
incorporate the coverage vector Dt, and the de-
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Method Multi-BLEU Intra-Dist Inter-Dist Quality Diversity
BLEU-1 BLEU-2 Dist-1 Dist-2 Dist-1 Dist-2 Acceptable Good

S2S 26.63 9.07 45.90 60.12 9.75 34.31 61.33 2.88 1.66
MMI 26.67 9.08 46.17 60.49 9.74 34.43 60.22 3.33 1.68
MARM 26.70 9.30 47.00 60.90 10.92 37.88 61.77 4.22 1.72
CMHAM 26.18 7.58 60.28 76.36 5.83 26.61 59.33 2.88 2.26
CVAE 28.88 8.78 75.57 92.66 13.59 49.68 36.88 2.88 2.62
DCVAE 30.44 8.98 73.33 90.45 14.43 53.28 58.67 4.67 2.72

Ours-Foc 27.12 9.01 44.68 59.75 10.02 35.21 60.67 4.67 1.26
Ours-FocCoverage 29.50 9.11 66.71 85.17 15.25 54.16 62.66 3.33 2.36
Ours-FocConstrain 30.32 9.39 80.24 95.53 16.89 59.67 65.33 9.33 2.82

Table 1: The results from automatic and human evaluations. The Kappa score is 0.45 and 0.70 for quality and
diversity labeling

coding attention at each step is calculated with
only the first two terms in Equation 5. 2) Ours-
FocCoverage involves both of the focus F and the
coverage vector Dt, where the only difference from
Ours-FocConstrain is that it is optimized without
the focus constraint Lfoc in Equation 9.

4.4 Evaluation Metrics

All models are required to generate 3 responses
and are evaluated using both automatic metrics and
human judgements:
Multi-BLEU: BLEU (Papineni et al., 2002)3 is a
common automatic metric to evaluate the response
quality. It measures word overlaps between the gen-
erated responses and references. We report Multi-
BLEU scores where each generated response is
compared with 5 references.
Dist-1/2: Dist-1/2 measures the diversity of gener-
ated responses by counting the distinct uni-grams
and bi-grams (Li et al., 2016). In our setting, both
Intra-Dist and Inter-Dist are evaluated on the re-
sults to calculate Dist of responses for a post and
the whole testing set, respectively.
Human Labeling: Since there is a gap between
automatic metrics and human annotation (Liu et al.,
2016), we also consider human labeling to further
validate the experiment results. We randomly sam-
ple 150 posts and generate 3 responses by each
method. Then, we ask 3 professional annotators
to label the responses from the aspects of Quality
and Diversity, respectively.
Quality: We examine the generated responses
from the aspects of informativeness (which mea-
sures whether the generated response is informa-
tive and interesting), relevance (which measures

3http://www.nltk.org/py-modindex.html

whether the generated response is relevant to the
input post) and fluency (which measures whether
the quality of the generated response). Each gener-
ated response will be categorized into bad, normal
or good (scaled as 0, 1, 2). Note that a generated
response will be labled as bad, if it is irrelevant
to the post or has grammar mistakes. Besides, a
good generated response is more than just fluent
but also informative compared with a normal one.
We report acceptable ratio for responses that are
labeled as 1 or 2, and good ratio only for responses
that just are labeled as 2.
Diversity: It measures the number of semantically
distinct generated responses for a post. The higher
the better, the maximum scale is 3.

5 Results and Analysis

5.1 Comparison Against Baselines

Results of automatic metrics and human labelings
are shown in Table 2. The Kappa score is 0.45 and
0.70 for quality and diversity labeling, indicating
that the annotators share a satisfactory agreement
in the labeling.

We firstly examine the significance of latent vari-
able. Generally speaking, the compared models
without any latent variable (the first 4 rows in Ta-
ble 1) perform the worst. As shown in Table 1, S2S
and MMI achieve the lowest scores. Comparing
the 3 generated responses by S2S and MMI shown
in Table 2 (the 3 columns), they share similar se-
mantics with only a few word variants. As MMI
has to rerank the candidates generated by S2S, their
performances are similarly disappointing. This re-
sult supports that Seq2Seq is limited in modeling
diverse responses for a given post even combined
with the reranking strategy. Moreover, MARM per-
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Post:
炎热的夏天想吃遍所有口味的冰淇淋
I want to eat ice-creams of all flavors of in the hot summer

Gold:
我现在特别想吃薰衣草冰淇淋
I really want to eat lavender ice cream right now

S2S 太可爱了，好想吃
It’s so cute, I want to eat it.

