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Abstract

Negation is underrepresented in existing
natural language inference benchmarks.
Additionally, one can often ignore the few
negations in existing benchmarks and still
make the right inference judgments. In this
paper, we present a new benchmark for
natural language inference in which negation
plays an important role. We also show that
state-of-the-art transformers struggle making
inference judgments with the new pairs.

1 Introduction

Natural language understanding remains an elu-
sive goal except in limited scenarios. It is arguably
the ultimate problem in natural language process-
ing: to empower machines to understand language
as generated by humans. The state of the art has
seen tremendous progress in recent years, and has
moved from symbolic representations (Bos et al.,
2004; Artzi and Zettlemoyer, 2013) to distribu-
tional representations often learned from massive
datasets (Devlin et al., 2019). Recognizing en-
tailments (Dagan et al., 2006), identifying para-
phrases (Das and Smith, 2009), determining se-
mantic textual similarity (Agirre et al., 2012), and
sentiment analysis (Pang and Lee, 2008) are but a
few problems that require natural language under-
standing to a lesser or greater degree.

There are many benchmarks targeting the prob-
lems above, and they usually cast them as classifi-
cation problems. A couple of popular evaluation
platforms, GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019), aggregate benchmarks
for some of the problems above and provide a sin-
gle score for many tasks under the umbrella of natu-
ral language inference. State-of-the-art models are
close to or even surpass human performance (Wang
et al., 2019). This fact, however, is true only when

evaluating models and humans with existing bench-
marks. Indeed, researchers have pointed out weak-
nesses in benchmarks suggesting that we are eval-
uating models with examples that are much sim-
pler than what humans are capable of (Section 3).
Source text selection, annotation artifacts (Guru-
rangan et al., 2018), and asking annotators—either
experts or crowd workers—to write examples as op-
posed to retrieving real examples from previously
generated language are a few of the culprits.

In this paper, we investigate the role of negation
in a core natural language understanding task: nat-
ural language inference—in its most basic form,
determining whether a text entails a hypothesis.
Recognizing entailments has many applications in-
cluding question answering (Trivedi et al., 2019),
summarization (Pasunuru et al., 2017) and machine
translation evaluation (Padó et al., 2009).

Negation relates an expression e to another ex-
pression with a meaning that is in some way op-
posed to the meaning of e (Horn and Wansing,
2017), thus it plays an important role in natural
language understanding. Additionally, negation
is ubiquitous in regular English texts: approxi-
mately 25% of English sentences contain negation
depending on the domain and genre (Section 4).
Despite these facts, negation is underrepresented
and mostly irrelevant in existing benchmarks—one
can literally disregard the negations and still make
correct inference judgments in popular datasets.
The work presented here addresses these shortcom-
ings and makes the following contributions:1

1. We show that negation is underrepresented
and often irrelevant in existing benchmarks.

2. We create new benchmarks for natural lan-
guage inference in which negation plays a
critical role to make inference judgments.

3. We demonstrate that state-of-the-art trans-
1New benchmarks and code available at https://

github.com/mosharafhossain
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formers trained with the original benchmarks
are not robust when negation is present.

4. We provide empirical evidence that transform-
ers may be unable to learn the intricacies of
negation in the most challenging benchmark,
which includes longer texts from many genres.

2 Background

The task of natural language inference or recog-
nizing textual entailment consists in determining
whether a hypothesis is true given a text. The
original task considers two labels: entailment or
no entailment (Dagan et al., 2006), and a newer
formulation considers three labels: entailment, con-
tradiction or neutral (Giampiccolo et al., 2007). For
example, the text “A person on a horse jumps over
an airplane” entails hypothesis “A person is out-
doors, on a horse,” contradicts “A person is at a
diner, ordering an omelette,” and is neutral with
respect to “A person is training his horse for a com-
petition.” We work with three existing benchmarks:
a collection of RTE datasets (Dagan et al., 2006;
Bar-Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009), SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018). The RTE
datasets are smaller (5,767 text-hypothesis pairs)
than SNLI and MNLI (569,033 and 431,997 pairs).
MNLI is more challenging than RTE and SNLI:
texts are longer and were selected from 10 genres
including fiction and non-fiction as well as conver-
sation transcripts. On the other hand, the texts in
SNLI were selected from image captions. The hy-
potheses in SNLI and MNLI were crowdsourced,
i.e., manually generated by non-experts.

Tables 2 and 4 show examples in the RTE, SNLI
and MNLI benchmarks. We work with the format-
ted versions of these datasets in the GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019)
benchmarks for convenience.

