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Abstract

Language-guided robots must be able to both
ask humans questions and understand answers.
Much existing work focuses only on the latter.
In this paper, we go beyond instruction follow-
ing and introduce a two-agent task where one
agent navigates and asks questions that a sec-
ond, guiding agent answers. Inspired by the-
ory of mind, we propose the Recursive Men-
tal Model (RMM). The navigating agent models
the guiding agent to simulate answers given
candidate generated questions. The guiding
agent in turn models the navigating agent to
simulate navigation steps it would take to gen-
erate answers. We use the progress agents
make towards the goal as a reinforcement
learning reward signal to directly inform not
only navigation actions, but also both question
and answer generation. We demonstrate that
RMM enables better generalization to novel en-
vironments. Interlocutor modelling may be a
way forward for human-agent dialogue where
robots need to both ask and answer questions.

1 Introduction

A key challenge for embodied language is moving
beyond instruction following to instruction genera-
tion, which can require understanding the listener.
The turn-based dialogue paradigm raises a myriad
of new research questions, from grounded versions
of traditional problems like co-reference resolution
(Das et al., 2017a) to explicitly modeling theory
of mind in order to consider the listener’s ability
to understand generated instructions (Bisk et al.,
2020). In this paper, we develop end-to-end di-
alogue agents to navigate photorealistic, indoor
scenes to reach goal rooms. We train agents us-
ing the human-human Collaborative Vision-and-
Dialogue Navigation (CVDN) (Thomason et al.,
2019) dataset. CVDN dialogues are turn-based,
with a navigator following guide instructions and
asking questions when needed.
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Figure 1: The RMM agent recursively models conversa-
tions with instances of itself to choose the right ques-
tions to ask (and answers to give) to reach the goal.

Modeling turn-based dialogues involves four
core challenges:
C1 A navigator deciding when to ask a question.
C2 Generating navigator questions.
C3 Generating guide question answers.
C4 Generating navigator actions.

Prior work has addressed individual components
of turn-based dialogue modeling. This work is the
first to train navigator and guide agents to perform
end-to-end, collaborative dialogues with question
generation (C2), question answering (C3), and nav-
igation (C4) conditioned on dialogue history.

Theory of mind (Gopnik and Wellman, 1992)
posits that efficient questions and answers build on
a shared world of experiences and referents. To
communicate efficiently, people model both a lis-
tener’s mental state and the effects of their actions
on the world. Modeling future worlds in naviga-
tion (Anderson et al., 2019) and control (Paxton
et al., 2019) are open research questions, and we
approximate solutions through a Recursive Men-
tal Model (RMM) of a conversational partner. Our
agent spawns instances of itself to simulate the ef-
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fects of dialogue acts before asking a question or
generating an answer to estimate their effects on
navigation. Viewed as a single system, the agents
cooperatively search through the space of dialogues
to efficiently perform embodied navigation.

2 Related Work and Background

We build on research in multimodal navigation and
the wider literature involving goal oriented dia-
logue. Table 1 summarizes how our work differs
from existing work in vision-and-language naviga-
tion and task-oriented dialogue modelling.

Instruction Following tasks an embodied agent
with interpreting natural language instructions and
visual observations to reach a goal (Jayannavar
et al., 2020; Wang et al., 2019; Ma et al., 2019;
Anderson et al., 2018; Chen and Mooney, 2011).
These instructions describe step-by-step actions the
agent needs to take, and can involve the creation of
speaker models for data augmentation that provide
additional instructions (Fried et al., 2018). This
paradigm has been extended to longer trajectories
and outdoor environments (Chen et al., 2019), as
well as to agents in the real world (Chai et al., 2018;
Tellex et al., 2014). In this work, we focus on the
the simulated, photorealistic indoor environments
of the MatterPort dataset (Chang et al., 2017), and
go beyond instruction following alone to a two-
agent dialogue setting.

Navigation Dialogues task a navigator and a
guide to cooperate to find a destination. Previous
work includes substantial information asymmetry
between the navigator and guide (de Vries et al.,
2018; Narayan-Chen et al., 2019). Information
asymmetry can take the form of the navigator see-
ing a bird’s eye, abstract semantic map while the
guide sees egocentric simulation frames (de Vries
et al., 2018), affecting the kind of dialog possible
when low-level visual cues cannot be grounded by
the navigator. Other work only investigates the nav-
igation portion of the dialogue without considering
text question generation and answering (Thomason
et al., 2019). Going beyond models that perform
navigation from dialogue history alone (Wang et al.,
2020; Zhu et al., 2020; Hao et al., 2020), or decide
when to ask navigator questions but do so as a sim-
ple “help” flag with oracle responses (Chi et al.,
2020; Nguyen et al., 2019), in this work we train
two agents: a navigator agent that asks questions,
and a guide agent that answers those questions.