好想吃。好想吃
I want to eat it. I want to eat it

好想吃啊。好想吃
I want to eat it. I want to eat it

MMI 好想吃啊，好想吃。
I want to eat it. I want to eat it.

好想吃啊，好想吃
I want to eat it. I want to eat it.

好想吃啊. . . . . .
I want to eat it . . . . . .

MARM 这是什么口味的冰淇淋
What flavor is this ice-cream

这是什么口味的冰淇淋
What flavor is this ice-cream

这是什么口味的冰淇淋啊
What flavor is this ice-cream

CMHAM 冰淇淋也可以吃冰淇淋
Ice-cream can also eat ice-cream.

冰淇淋口味太重了吧
Ice-creams taste too heavy

好想吃
I want it.

CVAE 我好久没吃蛋糕了
I haven’t eaten cake for a long time

夏天快来吧，我的夏天。
Come on summer, my summer.

冰淇淋吃冰淇淋，哈哈。
Ice-cream eats ice-cream, haha.

DCVAE 我也好想吃这个！
I really want to eat this too!

夏天的夏天快到了
Summer’ summer is comming

好想吃啊，流口水了。
I really want to eat. My mouth is watering.

Ours-Foc 哇哦。好想吃哦。
Wow. I really want to eat it.

哇哦。好想吃哦。
Wow. I really want to eat it.

哇哦。好想吃哦。
Wow. I really want to eat it.

Ours-FocCoverage 真心不喜欢冰淇淋
I really don’t like ice cream

夏天都吃冰淇淋了。
Always have ice cream in summer.

夏天吃了这东东. . .
In summer, eat this thing...

Ours-FocConstrain 薄荷味真的很好吃！
Mint flavor is really delicious!

爱吃冰激凌的人表示羡慕嫉妒恨。
People who love to eat ice cream are green with envy.

吃货一枚，鉴定完毕。
A foodie, the identification is done.

Table 2: The gold and generated responses by each method.

forms similarly with S2S and MMI in terms of the
automatic scores, human judgments as well as the
generated responses shown in Table 2. Despite that
MARM introduces a set of latent embeddings, its
poor performance is attributed to the lack of extra
disentanglement control on the mixture learning
of latent mechanisms, as analyzed in the previous
section. Things become interesting when we ex-
amine the performance of CMHAM. It seems that
CMHAM effectively improves the diversity over
other Seq2Seq models if we only checked the indi-
cators in Table 1. However, the responses generated
by CMHAM from Table 2 are either too short or
ungrammatical. Such inconsistency between the
results from Table 1 and Table 2 might be resulted
from several causes. We conjecture one primary
reason is the gap between model training and test-
ing. During training, the semantic representation
in CMHAM is learned as a mixture of all attention
heads. While during testing, CMHAM is limited
to use one single constrained head to focus on a
certain post word.

We then examine the variational models
equipped with latent variable (the fourth to sixth
rows) to investigate which method(s) are more ef-
fective in utilizing the latent information. From Ta-
ble 1, CVAE brings obvious improvements on Dist
and Diversity as compared with the non-variational
models (the first four rows). However, the re-
sponses generated by CVAE in Table 2 are of low
quality. It is because that the vanilla CVAE has
no extra control on the latent variable, and the
stochasticity injected in the latent variable is too

overwhelming for the decoder when generating
responses. In turn, hardly the decoder is able to bal-
ance the latent semantics with the response fluency.
As a result, the latent variable fails to effectively
direct a high-quality response generation. When
comparing DCVAE with CVAE, we can see notice-
able increases especially on Quality and Diversity.
This is not surprising in that DCVAE introduces
additional control on each latent variable and con-
nects the variables with the words in the vocabulary.
Though it is more meaningful to incorporate the la-
tent variable in this way, DCVAE is still insufficient.
Take the 2nd generated response from DCVAE in
Table 2 as an example where the driving word is
“夏天(summer)”. In this case, DCVAE is unable
to adjust the attention, and thus directs the flawed
response to overly emphasize on “夏天(summer)”.
This example partially proves that even though DC-
VAE has taken control over the latent variable, it
is still problematic to guide response generation
through a coarse-grained signal.

