
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8541–8547,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8541

Learning Collaborative Agents with Rule Guidance for
Knowledge Graph Reasoning

Deren Lei1∗, Gangrong Jiang1∗, Xiaotao Gu2, Kexuan Sun1, Yuning Mao2, Xiang Ren1

1University of Southern California
2University of Illinois at Urbana-Champaign

{derenlei, gjiang, kexuansu, xiangren}@usc.edu, {xiaotao2, yuningm2}@illinois.edu

Abstract
Walk-based models have shown their advan-
tages in knowledge graph (KG) reasoning by
achieving decent performance while providing
interpretable decisions. However, the sparse
reward signals offered by the KG during traver-
sal are often insufficient to guide a sophisti-
cated walk-based reinforcement learning (RL)
model. An alternate approach is to use tra-
ditional symbolic methods (e.g., rule induc-
tion), which achieve good performance but
can be hard to generalize due to the lim-
itation of symbolic representation. In this
paper, we propose RuleGuider, which lever-
ages high-quality rules generated by symbolic-
based methods to provide reward supervision
for walk-based agents. Experiments on bench-
mark datasets show that RuleGuider improves
the performance of walk-based models with-
out losing interpretability. 1

1 Introduction

While knowledge graphs (KGs) are widely adopted
in natural language processing applications, a ma-
jor bottleneck hindering its usage is the sparsity of
facts (Min et al., 2013), leading to extensive studies
on KG completion (or reasoning) (Trouillon et al.,
2016; Dettmers et al., 2018; Das et al., 2017; Xiong
et al., 2017; Lin et al., 2018; Meilicke et al., 2019).
Many traditional approaches on the KG reason-
ing task are based on logic rules (Landwehr et al.,
2007, 2010; Galárraga et al., 2013, 2015). These
methods are referred to as symbolic-based methods.
Although they showed good performance (Meil-
icke et al., 2019, 2020), they are inherently limited
by their representations and generalizability of the
associated relations of the given rules.

To ameliorate such limitations, embedding-
based methods (Bordes et al., 2013; Socher et al.,

∗Equal contributions.
1https://github.com/derenlei/

KG-RuleGuider

2013; Wang et al., 2014; Yang et al., 2014; Trouil-
lon et al., 2016; Dettmers et al., 2018, 2017; Sun
et al., 2019; Zhang et al., 2019) were proposed.
They learn distributed representations for entities
and relations and make predictions using the rep-
resentations. Despite their superior performance,
they fail to make human-friendly interpretations.

To improve the interpretability, many recent ef-
forts formulate the task as a multi-hop reasoning
problem using reinforcement learning (RL) tech-
niques (Xiong et al., 2017; Das et al., 2017; Shen
et al., 2018; Chen et al., 2018; Lin et al., 2018), re-
ferred to as walk-based methods. A major issue of
these methods is the reward function. A “hit or not”
reward is too sparse while a shaped reward using an
embedding-based distance measurement Lin et al.
(2018) may not always result in desirable paths.

In this paper, we propose RuleGuider to tackle
the aforementioned reward issue in walk-based
methods with the help of symbolic rules. We
aim to improve the performance of walk-based
methods without losing their interpretability. The
RuleGuider is composed of a symbolic-based
model fetching logic rules and a walk-based agent
searching reasoning paths with the guidance of the
rules. We also introduce a way to separate the walk-
based agent to allow for further efficiency. We
experimentally show the efficiency of our model
without losing the interpretability.

2 Problem and Preliminaries

In this section, we review the KG reasoning task.
We also describe the symbolic-based and walk-
based methods used in RuleGuider.

Problem Formulation. A KG consisting of fact
triples is represented as G = {(ei, r, ej)} ⊆ E ×
R × E , where E and R are the set of entities and
relations, respectively. Given a query (es, rq, ?)
where es is a subject entity and rq is a query re-

https://github.com/derenlei/KG-RuleGuider
https://github.com/derenlei/KG-RuleGuider

8542

Figure 1: Rule quality difference between datasets.
There are exists high quality rules on WN18RR.

lation, the task of KG reasoning is to find a set
of object entities Eo such that (es, rq, eo) , where
eo ∈ Eo, is a fact triple missing in G. We denote
the queries (es, rq, ?) as tail queries. We note that
we can also perform head queries (?, rq, eo). To
be consistent with most existing works, we only
consider tail queries in this paper.