Representative Work Cl1 C2 C3 C4
Anderson et al. (2018) v
Fried et al. (2018) 7/
Narayan-Chen et al. (2019) v

Nguyen and Daumé IIT (2019) /7
Chi et al. (2020) v v
Thomason et al. (2019) v
RMM v v 7/

Table 1: Previous work has addressed subsets of the
four key challenges for turn-based navigation dialogues
by training single-turn agents. No prior work has tack-
led generating navigator questions (C2); by doing so,
our work becomes the first to train two agents jointly
on multi-turn dialogues where agents both produce and
consume task-relevant language. We eschew only the
challenge of deciding when to ask questions (C1), us-
ing a fixed heuristic instead.

Multimodal Dialogue takes several forms. In
Visual Dialogue (Das et al., 2017a), an agent an-
swers a series of questions about an image that may
require dialogue context. Reinforcement learning
gives strong performance on this task (Das et al.,
2017b), and such paradigms have been extended to
producing multi-domain visual dialogue agents (Ju
et al., 2019). GuessWhat (de Vries et al., 2017)
presents a similar paradigm, where agents use vi-
sual properties of objects to reason about which ref-
erent meets various constraints. Identifying visual
attributes can also lead to emergent communication
between pairs of learning agents (Cao et al., 2018).

Goal Oriented Dialogue systems can help a
user achieve a predefined goal, from booking flights
to learning kitchen tasks (Gao et al., 2019; Vlad
Serban et al., 2015; Bordes and Weston, 2017; Chai
et al., 2018). Modeling goal-oriented dialogue re-
quires skills that go beyond language modeling,
such as asking questions to clearly define a user
request, querying knowledge bases, and interpret-
ing results from queries as options to complete a
transaction. Many recent task oriented systems
are data-driven and trained end-to-end using semi-
supervised or transfer learning methods (Ham et al.,
2020; Mrksic et al., 2017). However, these data-
driven approaches may lack grounding between
the text and the environment state. Reinforcement
learning-based dialogue modeling (Su et al., 2016;
Peng et al., 2017; Liu et al., 2017) can improve
completion rate and user experience by helping
ground conversational data to environments.
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3 Task and Data

Our work creates a two-agent dialogue task, build-
ing on the CVDN dataset (Thomason et al., 2019)
of human-human dialogues. In that dataset, a hu-
man A avigator and Guide collaborate to find a goal
room containing a target object. The N avigator
moves through the environment, and the Guide
views this navigation until the Navigator asks a
question in natural language (C1, C2). Then, the
Guide can see the next few steps a shortest path
planner would take towards the goal, and produces
a natural language response (C3). Dialogue contin-
ues until the N avigator arrives at the goal (C4).
We model this dialogue between two agents:

1. Questioner (Q) & Navigator (N)

2. Guide (G)

We split the first agent into its two roles: question
asking (C2) and navigation (C4). As input, the
agents receive the same data as their human coun-
terparts in CVDN. Specifically, both agents (and all
three roles) have access to the entire dialogue and
visual navigation histories, in addition to a textual
description of the target object (e.g., a plant). The
N avigator uses this information to execute on a se-
quence of actions composed of: forward, left,
right, look up,look down,and stop. The
Questioner asks for specific guidance from the
Guide. The Guide is presented with the naviga-
tion and dialogue histories as well as the next five
shortest path steps to the goal, given as a sequence
of image observations those steps produce.

Agents are trained on human-human dialogues
of natural language questions and answers from
CVDN. Individual question-answer exchanges in
that dataset are underspecified and rarely pro-
vide simple step-by-step instructions like “straight,
straight, right, ...”. Instead, exchanges rely on as-
sumptions of world knowledge and shared con-
text (Frank and Goodman, 2012; Grice et al., 1975),
which manifest as instructions rich with visual-
linguistic co-references such as should I go back to
the room I just passed or continue on?

The CVDN release does not provide any base-
lines or evaluations for the interactive dialogue set-
ting we present, and instead focuses solely on navi-
gation (C4). We use the same metric as that work,
“Goal Progress” in meters—the distance reduction
between the N avigator’s starting position and end-
ing position with respect to the goal location.