3 Previous Work

Previous work has revealed weaknesses with the
benchmarks we work with and that adversarial ex-
amples can break models for many natural lan-
guage processing tasks. Adversarial examples con-
sist of arguably trivial modifications to inputs that
trick computational models. Some of them include
misspellings (Pruthi et al., 2019), syntactically con-
trolled paraphrases (Iyyer et al., 2018), lexical sub-
stitutions (Alzantot et al., 2018), and more elabo-
rate substitutions (Ribeiro et al., 2018). More re-

cently, Ribeiro et al. (2020) propose CHECKLIST,
a task-agnostic strategy for testing NLP models.
Their strategy can be used to identify which lin-
guistic capabilities a model lacks. For example,
they show that commercial systems for sentiment
analysis are not robust when negation is present.

Regarding natural language inference, Poliak
et al. (2018) show that models taking into account
only hypotheses significantly outperform major-
ity baselines, and Gururangan et al. (2018) dis-
cuss annotation artifacts, e.g., negation cues (not,
never, etc.) are a strong indicator of contradictions.
Glockner et al. (2018) show that models trained
with SNLI fail to resolve new pairs that require
simple lexical substitution, e.g., holding a saxo-
phone contradicts holding an electric guitar. Naik
et al. (2018) conclude that models are not robust
to negation, but their only test is concatenating
the tautology “and false is not true” to hypotheses.
Wallace et al. (2019) introduce universal triggers
and show that concatenating negation cues to SNLI
hypotheses decreases accuracy to almost zero when
the gold label is entailment or neutral.

The task of identifying paraphrases consists in
determining whether two sentences have the same
meaning, and can be casted—at least from a defi-
nitional perspective—as recognizing bidirectional
entailments. Pruthi et al. (2019) show that com-
putational models underperform in MRPC (Dolan
et al., 2004) with adversarial misspellings, and Ko-
vatchev et al. (2019) present a qualitative analysis
of 11 state-of-the-art models (overall accuracies:
68–84%). When negation is present, however, accu-
racies drop to 33% (6 models) 67% (4 models) and
1% (1 model). Finally, Zhang et al. (2019) present
a dataset for paraphrase identification including
adversarial sentence pairs that are not paraphrases
but have high word overlap. The new pairs helps
training models robust to word scrambling.

The aforecited works do not investigate the role
of negation in depth. Regarding paraphrase identi-
fication, previous work only has shown that models
underperform with negation. Regarding natural
language inference and negation, previous work
considers negations only in the hypotheses—not
the texts. Additionally, they only work with un-
realistic negations that do not require models to
do anything but ignore the negations. Indeed, they
concatenate tokens including negations cues that
are label-preserving and unrelated to the original
texts and hypotheses. Unlike them, we (a) show
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#sents. % w/ neg.

General English
Online Reviews

books 4,845,154 22.64
movies 616,287 28.97

Conversations
oral 538,973 27.43
written 510,458 29.92

Wikipedia 2,735,930 8.69
Books 1,809,184 28.45
OntoNotes 63,918 17.14

NLI benchmarks
RTE 16,389 7.16
SNLI 1,138,598 1.19
MNLI 883,436 22.63

Table 1: Percentage of sentences containing negation
in general-purpose English corpora (reviews, conversa-
tions, Wikipedia, books and OntoNotes) and existing
natural language inference benchmarks (also in English).
Negation is underrepresented in RTE and SNLI.

that existing benchmarks do not properly account
for negation in terms of frequency and difficulty,
(b) create new benchmarks that require understand-
ing negations, and (c) show that state-of-the-art
models trained with existing corpora struggle with
the new pairs including negation, and that the issue
persists even if we fine-tune models with the new
pairs in the most challenging benchmark, MNLI.

4 Negation in English and Natural
Language Inference Benchmarks

Negation is pervasive in English (Morante and
Sporleder, 2012), although there is limited empir-
ical evidence from previous work (Councill et al.,
2010; Elkin et al., 2005). In order to conduct a
large-scale analysis and compare how often nega-
tion is present in English and existing natural lan-
guage inference benchmarks, we employ a negation
cue detector using a Bi-LSTM neural architecture
with an additional CRF layer (Hossain et al., 2020).
Trained and tested with CD-SCO, a corpus publicly
available (Morante and Blanco, 2012), it obtains
0.92 F1. The supplemental materials provide more
details regarding the architecture of the negation
cue detector and the negation cues it detects.

Table 1 details the percentage of sentences with
at least one negation in several large general-
purpose English corpora. We work with online

reviews (Wan et al., 2019; Maas et al., 2011), con-
versations (Chang et al., 2019), Wikipedia (50,000
pages with at least 20 views), 500 books from
Project Gutenberg (Lahiri, 2014), and OntoNotes
(Hovy et al., 2006) as released by Pradhan et al.
(2011). The percentage of sentences containing
negation is high: it ranges from 8.69% to 29.92%
in all corpora, and is over 17% in all but Wikipedia.
We note that negation is pervasive across domains
and genres, including informal texts such as online
reviews and both oral and written conversations
(22.64–29.92%). Perhaps surprisingly, the percent-
age is very high in books (28.45%).