Symbolic-based Methods. Some previous meth-
ods mine Horn rules from the KG and predict
missing facts by grounding these rules. A re-
cent method AnyBURL (Meilicke et al., 2019)
showed comparable performance to the state-of-
the-art embedding-based methods. It first mines
rules by sampling paths from the G, and then
make predictions by matching queries to the rules.
Rules are in the format: r(X,Y) ← b1(X,A2) ∧
... ∧ bn(An, Y), where upper-case letters repre-
sent variables. A rule head is denoted by r(· · ·)
and a rule body is denoted by the conjunction of
atoms b1(· · ·), . . . , bn(· · ·). We note that r(ci, cj)
is equivalent to the fact triple (ci, r, cj).

However, these methods have limitations. For
example, rules mined from different KGs may have
different qualities, which makes the reasoner hard
to select rules. Figure 1 shows such difference.
Rules are sorted based on accuracy of predicting
the target entities. The top rules from WN18RR are
much more valuable than those from FB15K-237.

Walk-based Methods. Given a query (es, rq, ?),
walk-based methods train an RL agent to find a path
from es to the desired object entity eo that implies
the query relation rq. At step t, the current state
is represented by a tuple st = (et, (es, rq)), where
et is the current entity. The agent then samples
the next relation-entity pair to visit from possible
actions At = {(r′, e′)|(et, r′, e′) ∈ G}. The agent
receives a reward when it reaches eo.

3 Proposed Method: RuleGuider

RuleGuider consists of a symbolic-based method
(see Section 2), referred to as rule miner, and a
walk-based method, referred to as agent. The rule

Figure 2: The architecture of two agents. The rela-
tion and entity agent interact with each other to gener-
ate a path. At each step, the entity agent first selects an
entity from valid entities. The relation agent then sam-
ples a relation based on the selected entity. At the final
step, they receive a hit reward based on the last selected
entity and a rule guidance reward from the pre-mined
rule set based on the selected path.

miner first mines logic rules and the agent traverses
over the KG to learn the probability distribution of
reasoning paths with the guidance (via the reward)
of the rules. As the agent walks through relations
and entities alternatively, we propose to separate
the agent into two sub-agents: a relation and entity
agents. After the separation, the search space is
significantly pruned. Figure 2 shows the structure
of these two agents in detail.

3.1 Model Architecture

Relation Agent. At step t (t = 1, · · · , T , T is the
number of hops), the relation agent selects a single
relation rt which is incident to the current entity
et−1, where e0=es. Given a query (es, rq, ?) and
a set of rules R, this process can be formulated as
rt = PR(rq, et−1,R,h

R
t) where hR

t is the relation
history. The agent first filter out rules whose heads
are not same as rq, and then it selects rt from the
tth atoms of the remaining rule bodies, i.e. bt(· · ·)
in the rule pattern.

Since the rule miner provides confidence scores
of rules, we first use RL techniques to pre-train this
agent using the scores. During training, the agent
applies the pre-trained strategy (distribution) and
keeps tuning the distribution by utilizing semantic
information provided by embeddings. In another
words, the relation agent leverages both confidence
scores of pre-mined rules as well as embedding
shaped hit rewards.

Entity Agent. At step t, the agent generates the
distribution of all candidate entities based on es,

8543

rq, and the entity history hE
t . Given the current re-

lation rt, this process can formally be represented
as et = PE(es, rq, rt,h

E
t). The agent selects an

entity from all entities that incident on rt. In this
way, the entity and relation agent can reason inde-
pendently.

In experiments, we have also tried to let the en-
tity agent generate distribution based on relation
agent pruned entity space. In this way, the entity
agent takes in the selected relation and can leverage
the information from the relation agent. However,
the entity space may be extremely small and hard
to learn. It makes the entity agent less effective,
especially on large and dense KG.