Dialogue navigation proceeds by iterating
through the three roles until either the N avigator

Algorithm 1: Dialogue Navigation

loc = po;
hist = to;
@ ~ N (hist);
loc, hist = update(d, loc, hist);
while @ # STOP and len(hist) < 20 do
q ~ Q(hist, loc) ; // Question
§ = path(loc, goal, horizon = 5) ;
o ~ O(hist,loc, q,§) ;
hist < hist + (q,0);
for a € N'(hist) do
loc < loc+ a;
hist < hist + a;
end

// Answer

// Move

end

return (goal — to) — (loc — to)

chooses to stop or a maximum number of turns
are played (Algorithm 1). In addition to “Goal
Progress”, we report BLEU scores (Papineni et al.,
2002) for evaluating the generation of questions
and answers by comparing against human ques-
tions and answers. Note, in our dialogue setting,
Goal Progress also implicitly measures the utility of
generated language and is therefore complementary
to BLEU when evaluating utility versus fluency.

4 Models

We introduce the Recursive Mental Model (RMM) as
an initial approach to our new full dialogue CVDN
task formulation. Key to this approach is allowing
component models (N avigator, Questioner, and
Guide) to learn from each other and roll out pos-
sible dialogues and trajectories. We compare our
model to a traditional sequence-to-sequence base-
line, and we explore data augmentation using the
Speaker-Follower method (Fried et al., 2018).

4.1 Sequence-to-Sequence Architecture

The underlying architecture, shown in Figure 2,
is shared across all approaches. The core dia-
logue tasks are navigation action decoding and
language generation for asking and answering ques-
tions. We present three sequence-to-sequence (Bah-
danau et al., 2015) models to perform as A avigator,
Questioner, and Guide. The models rely on an
LSTM (Hochreiter and Schmidhuber, 1997) en-
coder for the dialogue history. To encode vi-
sual observations, our models take the penultimate
ResNet (He et al., 2015) layer as the image observa-
tion. Future work may explore different and more
nuanced encoding architectures.
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Figure 2: Our backbone Seq2Seq architectures are provided visual observations and portions of the dialogue history

when taking actions or asking/answering questions.

Navigation Action Decoding (C4) Initially, the
dialogue context is just a target object tp category,
for example “plant.” The goal room contains an in-
stance of that category. As questions are asked and
answered, the dialogue context grows. Following
prior work (Anderson et al., 2018; Thomason et al.,
2019), dialogue history words @ words are embed-
ded as 256 dimensional vectors and passed through
an LSTM to produce « context vectors and a final
hidden state hp. The hidden state hp is used to
initialize the LSTM decoder. At every timestep the
decoder is updated with the previous action a;—1
and current image observation I;. The hidden state
is used to attend over the language « and predict
the next action a; (Figure 2a).

We pretrain the A avigator on the navigation task
alone before fine-tuning in the full dialogue setting
that we introduce. The next action is sampled from
the model’s predicted logits, and the episode ends
when either a st op action is sampled or 80 actions
are taken (Thomason et al., 2019).

Speaker Models (C2 & C3) To generate ques-
tions and answers, we train sequence-to-sequence
models (Figure 2b) where an encoder takes in a
sequence of images and a decoder produces a se-
quence of word tokens. At each decoding timestep,
the decoder attends over the input images to predict
the next word of the question or answer. This model
is also initialized via training on CVDN dialogues.
In particular, question asking (Questioner) encodes
the images of the current viewpoint where a ques-
tion is asked, and then decodes the question tokens
produced by the human N avigator. Question an-
swering (Guide) encodes images of the next five
steps the shortest path planner would take towards
the goal, then decodes the language tokens pro-

duced by the human Guide. Pretraining initializes
the lexical embeddings and attention alignments
before fine-tuning in the collaborative, turn-taking
setting we introduce in this paper.

Conditioning Context We define three levels of
dialogue context given as input to our N avigator
agents in order to evaluate how well they utilize
the generated conversations. We compare agents’
ability to navigate to the goal room given:

to the target object present in the goal room;
QA;, additionally the previous question-and-
answer exchange;

QA1.;1 additionally the entire dialogue history.

We constrain the Questioner and Guide speaker
models to condition on fixed contexts. The
Questioner model takes as input the current vi-
sual observation I; and the target object tp. The
Guide model takes the visual observations I}, ;. 5
of the next five steps of navigation according to a
shortest path planner, the target object tp, and the
last question (;_; generated by the Questioner.!

4.2 Recursive Mental Model

We introduce the Recursive Mental Model agent
(RMM),” which is trained with reinforcement learn-
ing to propagate feedback from navigation error
through all three component models: N avigator,
Questioner, and Guide. In this way, the training
signal for question generation includes the training

!'This limits phenomena like co-reference, but dramatically
reduces the model’s input space. Handling arbitrarily long
contexts with limited training data is left to future work.

https://github.com/HomeroRR/rmm
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Figure 3: The Recursive Mental Model allows for each
sampled generation to spawn a new dialogue and corre-
sponding trajectory to the goal. The dialogue that leads
to the most goal progress is followed by the agent.

signal for answer generation, which in turn is de-
rived from the training signal from navigation error.
The agent’s progress towards the goal in the envi-
ronment informs the dialogue itself; each model
educates the others (Figure 3).