Table 1 also presents the percentage of sentences
with negation in the three natural language infer-
ence benchmarks. Negation is clearly underrepre-
sented in all of them except MNLI. These percent-
ages do not invalidate the benchmarks. They show,
however, that SNLI and RTE do not account for
intricate linguistic phenomena such as negations.
The reason for the low percentage in SNLI is that
it uses texts from picture captions (Section 3), and
captions describe pictures with affirmative state-
ments (see examples in Tables 2 and 4).

The Role of Negation in Existing Natural Lan-
guage Inference Benchmarks We conduct a
manual qualitative analysis in order to (a) charac-
terize the negations in RTE, SNLI and MNLI, and
(b) assess how critical negation is to solve the few
text-hypothesis pairs that include at least one nega-
tion in these benchmarks. We conduct the analysis
with 100 text-hypothesis pairs containing negation
from each benchmark (300 pairs total). From a
linguistic perspective, most negations:
• are particles (no, not, n’t, etc.) whose only

function is to indicate negation (RTE: 62%,
SNLI: 60%, MNLI: 84%),
• grammatically modify a verb (RTE: 62%,

SNLI: 55%, MNLI: 81%), and
• scope over the main predicate (RTE: 52%,

SNLI: 53%, MNLI: 62%).
These percentages are roughly uniformly dis-
tributed across labels.

In addition to looking at the negation cues in
isolation, we also analyze the role of negation
in making judgments. The first key distinction
is whether dropping the negation changes the in-
ference judgment (entailment or no entailment in
RTE; and entailment, neutral or contradiction in
SNLI and MNLI). If it does not, we say the nega-
tion is unimportant (important otherwise). The
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Example
R

T
E

1) T: Mr Lopez Obrador, who lost July’s presidential election by less than one percentage point, declared
himself Mexico’s “legitimate” president. H: Mr Lopez Obrador didn’t loose the presidential election in July.

2) T: If toxic waste containg cyanide is not disposed of properly, it may drain into ponds, streams, sewers,
and reservoirs. H: Leaks into environment are caused by bad disposal of toxic waste containing cyanide.

3) T: Toshiba has produced a fuel cell with no moving parts. H: Toshiba has no moving parts.

SN
L

I 4) T: A fighter jet plane is landed outside. H: The fighter jet plane is not moving.

5) T: A man with no shirt on is performing with a baton. H: A man is doing things with a baton.

6) T: A homeless man carries a sign that says “hungry”. H: The man does not have a home.

M
N

L
I

7) T: It was summertime the air conditioner was on the door was closed and i couldn’t knock because i had
to hold the jack with the other hand i finally with my elbow rang the doorbell and mother came to the door.
H: The wintertime is when the air conditioning was on, I couldn’t ring the doorbell because it was frozen.

8) T: It runs advertisements for its supporters at the top of shows and strikes business deals with MCI, TCI,
and Disney, but still insists it’s not commercial.
H: It runs ads for its supporters at shows and strikes business deals, but insists it is not commercial.

Table 2: Examples of the few text-hypothesis pairs that contain negation in the three natural language inference
corpora we work with (RTE, SNLI and MNLI). Negation cues are underlined, and we have made minimal edits to
some examples so that they fit within the width of the table.

second key distinction is whether the negation is
aligned, i.e., whether there is a semantic alignment
between what is negated in the text (or hypothesis)
and a chunk of the hypothesis (or text). We fur-
ther identify negated alignments, i.e., alignments
in which the alignment is also negated.

Table 2 exemplifies this classification with the
three benchmarks. Regarding SNLI, the negation in
the hypothesis of Example (4) is important: landed
entails not moving, at least according to the SNLI
annotators, who were describing pictures thus (pre-
sumably) couldn’t really tell if the plane was (a)
completely stopped or taxiing after landing (and
thus still moving). The negation in the text of Ex-
ample (5), however, is unimportant: A man with no
shirt on is performing with a baton entails A man
is doing things with a baton regardless of whether
the man has a shirt. Simply put, the negation plays
no role in making the correct inference judgment.
In Examples (4) and (6), the negations align but in
Example (5), the negation does not align. Specifi-
cally, the alignments of the negations in the text and
hypothesis of Example (6) are negated: homeless
aligns with does not have a home, and both are
negated. The alignment of the negation in the
hypothesis of Pair (4), on the other hand, is not
negated: not moving aligns with landed, and the
latter is not negated. The categorization of the nega-
tions in text-hypothesis pairs from RTE and MNLI
examples is as follows:

• RTE. The negation in the hypothesis of Exam-
ple (1) is important, and it aligns but the align-
ment is not negated (didn’t loose – lost). In Ex-
ample (2), the negation in the text falls under
the same categories: important and aligned,
and the alignment is not negated (not disposed
of properly – bad disposal). In Example (3),
on the other hand, the negations are unimpor-
tant and aligned, in fact, there is an identical
(and negated) alignment (no moving parts in
both the text and hypothesis).
• MNLI. The negation in the text of Exam-

ple (7), I couldn’t knock, is unimportant and
not aligned. Indeed, the first clause in both
the text and hypothesis, which do not contain
negation, are sufficient to solve the pair: the
air conditioning being on in wintertime is not
entailed by the air conditioning being on in
summertime. The negation in the hypothesis
of Example (7), however, is also unimportant
but aligned (I couldn’t ring the doorbell – my
elbow rang the doorbell), although the align-
ment is not negated. This negation is unim-
portant for the same reason: one can make the
correct inference judgment disregarding the
negation altogether. The negations in Exam-
ple (8) are similar to the ones in Example (3):
unimportant and aligned, although this time
the alignments are almost identical (it’s not
commercial – it is not commercial).
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RTE SNLI MNLI

E ¬E All E C N All E C N All

% unimportant 77 75 76 38 24 93 48 78 24 83 52
% aligned 25 17 20 62 76 17 55 39 76 23 53

w/ negation 15 4 10 25 0 13 10 26 2 9 8

Table 3: Analysis of the few negations in the text-hypothesis pairs from the three natural language inference corpora
we work with (RTE: 7.16% of pairs, SNLI: 1.19%, MNLI: 22.63%; Table 1). E stands for entailment, ¬E for
no entailment, C for contradiction and N for neutral. Many negations are unimportant, i.e., one can ignore them and
still make the correct inference judgment.

Table 3 presents the analysis of the role of nega-
tion based on these categories. First, we note
that one can often ignore negations without con-
sequences: 76% of negations are unimportant in
RTE, 48% in SNLI and 52% in MNLI. In RTE,
negations are unimportant in text-hypothesis pairs
regardless of the inference judgment (75-76%). In
SNLI and MNLI, however, negations are almost
always unimportant in neutral text-hypothesis pairs
(93% in SNLI and 83% in MNLI), and they tend to
be unimportant when the text entails the hypothe-
sis (78% in MNLI and 38% in SNLI). Second, we
note that few negations align in RTE (entailment:
25%, no entailment: 17%), but about half of them
align in SNLI and MNLI (55% and 53%). The
percentage of aligned negations heavily depends
on the inference judgment in SNLI and MNLI, and
in RTE to a lesser degree (entailment is 50% more
likely). More interestingly, whether the alignment
is negated is a clear sign of the inference judg-
ment. In RTE, the alignments are rarely negated in
no entailment pairs (4% overall, 23.5% of aligned
pairs), but that is not the case with entailment pairs
(15% overall, 60% of aligned pairs). In SNLI, the
differences are larger: 40.3% of aligned pairs la-
beled entailment are negated. We observe a similar
pattern in the negations from MNLI: alignments are
rarely negated in contradictions (2.6% of aligned
pairs), and most alignments are negated in entail-
ment pairs (66.7% of aligned pairs).

5 A Benchmark for Natural Language
Understanding with Negation

We create new benchmarks in which negation plays
an important role for natural language inference.
The starting points are the original benchmarks,
more specifically, we selected at random 500 text-
hypothesis pairs from RTE, SNLI and MNLI (1,500
text-hypothesis pairs total). We work with pairs

from the training and development splits as GLUE
and SuperGLUE do not include gold labels for
some test splits. Then, we follow three steps for
each of the selected original pairs. In the remaining
of the paper, we use T and H to refer to texts and
hypotheses in RTE, SNLI and MNLI.

1. Add negation manually to the main verb in T
and H to obtain Tneg and Hneg.

2. Generate three new pairs automatically by
combining the elements in the original pair
(T and H) and the results of Step (1) (Tneg

and Hneg). This results in the following pairs:
Tneg-H, T-Hneg and Tneg-Hneg.

3. Manually annotate the pairs from Step (2) us-
ing the labels from the original benchmarks
(RTE: entailment or no entailment; SNLI and
MNLI: entailment, contradiction or neutral).

These steps result in 4,500 new pairs and their
judgments (3 per original pair, 1,500 from each
RTE, SNLI and MNLI). Note that the negations are
rather simple—adding not to the main verb, and
adding auxiliaries and fixing verb tense if needed—
but are realistic in the sense that the resulting texts
and hypotheses follow proper English grammar.
Additionally, the new pairs including negation are
not more difficult than the original pairs except for
the presence of negation. In particular, they do not
require additional lexical inference and the overall
topic described does not change.

Table 4 exemplifies the new pairs with negation.
While negating the main verb (Step 1) is a rela-
tively straightforward step, note that annotating the
three new pairs including negation (Step 3) requires
more attention from annotators. In other words, the
inference judgment for the original T-H pair does
not unequivocally indicate the inference judgment
for the three new pairs that include negation. In-
deed, the two examples generated from RTE in
Table 4 show that when the original text entails the
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Original pair New pair w/ negation
R

T
E

T: Tropical Storm Debby is blamed for several
deaths across the Caribbean.