On the contrary, the proposed model and its
variants Ours-FocCoverage Ours-FocConstrain
base on the fine-grained focus signal and success-
fully improve the overall generation quality as well
as response diversity. Especially, our full model
Ours-FocConstrain performs the best in terms of
almost every metric except BLEU-1. The high-
est scores of human evaluations in Table 1 and
the responses in Table 2 together show that our
proposed method Ours-FocConstrain is able to
generate high-quality and diverse responses. In
brief, our model introduces a performance boost
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as it fully leverages the word-level information for
response generation.
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Figure 2: The focus distributions of the 3 test cases by
Ours-Foc from Table 2
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Figure 3: The focus and attention distribution of
the the test cases by Ours-FocCoverage and Ours-
FocConstrain from Table 2.

5.2 Ablation Study and Analysis

To verify the effectiveness of each proposal
in our work, we conduct ablation studies
by comparing with several variants of our
model, Ours-Foc, Ours-FocCoverage and Ours-
FocConstrain. The ablation results are summa-
rized in the last three rows in Table 1 and Table 2.

Clearly, the performance gap among our variants
indicate that all the three modules in the proposed
model are of great importance. One thing to note in
Table 1 is the unsatisfactory performance achieved
by the bare-bone variant Ours-Foc that it performs
similarly with the vanilla Seq2Seq. Ours-Foc
solely contains the focus generator which dissem-
bles the discourse-level latent variable into word-
level guiding signals—focus—for each decoding
step. This setting is insufficient because the model
is prone to bypass the guiding signals. We observe
such unexpected phenomenon in Table 2 where
the three responses from Ours-Foc are generated
with one single model and thus they are similar to
each other. This phenomenon is further validated

in Figure 2, where we plot the focus distributions
that are correlated with the three responses from
Table 2. From this experiment, we can see that the
generated responses do not attach much attention
to the word “口味(flavor)” even though the word
is assigned with the highest focus weight. This ver-
ifies that, despite that Ours-Foc incorporates the
fine-grained focus, it still lacks mechanism(s) and
strategy(s) to make full use of it.

Upon the bare-bone model, Ours-FocCoverage
incorporates the proposed focus-guided mechanism
and increases the metric scores a lot especially on
the metric Dist and Diversity. We attribute this
increase to the use of coverage vector. In such
way, the model is able to adjust attention based on
attention history as well as the focus, rather than
simply considering the current relevant words as in
the standard attention mechanism. Therefore, the
focus tends to show guiding significance for the
decoder to generate qualified responses. From Ta-
ble 2 we can see, the responses generated by Ours-
FocCoverage differ from each other with respect
to both semantic meaning and their expressions.

More importantly, Ours-FocConstrain further
employs the novel focus constraint to properly
align the target response with input post accord-
ing to the focus. To examine in detail, we plot
both focus and decoding attention distribution of
the test cases by Ours-FocCoverage and Ours-
FocConstrain. As shown in Figure 3, the latent
variable of Ours-FocCoverage addresses the high-
est focus to the word “吃(eat)”. However, the de-
coder does not follow such guidance and pays more
attention to the word “冰淇淋(ice-cream)”, result-
ing in an improper response. In contrast, the latent
variable in Ours-FocConstrain concentrates more
on the word “口味(flavor)” than the others. With
the help of focus constraint, the decoder of Ours-
FocConstrain makes it to direct the generated re-
sponse embody the meaning of “口味(flavor)”.
In other words, though Ours-FocCoverage intro-
duces the coverage vector and potentially encour-
ages the diversity using different sampled latent
variables, Ours-FocConstrain steps further and
kills the chance of generating responses regard-
less of the focus by using the constraint Lfoc.
Drawing on the highest scores achieved by Ours-
FocConstrain, we conclude that the proposed fo-
cus constraint is an indispensable design and is
potentially beneficial for CAVE-based response
generation models.
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Overall speaking, the proposed Focus-
Constrained Attention Mechanism consists
of: (1) focus generator to produce fine-grained
signals; and (2) focus-guided mechanism and focus
constraint to fully utilize the signal. This ablation
study validates the necessity of fine-grained latent
information, and demonstrates the effectiveness
of each component in the proposed method.
By leveraging the proposed Focus-Constrained
Attention Mechanism, the decoder is able to
tell the importance of each word and start a
holistic-planned response generation under the
fine-grained focus guidance.

6 Conclusion

In this paper, we identify the insufficiency of
discourse-level latent variable in response genera-
tion. To address this, we develop a novel CVAE-
based model, which exploits a fine-grained word-
level feature to generate diverse responses. On a
real-world benchmarking dataset, we demonstrate
that our proposed model is able to fully leverage the
fine-grained feature, and generate better responses
as compared to several SOTA models. Based on the
ablation studies, we verify the contribution of each
proposal in our method and highlight the signifi-
cance of fine-grained signal in response generation.
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