Each model among the Navigator, Questioner,
and Guide may sample N trajectories or genera-
tions of max length L. These samples in turn are
considered recursively by the RMM agent, leading
to N7 possible dialogue trajectories, where T is
at most the maximum trajectory length. To pre-
vent unbounded exponential growth during train-
ing, each model is limited to a maximum number
of total recursive calls per run. Search techniques,
such as frontiers (Ke et al., 2019), could be em-
ployed in future work to guide the agent.

Training In the dialogue task we introduce, the
agents begin only knowing the name of the target
object. The Navigator agent must move towards
the goal room containing the target object, and can
ask questions using the Questioner model. The
Guide agent answers those questions given a privi-
leged view of the next steps in the shortest path to
the goal rendered as visual observations.

We define two different loss functions to learn
the parameters 6 of the Navigator agent. We
learn a policy 7y (7|to) which maximizes the log-
likelihood of the shortest path trajectory 7 given
target object tp present in the goal room (Eq. 1).
The action decoder a; = fp (2, I;) takes language
encoder z; = fp _(w1.¢) as input along with the im-
age observations I; at time ¢. Dialogue context at
time ¢, wy.¢ 1s input to the language encoder. The
cross entropy loss is defined as:

T

Jop(0) = = log (a1, to, wiy) (1)
t=1

Our second N avigator RL agent loss is standard
policy gradient based Advantage Actor Critic (Sut-

ton and Barto, 1998) minimizing a k-step TD? error
of the critic, Jr,(6):

—_

T T
= ZA” log mp(a¢| I+, to, wit) + B Z(AW)2
t=1 t=1
(2)

A"=ry 1+V 7 (I141)-V™(I;) is the advantage func-
tion in Eq. 2, where 7441 is the reward measured
by the goal progress and the V™ denotes the state-
value (critic) model. The first term in Eq. 2 is the
actor loss, while the second term is the critic (value)
loss of the advantage actor critic loss function. The
overall system is trained end-to-end using sum of
the RL agent loss of the navigator agent Jgr,(0)
and the cross entropy loss between the ground
truth and the generated trajectories, Jog(6). The
speaker model parameters are also updated via the
sum of the standard question/answer generation
cross entropy and the composite A avigator agent
loss from the branch with the max goal progress.

Inference During training, exact environmental
feedback—the remaining distance to the goal—can
be used to evaluate samples and trajectories. This
information is not available during inference, so
we instead rely on the navigator’s confidence to
determine which of several sampled paths should
be explored. For every question-answer pair sam-
pled, the agent rolls forward five navigation actions
per sequence, and the trajectory sequence with the
highest probability is used for the next timestep.
This heuristic does not guarantee that the model
is progressing towards the goal, but empirically
confidence-based estimation enables progress.

4.3 Dialogue Gameplay

As is common in dialogue settings, there are sev-
eral moving pieces and a growing notion of state
throughout training and evaluation. In addition
to the Navigator, Questioner, and Guide, the
Navigator agent also needs to determine when to
invoke the Questioner model to get supervision
from the Guide (C1). We leave this component—
when to ask questions—for future work and set a
fixed number of steps before asking a question. We
invoke the Questioner model after every 4 naviga-
tion steps based on the human average of 4.5 steps
between questions in CVDN.

Setting a maximum trajectory length is required
due to computational constraints as the the lan-

3Temporal Difference
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guage context wy;; grows. Following Thomason
et al. (2019), we use a maximum navigation length
of 80 steps, leading to a maximum of % = 20
question-answer exchanges per dialogue.

We use a single model for question and answer
generation, and indicate the role of spans of text by
prepending <NAV> (Questioner navigation ques-
tions) or <ORA> (Guide answers based on oracle
views) tags (Figure 2a) to condition the generation
task. During roll outs the model is reinitialized to
prevent information sharing via the hidden units.

4.4 Training Details

We initialize the Navigator, Questioner, and Guide
agents as encoder-decoder LSTM models with 512
hidden dimensions. The A avigator encoder is a
forward LSTM, while the Questioner and Guide
speaker models use bi-LSTM encoders. We use
the 512 dimensional penultimate ResNet layer for
image observations I, embed words w in 256 di-
mensions, and embed actions in 32 dimensions.
The models observe a word history up to 160 to-
kens, and can decode up to 80 actions per episode.
The value/critic module is a linear layer with relu
and dropout on top of the hidden state.

We optimize the N avigator models with the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.0001 with weight decay 0.0005.
For the Questioner and Guide models, we use an
RMSProp optimizer with learning rate 0.0001.