Tneg: Tropical Storm Debby is not blamed for several
deaths across the Caribbean.

H: A tropical storm has caused loss of life. Hneg: A tropical storm has not caused loss of life.
Judgments: T-H: entailment, Tneg-H: no entailment, T-Hneg: no entailment, Tneg-Hneg: entailment

T: Dr. Pridi was forced into exile, and Field Mar-
shal Pibul again assumed power.

Tneg: Dr. Pridi was not forced into exile, and Field
Marshal Pibul again assumed power.

H: Pibul was a field marshal. Hneg: Pibul was not a field marshal.
Judgments: T-H: entailment, Tneg-H: entailment, T-Hneg: no entailment, Tneg-Hneg: no entailment

SN
L

I

T: Two people are working on computers. Tneg: Two people are not working on computers.
H: Two people are near the computers. Hneg: Two people are not near computers.
Judgments: T-H: entailment, Tneg-H: neutral, T-Hneg: contradiction, Tneg-Hneg: neutral

T: Young man walking dog. Tneg: Young man is not walking dog.
H: The man is walking his cat. Hneg: The man is not walking his cat.
Judgments: T-H: contradiction, Tneg-H: neutral, T-Hneg: entailment, Tneg-Hneg: neutral

M
N

L
I

T: The lot upon which it is built had been vacant. Tneg: The lot upon which it is built had not been vacant.
H: The lot had been vacant. Hneg: The lot had not been vacant.
Judgments: T-H: entailment, Tneg-H: contradiction, T-Hneg: contradiction, Tneg-Hneg: entailment

T: Thursday’s judge, the Honorable Charles
Adams of the Coconino County Superior
Court, agreed, but highly discouraged self-
representation.

Tneg: Thursday’s judge, the Honorable Charles Adams
of the Coconino County Superior Court, did not agree,
but highly discouraged self-representation.

H: Self-representation was encouraged by the
Honorable Charles Adams.

Hneg: Self-representation was not encouraged by the
Honorable Charles Adams.

Judgments: T-H: contradiction, Tneg-H: contradiction, T-Hneg: entailment, Tneg-Hneg: entailment

Table 4: Examples of original pairs and new pairs generated after we manually introduce negation. Note that we (a)
generate three new pairs after combining texts and hypotheses with and without negation (T-H is the original pair),
and (b) manually annotate inference judgments for the three new pairs.

hypothesis, the three new text-hypothesis pairs may
receive different inference judgments (in particular
the judgments for Tneg-H and Tneg-Hneg are the
opposite). The same is true across text-hypothesis
pairs including negation and generated from dif-
ferent natural language inference benchmarks. For
example, the text entails the hypothesis in the first
examples shown from SNLI and MNLI, but the
three new pairs including negation receive different
judgments: neutral, contradiction and neutral; and
contradiction, contradiction and entailment). The
second examples created from SNLI and MNLI
show the same phenomenon but with an original
T-H pair labeled contradiction.

Annotation Process and Agreements. Three
annotators and an additional adjudicator did the
annotations described above in two phases.

In the first phase, the three annotators added
negation to the main verbs of texts and hypothe-
ses (Step 1). After a short training session, we
decided to have only one annotator add negation in

each original pair as the task is relatively straight-
forward. Any issues in this phase were detected dur-
ing Phase 2. Text-hypothesis pairs with issues were
discarded (only 5%) and additional pairs were col-
lected to account for the discarded pairs (and still
have 1,500 text-hypothesis pairs including negation
and generated from each of the three benchmarks,
4,500 new text-hypothesis pairs in total).

In the second phase, the three annotators read
the new pairs including negation (automatically
generated in Step 2: Tneg-H, T-Hneg and Tneg-
Hneg) and manually labeled them with inference
judgments (Step 3). In this phase, each pair was
annotated by two annotators independently, and
the adjudicator resolved any disagreements. We
calculated inter-annotator agreement prior to ad-
judication using Cohen’s κ (Cohen, 1960). κ co-
efficients were 0.85 (RTE), 0.81 (SNLI) and 0.72
(MNLI). κ coefficients between 0.6 and 0.8 are con-
sidered substantial, and between 0.8 and 1.0 nearly
perfect (Artstein and Poesio, 2008).
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RTE SNLI MNLI

%E %¬E %E %C %N %E %C %N

Tneg-H 19.8 80.2 6.0 32.0 62.0 11.8 45.8 42.4
T-Hneg 9.0 91.0 21.4 41.0 37.6 24.0 47.6 28.4
Tneg-Hneg 34.4 65.6 22.2 8.0 69.8 38.6 14.4 47.0
All 21.1 78.9 16.5 27.0 56.5 24.8 35.9 39.3

Table 5: Label distribution in the new text-hypothesis pairs including negation depending on the source pairs they
were generated from (RTE, SNLI or MNLI). Unlike the authors of the original benchmarks, we do not artificially
force a uniform distribution. The pairs generated from MNLI, which are the longest and the only ones from many
genres, are the most balanced (majority baseline accuracy: 39.3%).