Models are pretrained on CVDN data with
batches of size 100 for 20, 000 iterations. During
self-play, models are trained with batches of 10, for
RMM with N = 3, or 100 else for 5, 000 iterations.
A dropout rate of 0.5 is used during all training.
All Navigator models are trained using student
sampling (Anderson et al., 2018). In RMMy—3, one
action sequence is produced via argmax decoding,
while the other two via sampling (no temperature).
The same is true for language decoding but with
a temperature of 0.6. Exploration of how sampler
strategies effect performance is left for future work.

Data Augmentation (DA) Navigation agents
can benefit from generated language instruc-
tions (Fried et al., 2018). We augment the base-
line model’s navigation training data in a fashion
similar to the rollouts of RMMy—3 to create a more
direct comparison between the baseline and RMM.
We choose a CVDN conversation and sample three
action trajectory rollouts, two by sampling an ac-
tion at each timestep, and one by taking the argmax

Model Goal Progress (m) 1 BLEU 1

+Oracl
to QAi1 QA1 Sto;;icnz QA1 QA1

Seq2Seq 20.1 105 150 229 09 08
§Seq2Seq + DA 20.1 10.5 100 142 13 13

RMMpy_—; 18.7 10.0 13.3 204 33 3.0
§RMMN:3 189 11.5 140 168 34 3.6
Shortest Path 32.8
=Seq2Seq 6.8 4.7 46 63 05 05
§Seq2Seq +DA 68 5.6 44 6.5 1.3 1.1
S RMMpy 6.1 6.1 51 6.0 26 2.8
—RMMy—3 73 55 56 89 29 29
> Shortest Path 29.3

Table 2: Dialogue results on CVDN. Data Augmen-
tation adds noisy training data for the model. Goal
progress evaluates the quality of the inferred navigation
trajectory, while BLEU scores estimate the quality of
the generated questions and answers. Evaluations con-
ditioning on the entire dialogue history are highlighted
in gray with the best results in blue.

action at each timestep. We evaluate those tra-
jectories’ progress towards the conversation goal
location and keep the best for augmentation. We
give the visual observations of the chosen path
to the pretrained Questioner model to produce a
relevant instruction. This trajectory paired with
a generated language instruction is added to the
training data, and we downweight the contribu-
tions of these noisier pairs to the overall loss, so
loss = X * generations + (1 — A) * human. The
choice of A affects the fluency of the language gen-
erated; we use A = 0.1.

5 Results

In Table 2 we present dialogue results for our RMM
agent and competitive baselines. We report two
main results and four ablations for seen and unseen
house evaluations; the former are novel dialogues
in houses seen at training time, while the latter are
novel dialogues in novel houses.

Full Evaluation The full evaluation paradigm
conditions navigation on the entire dialogue history
@ A1.;1 in addition to the original target object to.
We present two conditions for RMM (/N = 1 and
N = 3). Recall that N indicates the number of tra-
jectories (N avigator) or generations (Questioner,
Guide) explored in our recursive calls. N = 1 cor-
responds to taking the single maximum prediction
while N = 3 allows the agent to sample alterna-
tives (Section 4.2). While low, the BLEU scores
are better for RMM-based agents across settings.
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A challenge for navigation agents is knowing
when to st op. Following previous work (Ander-
son et al., 2018), we additionally report Oracle
Success Rates measuring the best goal progress the
agents achieve along the trajectory.

In unseen environments, the RMM-based agents
make the most progress towards the goal and ben-
efit from exploration at during inference (/N = 3),
and this result holds when considering Oracle
Success. In seen environments, by contrast, the
RMM-based agents perform slightly less well than
the baseline sequence-to-sequence models on goal
progress. This effect may be a consequence of
environment bias in navigation simulations where
houses are seen at both training and inference time
with overlapping paths (Zhang et al., 2020).

Ablations We also include two simpler results:
to, where the agent is only provided the target ob-
ject and explores based on this simple goal, and
QA; 1 where the agent is only provided the previ-
ous question-answer pair. Both of these settings
simplify the learning and evaluation by focusing
the agent on search and less ambiguous language,
respectively. There are two results to note.

First, given only ¢o the RMM trained model with
sampling generalizes best to unseen environments.
In this setting, during inference all models have the
same limited information, so the RL loss and ex-
ploration have better equipped RMM to generalize.

Second, several trends invert between the seen
and unseen scenarios. Specifically, the simplest
model with the least information performs best
overall in seen houses. This high performance
coupled with weak language appears to indicate
the models are learning a different (perhaps search
based) strategy rather than how to utilize dialogue.
In the QA; 1 and QA1.;1 settings, the agent gener-
ates a question-answer pair before navigating, so
the relative strength of the RMM model’s commu-
nication becomes clear. We analyze the generated
language and navigation behavior of our models.