RTE SNLI MNLI

E ¬E All E C N All E C N All

% unimportant 52 56 56 17 24 61 42 12 19 63 43
% aligned 76 60 62 78 76 42 59 84 84 42 61

w/ negation 52 10 17 28 0 2 5 48 3 7 14

Table 6: Analysis of the negations in the text-hypothesis pairs in the new benchmarks. E stands for entailment, ¬E
for no entailment, C for contradiction and N for neutral. Some negations are unimportant, but the percentage of
important negations in the new text-hypothesis pairs is higher than those in the original corpora (Table 3).

Label Distributions. The original RTE, SNLI
and MNLI benchmarks contain, by design, text-
hypothesis pairs with roughly uniform judgment
distributions. Thus, the majority baseline obtains
roughly 50% accuracy in RTE (2 labels) and 33%
in SNLI and MNLI (3 labels).

Our new benchmarks including negation do not
have a uniform judgment distribution (Table 5), al-
though the pairs generated from MNLI are close
(entailment: 24.8%, contradiction: 35.9%, and neu-
tral: 39.3%). We acknowledge that the label distri-
bution in the new pairs generated from RTE (major-
ity baseline: 78.9%) and, to a certain degree, SNLI
(majority baseline: 56.5%) are not as challenging
as the label distributions in the original pairs. As
we shall see in Section 6, however, our experiments
show that the ones from MNLI are a challenge for
state-of-the-art transformers.

The Role of Negation. Table 6 presents the anal-
ysis of the role of negation in the new benchmarks
using the categories presented in Section 4. We
analyze 100 text-hypothesis pairs generated from
each original benchmark (RTE, SNLI and MNLI).
There are less unimportant negations in our new
benchmarks than in the original corpora (Table 3).
While many negations in the new pairs gener-
ated from RTE are unimportant (entailment: 52%,

no entailment: 56%), few negations in the pairs
generated from SNLI and MNLI are unimportant,
especially when the text entails or contradicts the
hypothesis (SNLI: 17% and 24%, MNLI: 12% and
19%). Unsurprisingly, the percentage of aligned
negations is higher in our corpus due to the steps
we use to introduce negation, especially with in the
new pairs generated from RTE (62% vs. 20%).

6 Experiments and Results

In order to assess whether state-of-the-art systems
can solve the task of natural language inference
when negation is present, we experiment with three
state-of-the art transformers: BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019) and RoBERTa
(Liu et al., 2019). We use the implementation and
pretrained models by Wolf et al. (2019), and tune
them to solve each benchmark. The supplemental
materials provide details about (a) the hyperparam-
eter settings we use to fine-tune these transformers,
and (b) other implementation decisions.

We conduct two experiments. First, we assess
whether these transformers tuned with the original
train splits in RTE, SNLI and MNLI are capable
of solving our new benchmarks including nega-
tion (Section 6.1). Second, we investigate if tuning
with the new text-hypothesis pairs including nega-
tion improves the results (Section 6.2).
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Test pairs RTE SNLI MNLI

MB [1] [2] [3] MB [1] [2] [3] MB [1] [2] [3]

Original
dev 52.7 75.8 69.9 66.1 33.8 91.6 90.6 89.9 35.5 87.9 86.7 83.2
devneg 51.2 78.1 73.2 63.4 54.4 91.7 90.3 89.4 50.2 88.0 86.7 83.0

New w/ neg.
Tneg-H 80.2 70.8 69.0 65.2 62.0 46.4 39.8 32.6 45.8 66.2 63.8 65.6
T-Hneg 91.0 51.4 44.2 39.2 41.0 63.6 67.4 58.8 47.6 70.4 69.8 62.4
Tneg-Hneg 65.6 65.4 69.6 68.4 69.8 45.8 47.2 41.8 47.0 63.6 65.4 63.6
All 78.9 62.5 60.9 57.6 56.5 51.9 51.5 44.4 39.3 66.7 66.3 63.9

Table 7: Results obtained with state-of-the-art models trained with the original training split for each benchmark
and evaluated with (a) the original development split (dev), (b) pairs in the original development split containing
negation (devneg), and (c) the new pairs containing negation. MB stands for the majority baseline, [1] for RoBERTa
(Liu et al., 2019), [2] for XLNet (Yang et al., 2019) and [3] for BERT (Devlin et al., 2019).