6 Analysis

We analyze the lexical diversity and effectiveness
of generated questions by the RMM.

6.1 Lexical Diversity

Both RMM and Data Augmentation introduce new
language by exploring and the environment and
generating dialogues. In the case of RMM, an RL
loss is used to update the models based on the most
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Figure 4: Log-frequency of words generated by human
speakers as compared to the Data Augmentation (DA)
and our Recursive Mental Model (RMM) models.

successful dialogue. Using Data Augmentation, the
best generations are simply appended to the dataset
for one epoch and weighted appropriately for stan-
dard, supervised training. The augmentation strat-
egy leads to small boost in BLEU performance
and goal progress in several settings (Table 2), but
the language appears to collapse to repetitive and
generic interactions. We see this manifest rather
dramatically in Figure 4, where the DA is limited
to only 22 lexical types. In contrast, RMM continues
to produce over 500 unique lexical types, much
closer to the nearly 900 used by humans.

Human Evaluation We collected human judge-
ments comparing human dialogs with generated
dialogs from the baseline and RMM agents on 254
randomly selected episodes from the unseen vali-
dation set. While RMM uses an RL objective to
inform its language generation and achieves higher
progress towards the goal in this setting (Table 2), it
is rated as equally or more grammatical (57%) and
as equally or more fluent (60%) than the baseline
agent, suggesting that RMMs generated language
has not devolved into a neuralese to achieve better
task performance. Human dialogs were rated as
equally or more grammatical and fluent than RMM
(89%/83%) and the baseline (88%/80%).

6.2 Effective Questions

The dialogue paradigm allows us to assess the ef-
ficacy of speech acts in accomplishing goals. In
a sense, the best question elicits the answer that
maximizes the progress towards the goal room. If
agents are truly effective at modeling one other, we
expect the number of dialogue acts to be minimal.

Human conversations in CVDN always reach the
goal location, and usually with only 3-4 questions,
as shown in Figure 5a. We see that the relationship
between questions and progress is roughly linear,

1738



=
o
o

©
o

(<))
o

N
o

N
o

o

Ave Percent Goal Progress Made

0 20 40 60 80 100
Percent Dialogue Questions Asked and Goal Guesses So Far
(a) Human goal progress as dialogues unfold. As humans
ask questions and make goal guesses, they roughly linearly

make progress towards the goal location.

N
o

fun
w

Percent Goal Progress
=
o
N

w

Number of Questions

(b) Model goal progress against the number of questions. DA
and RMM generated dialogues make slower but consistent
progress (ending below 25% of total goal progress).

Figure 5: Effectiveness of human dialogues (left) versus our models (right) at reaching the goal location. The
slopes indicate the effectiveness of each dialogue exchange in reaching the target.

excusing the occasional lost and confused human
teams. The final human-human question is often
simply confirmation that navigation has arrived
successfully to the goal room.

In Figure 5b, we plot dialogues for the Base-
line, Data Augmentation, and RMM agents against
percent goal progress. The RMM consistently out-
performs the other two agents in terms of goal
progress for each dialogue act. We see an increase
in progress for the first 10 to 15 questions before
RMM levels off. By contrast, the Baseline and Data
Augmentation agents exhibit shallower curves and
fail to reach the same level of performance.

6.3 Example Dialogue

While Figure 1 shows a cherry-picked RMM tra-
jectory from an unseen validation house, Figure
6 gives a lemon-picked RMM trajectory. We dis-
cuss the successes and failures of a lemon-picked—
showcasing model failure—trajectory in Figure 6.
As with all CVDN instances, there are multiple
target object candidates (here, “fire extinguisher”)
but only one valid goal room. Agents can become
distracted by objects of the target instance in non-
goal rooms. When the Guide is shown the next few
shortest path steps to communicate, those steps are
towards the goal room. As can be seen in Figure 6,
the learned agents have difficulty in deciding when
to stop and begin retracing their steps, and in this
case never arrived to the correct goal room.

The learned models’ generated language is of dif-
ferent levels of quality, with RMM language much
more coherent and verbose than Data Augmenta-
tion language. Figure 7 shows generated conver-
sations along with the Goal Progress (GP) at each
point when a question was asked. Note that the gen-
eration procedure for all models use the same sam-

Humans

R
Baseline —p

Figure 6: Trajectories in an unseen environment at-
tempting to find a target “fire extinguisher.” The red
stop-sign is the goal room, while the black stop-sign
is a non-goal room containing fire extinguishers. The
white trajectory is the human path from CVDN, black
is the Baseline model, and green is our RMMy —3.

pler, and they start training from the same check-
point, so the relatively coherent nature of the RMM
as compared to the simple repetitiveness of the
Data Augmentation is entirely due to the recursive
calls and RL loss. No model uses length penalties
or other generation tricks to avoid degeneration.