Train pairs RTE SNLI MNLI

[1] [2] [3] [1] [2] [3] [1] [2] [3]

Original 64.4 61.1 59.3 52.0 53.1 43.3 64.0 64.4 63.8
+ 70% new w/ neg. 88.2 87.3 83.8 75.3 74.2 69.1 67.3 70.4 66.4

Table 8: Results obtained testing with 30% of the new text-hypothesis pairs containing negation and training with
either (a) the original train split from each benchmark or (b) the original train split from each benchmark and 70%
of the new pairs containing negation. [1] stands for RoBERTa (Liu et al., 2019), [2] for XLNet (Yang et al., 2019)
and [3] for BERT (Devlin et al., 2019). None of the transformers benefit from training with a portion of the pairs
that include negation when tested with MNLI, which contains longer and more diverse text-hypothesis pairs.

6.1 Training with Existing Benchmarks

Can transformers solve the new text-hypothesis
pairs including negation if trained with existing
benchmarks? No, they cannot (Table 7). Indeed,
the three transformers obtain worse results with the
new pairs including negation, especially with SNLI
(≈50% drop with the three transformers). These
results might be unsurprising with SNLI and RTE
since the original text-hypothesis pairs included
few negations (1.19% and 7.16%, Table 1). The
pattern is also true, however, with MNLI: we ob-
serve relative drops ranging from 23.0 to 24.2% de-
spite 22.63% of text-hypothesis contain a negation
in MNLI (Table 1). Comparing with the results ob-
tained with the majority baseline, we observe that
the transformers do not learn to solve pairs with
negation unless they are tuned with pairs including
negation (Section 6.2). Indeed, all of them obtain
worse results than the majority baseline in RTE and
SNLI, but not in MNLI.

We make a couple additional observations from
the results in Table 7. First, the transformers solve
the few text-hypothesis pairs including negation in

the original benchmarks (devneg) as good (SNLI,
MNLI) or better (RTE) than all pairs (dev). In
other words, as our analysis of the role of nega-
tion in existing benchmarks points out (Section 4),
negations do not bring additional complexity in
these benchmarks. Second, RoBERTa and XLNet
obtain roughly the same results with the new pairs
including negation, but BERT falls slightly behind.

6.2 Fine-Tuning with New Pairs Containing
Negation

Can transformers solve the new text-hypothesis
pairs including negation if retrained with some of
the new pairs including negation? Only to a certain
degree: with SNLI, they benefit but underperform
with respect to the original pairs; and with MNLI,
they only benefit slightly.

In order to investigate whether the transform-
ers can learn to make inference judgments when
negation must be considered, we divide the new
text-hypothesis pairs containing negation into train-
ing (70%) and test (30%) splits. Table 8 shows the
results obtained with the new test split and the three
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transformers trained with (a) the training split in the
original benchmarks and (b) the training split in the
original benchmarks combined with the training
split with pairs containing negation. We observe
that the transformers only learn to solve the new
pairs including negation in the latter training sce-
nario, but only partially. Indeed, we only observe a
large improvement (59.3–64.4% vs. 83.8–88.2%)
with the new pairs generated from RTE, which are
also the only pairs that obtain higher accuracies
than the original development split (83.8–88.2%
vs. 66.1–75.8%). With the new pairs generated
from SNLI, there is a substantial improvement after
fine-tuning (43.3–53.1% vs. 69.1–75.3%) but the
three transformers still obtain substantially worse
results than with the original development split
(69.1–75.3% vs. 89.9–91.6%). Finally, the trans-
formers only benefit marginally from fine-tuning
with the new pairs including negation and gener-
ated from MNLI (63.8–64.4% vs. 66.4–70.4%).
Similar to the results obtained with pairs gener-
ated from SNLI, the transformers obtain substan-
tially worse results than with the original develop-
ment split in MNLI (66.4–70.4% vs. 83.2–87.9%).
These results lead to the conclusion that natural lan-
guage inference when negation is present remains
an unsolved challenge.

7 Conclusions

Negation is ubiquitous in English and critical to un-
derstand language and make inferences, as it denies
or inverts meaning. Despite these facts, negation
is underrepresented in some natural language infer-
ence benchmarks (RTE and SNLI). Additionally,
one can ignore negation and still make the cor-
rect inference judgment with many text-hypothesis
pairs in existing natural language inference bench-
marks (RTE, SNLI and MNLI).

In this paper, we have presented a new bench-
mark of text-hypothesis pairs containing nega-
tion (4,500 pairs). We generate and annotate these
pairs after systematically adding negation to the
main verb of the texts and hypotheses—either one
or both—from RTE, SNLI and MNLI thus they
are as difficult to solve as the original pairs ex-
cept for the presence of negation. State-of-the art
transformers trained with the original training splits
from RTE, SNLI and MNLI obtain much worse re-
sults results with the new benchmark than with
the original pairs—including the few original text-
hypothesis pairs that do contain negation. In addi-

tion, our experimental results show that transform-
ers struggle even after fine-tuning with new pairs
containing negation.
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A Identifying Negations

In order to identify negations in general English
corpora as well as natural language inference cor-
pora (RTE, SNLI, and MNLI, Section 4 in the
paper), we develop a negation cue detector that
consists of two-layer Bidirectional Long Short-
Term Memory network with a Conditional Random
Field layer (BiLSTM-CRF). This architecture (Fig-
ure 1) is similar to the one proposed by Reimers
and Gurevych (2017). We train and evaluate the
model with CD-SCO, a corpus of Conan Doyle sto-
ries with negation annotations (Morante and Daele-
mans, 2012; Morante and Blanco, 2012). CD-SCO
includes common negation cues (e.g., never, no,
n’t), as well as prefixal (e.g., impossible, unbeliev-
able) and suffixal negation (e.g., motionless).

We map each token in the input sentence to
its 300-dimensional pre-trained GloVe embedding
(Pennington et al., 2014). In addition, we extract
token level universal POS tags using spaCy (Hon-
nibal and Montani, 2017) and leverage another em-
bedding (300-dimensional) to encode them. Em-
bedding weights for universal POS are learned
from scratch as part of the training of the network.
We concatenate the word and POS embeddings,
and feed them to the BILSTM-CRF architecture
(size of cell state: 200 units). The learnt repre-
sentations from the 2-layer BiLSTM are fed to a
fully connected layer with ReLU activation func-
tion (Nair and Hinton, 2010). Finally, the CRF
layer yields the final output.

We use the following labels to indicate whether
a token is a negation cue: S C (single-token nega-
tion cue, e.g., never, not), P C (prefixal negation,
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Hyperparameter RTE SNLI MNLI

[1] [2] [3] [1] [2] [3] [1] [2] [3]

Batch size 16 8 8 32 32 32 32 32 32
Learning rate 2e-5 2e-5 2e-5 1e-5 1e-5 1e-5 2e-5 2e-5 2e-5
Epochs 10 50 50 3 3 3 3 3 3
Weight decay 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Table 9: Hyperparameters for fine-tuning the state-of-the-art systems on RTE, SNLI, and MNLI. [1] stands for
RoBERTa (Liu et al., 2019), [2] for XLNet (Yang et al., 2019) and [3] for BERT (Devlin et al., 2019).

Word emb.

Holmes/NOUN

POS tag emb.

FC FC FC FC FC

CRF Layer

N_C

    
    

N_C S_C

    
    

    
    

    
    

    
    

2 layer BiLSTM

would/VERB not/ADV his/DET agent/NOUN

N_C N_C

Figure 1: The BiLSTM-CRF architecture to identify
negation cues. The input is a sentence. Each token
is the concatenation of the word and its universal
part-of-speech tag. The model outputs a sequence of
labels indicating negation presence (S C, P C, SF C or
N C). The example input sentence is “Holmes/NOUN
would/VERB not/ADV listen/VERB to/ADP such/ADJ
fancies/NOUN ,/PUNCT and/CCONJ I/PRON
am/VERB his/DET agent/NOUN.”

e.g., inconsistent), SF C (suffixal negation, e.g.,
emotionless), and N C (not a cue).

Training details. We merge the train and develop-
ment instances from CD-SCO, and use 85% of the
result as training and the remaining 15% as devel-
opment. We evaluate our cue detector with the orig-
inal test split from CD-SCO. We use the stochas-
tic gradient descent algorithm with RMSProp op-
timizer (Tieleman and Hinton, 2012) for tuning
weights. We set the batch size to 32, and the
dropout and recurrent dropout are set to 30% for
the LSTM layers. We stop the training process af-
ter the accuracy in the development split does not
increase for 20 epochs, and the final model is the
one which yields the highest accuracy in the devel-
opment accuracy during the training process (not
necessarily the model from the last epoch). Evalu-
ating with the test set yields the following results:
92.75 Precision, 92.05 Recall, and 92.40 F1. While
not perfect, the output of the cue detector is reliable,

and an automatic detector is the only way to count
negations in large corpora. The code is available
at https://github.com/mosharafhossain/
negation-cue.

The neural model has nearly 4.3 million parame-
ters and takes 30 minutes on average to train on a
CPU machine (Intel(R) Xeon(R) CPU E5-2680 v4
@ 2.40GHz) with 64 GB of RAM.

B Fine-tuning Hyperparameters for
State-of-the-Art Systems

For all the Transformer models, we set the maxi-
mum sequence length to 128. We use the Hugging
Face implementation and pretrained models (Wolf
et al., 2019). We work with the default settings
for most of the hyperparameters except a few used
to fine-tune to each benchmark. Table 9 shows
the fine-tuned hyperparameters for the 3 transform-
ers. Also, we use the base architectures for all the
transformers (12-layer, 768-hidden, 12-heads).
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