7 Conclusions and Future Work

We present a two-agent task paradigm for coop-
erative vision-and-dialogue navigation (CVDN).
Existing work in vision-and-language navigation
is largely limited to navigation only (C4), some-
times with limited additional instructions (C4,C3).
By contrast, this work requires navigation (C4),
question asking (C2), and question answering (C3)
components for learned, end-to-end dialogue. We
find that simple speaker models are insufficient for
the dialogue setting, and demonstrate promising
results from a recursive RL formulation with turn
taking informed by theory of mind.

1739



Conversation GP

g ® Do I go in between the ropes to my right or straight forward? @ straight forward through the next room 0
g ® Should I proceed down the hall to the left of turn right? ® head down the hall to your right into the next room 13.3
= 8 Should I go through the open doors that are the closest to me? @ You are in the goal room 29.1
< 9 should i go into the room? ® you are in the goal room. 5.7
A @ should i go into the room? ® you are in the goal room. 0.0
® should i head forward or bedroom the next hallway in front @ yes, all the way down the small hall. 4.0

of me?
® should i turn left here?

3

RMMy

® head into the house, then you will find a doorway 5.7
at the goal staircase. go through the doors before
those two small exit chairs, about half way down
the hall.

® lots of sink in this house, or wrong did. ok which way do i go @ go down the hallway, take a left and go down the 8.8

next hallway and up the stairs on the right.

Figure 7: Dialogue samples for Figure 6 with corresponding Goal Progress — see appendix for complete outputs.

There are several limitations to the models pre-
sented in this paper. We consider only agent-agent
models, while the long-term goal of human-agent
communication will require both human-in-the-
loop training and evaluation. Future work using
RMM-style modelling inspired by theory of mind
will likely need to explicitly model the human in-
terlocutor due to perceptual and communication
differences (Liu and Chai, 2015), rather than as-
suming the interlocutor can be modeled as a copy
of oneself as in this paper. Such modeling may
incorporate world knowledge for richer notions of
common ground, for example by explicitly detect-
ing scene objects rather than using a fixed visual
embedding (Zhang et al., 2020). Additionally, we
currently require the A avigator agent to ask ques-
tions after a fixed number of steps, while determin-
ing when to ask questions is a complex problem in
itself (C1) (Chi et al., 2020). Furthermore, we use
a fixed branching factor, while a dynamic branch-
ing factor in non-parametric learning setting can
incorporate the uncertainty of the policy model.

We hope this task paradigm will inspire future re-
search on learning agent-agent, task-oriented com-
munication with an eye towards human-agent co-
operation and language-guided robots.
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A Appendix

A.1 Additional Reproducibility details
1. Hardware: Single NVIDIA P100 GPU

2. Training times:

Setting Iterations Average time
Pretraining 20K 273m
Baseline 5k 1,622m
Data Aug Sk 1,161m
RMM1 Sk 4,205m
RMM3 Sk 6,590m

3. Model parameters:
Speaker 3.5M
Action Decoding 4.7M

4. Hyperparameters:
Bounds for temperature sampling  [0.1-2.0]
Bounds for lambda DA contribution [0.1-1.0]
Trials for temperature sampling [0.1, 1.0, 2.0]
Trials for lambda DA contribution [0.1, 0.25, 0.5, 0.75, 1.0]
Method for choice Grid search

A.2 Human Evaluation details

The table below shows the full results of the human evaluation on a randomly selected subset of 245
unseen environment dialogues. Questions asked:

Q1 Which dialog is more grammatically correct?
Q2 Which dialog is more fluent?
Q3 Do the two dialogues seem to have the same goal?

% Favored % Same Goal
Model Q1 Q2 Q3

RMM 35.0 37.0 Same 49.6
Baseline 42.5 39.8 Diff 50.4
No Difference 22.4 23.2

RMM 11.0 17.3 Same 44.9
Human 76.8 67.7 Diff 55.1
No Difference 12.2 15.0

Baseline 12.2 20.1 Same 45.7
Human 78.0 63.8 Diff 54.3

No Difference 9.8 16.1
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A.3 Conversation Examples

Full human and baseline conversations for Figure 6.

Conversation GP
® Do I go in between the ropes to my right or straight forward? 0
- ® straight forward through the next room
g ® Should I proceed down the hall to the left of turn right? 13.31
S ® head down the hall to your right into the next room
T o Should I go through the open doors that are the closest to me? 29.05
® You are in the goal room
® ok now which way ? 4.0
® keep going forward and then into a bedroom on your left . it * s to the left of the bed .
® do i continue going to the right into the living room ? 5.7
® go into the door in front of you , then an right , the bathroom ’ s there .
o 9 do i keep going to the right into the living room ? 8.8
% ® it looks like that is the goal room .
2 @ should i go into the laundry room to my right , or do i need to go in ? 7.5
A @ i see many ways to tell . you just go around . you ’ re in the right room .
® ok now which way ? 4.0
® go into the room near you . that should be the goal
® okay i see any set of stairs . should i go up them ? 0.4
® turn right , then another right , the bathroom ’ s there .
® ok . can you go more directions . i see many rooms on this floor . 0
® turn right , then another right , the bathroom ’ s there .
® should i go the room ? or into the door to my left ? 4.0
® turn right , then another right , the bathroom ’ s there .
® should i stay in this room or go out ? 8.8
® turn right , then another right , the bathroom ’ s there .
® ok, should i go in this direction ? 9.9
® turn right , go past the pool table , into the room just towards the stairs . that should be the goal .
® should i go left toward the room , or past the painting and straight ? or to my right ? 7.5
® turn right , then another right , the bathroom ’ s there .
® should i take a left here in the room ? 5.7
® that is the goal room
® should i stay in this room or go out ? 8.8
® you see the front , that is the room . its goal room
® the room ? or into the door to my left ? 13.3
® go up the stairs in front of you , then to your left , you * 11 see a bathroom . i think that bathroom is the goal
® should i go left toward the room , or past the painting and straight ? or to my right ? 9.3
® go towards the table in front of me of the hallway after take a right , then make a left into the sitting room .
® should i go to the right towards the blue painting ? 9.3
® continue going up , go to the bedroom
® should i go into the door on the left , or keep going forward ? 11.1
® go into the bedroom near you . that should be the goal
® doineedtogoup? 8.8
® go out in the room , make a right past the blue painting and go up the stairs
® ok now which way ? 7.5
® go up the spiral stairs again when you ’ go into that bedroom straight ahead .
® should i go outside ? 8.8

® a bathroom on pretty left , go in it and then into the bathroom in that bedroom
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Data Augmentation and RMM conversations for Figure 6.

Conversation GP
® should i go into the room? 5.66

< @ you are in the goal room.
2 @ should i go into the room? 0.03

® you are in the goal room.
... (repeats until maximum trajectory length is reached)

® should i head forward or bedroom the next hallway in front of me ? 4.0
® yes, all the way down the small hall .
® should i turn left here ? 5.7

® head into the house , then you will find a doorway at the goal staircase . go through the doors before those two
small exit chairs , about half way down the hall .

® lots of sink in this house , or wrong did . ok which way do i go 8.8
® go down the hallway , take a left and go down the next hallway and up the stairs on the right .
® right place now ? 7.5

® turn left and when you reach to the bathroom . before these go up the stairs on your left , and walk passed the
mirror and chairs on the left into hallway across from the stairs

® doi go left, right , or up the stairs ? 4.0
® turn to your left and keep going straight

® do i make a right turn or shall i enter the room to my left ? 0.4
® turn left to go down the hall , then that fire bed has that

® left or continue ? 0

® yes , go past the dining table and take an immediate right . head through the small door to the left of the window
before those two way doors behind you , go up the second small set of stairs .

® should i go downstairs or turn left ? 4.0
® go to the right and go to the front doorway .

® should i go down the stairs or stay on this floor ? 8.8
® take a left towards the bathroom , then take a left before it and go all the way down the hall

® do i go up these is to the right or right of the steps ? 9.9

® ¢o to the left side of the staircase and turn left in the doorway before the two small office chairs , about half way
down the hall .

® should i turn left , go straight into the living room , or up the stairs ? 7.5
® turn to your right and go straight down the hall

® do i go out into the hallway ? 5.7
® o left down the hall where the office floor . and pass the second door after a right and table .

® ok, should i go right or left next ? 8.8
® go back to the staircase . go through the doorway you and before the hallway on the right .

® do i make a left turn or shall i enter the room to my left ? 133
® go down the hall and turn right into the bedroom

® should i go to the left or the right ? 9.3

® yes , go out of this room , turn right and go down the white hall before the staircase stairs , then go down the way
down that way you get .

® ok i was a in by this office painting , or i just in the second hallway in front of me ? 9.3
® okay .
® which way do i go in, or do i head up the stairs ? 11.1

® o all the way to the one of the staircase . turn left in the doorway before the two two office chairs , about half
way down the hall .

® ok wrong far which way do i go 8.8
® right then at the top of the stairs .
® left or continue ? 7.5

® yes . go down the hall and stop at the landing of the stairs .
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