Policy Network. The relation agent’s search
policy is parameterized by the embedding of rq
and hR

t . The relation history is encoded using
an LSTM(Hochreiter and Schmidhuber, 1997):
hR
t = LSTM(hR

t−1, rt−1), where rt−1 ∈ Rd is
the embedding of the last relation. We initialize
hR
0 = LSTM(0, rs), where rs is a special start re-

lation embedding to form an initial relation-entity
pair with source entity embedding es. Relation
space embeddings Rt ∈ R|Rt|×d consist embed-
dings of all the relations in relation space Rt at
step t. Finally, relation agent outputs a probabil-
ity distribution dRt and samples a relation from it.
dRt = σ(Rt ×W1 ReLU(W2[h

R
t ; rq])) where σ

is the softmax operator, W1 and W2 is trainable
parameters. We design relation agent’s history-
dependent policy as πR = (dR1 ,d

R
2 , . . . ,d

R
T).

Similarly, entity agent’s history-dependent pol-
icy is πE = (dE1 ,d

E
2 , . . . ,d

E
T). Entity agent

can acquire its embedding of last step et−1, en-
tity space embeddings Et, its history hE

t =
LSTM(hE

t−1, et−1), and the probability distribu-
tion of entities dEt as follows. dEt = σ(Et ×
W3ReLU(W4[h

E
t ; rq; es; et])) where W3 and

W4 is trainable parameters. Note that entity agent
uses a different LSTM to encode the entity history.

3.2 Model Learning

We train the model by letting the two aforemen-
tioned agents to start from specific entities and
traverse through the KG in a fixed number of hops.
The agents receive rewards at their final step.

Reward Design. Given a query, the relation agent
prefers paths which direct the way to the correct
object entity. Thus, given a relation path, we give
reward according to its confidence retrieved from
the rule miner, referred to as rule guidance reward

Rr. We also add a Laplace smoothing pc = 5 to
the confidence score for the final Rr.

In addition to Rr, the agent will also receive a
hit reward Rh, which is 1 if the predicted triple ε =
(es, rq, eT) ∈ G. Otherwise, we use the embedding
of ε to measure reward as in Lin et al. (2018). Rh =
I(ε ∈ G) + (1 − I(ε ∈ G)f(ε) where I(·) is an
indicator function, f(ε) is a composition function
for reward shaping using embeddings.

Training Procedure. We train the model in four
stages. 1) Train relation and entity embeddings
using an embedding-based method. 2) Apply a
rule miner to retrieve rules and their associated con-
fidence scores. 3) Pre-train the relation agent by
freezing the entity agent and asking the relation
agent to sample a path. We only use the rule miner
to evaluate the path and compute Rr based on the
pre-mined confidence score. 4) Jointly train the re-
lation and entity agent to leverage the embeddings
to computeRh. The final rewardR involvesRr and
Rh with a constant factor λ: R = λRr+(1−λ)Rh.
The policy networks of two agents are trained us-
ing the REINFORCE (Williams, 1992) algorithm
to maximize R.

4 Experiments

In this section, we compare RuleGuider with other
approaches on three datasets. We describe the ex-
periment setting, results, and analysis.

4.1 Experimental Setup

Datasets. We evaluate different methods on three
benchmark datasets. (1) FB15k-237 (Toutanova
et al., 2015), (2) WN18RR (Dettmers et al., 2018),
and (3) NELL-995 (Xiong et al., 2017).

Hyperparameters. We set all embedding size to
200. Each history encoder is a three-layer LSTM
with a hidden state dimension 200. We use Any-
BURL (Meilicke et al., 2019) as the rule miner and
set the confidence score threshold to be 0.15. Other
hyperparameters are shown in appendix.

4.2 Results

Table 1 shows the evaluation results. RuleGuider
achieves the state-of-the-art results over walk-
based methods on WN18RR and NELL-995, and
also competitive results on FB15k-237. One possi-
ble reason is: compared to the other two datasets,
the relation space in FB15k-237 is much larger and
the rules is relatively sparse in the large relational

8544

Method / Dataset WN18RR NELL-995 FB15k-237

H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR

In
te

rp
re

ta
bl

e

MINERVA (Das et al., 2017) 41.3 - 51.3 44.8 66.3 - 83.1 72.5 21.7 - 45.6 29.3
MultiHop (ConvE) (Lin et al., 2018) 41.4 48.1 51.7 44.8 65.6 - 84.4 72.7 32.7 - 56.4 40.7
Multihop (ComplEx) (Lin et al., 2018) 42.5 49.4 52.6 46.1 64.4 79.1 81.6 71.2 32.9 - 54.4 39.3
AnyBURL (C rules) (Meilicke et al., 2019) 42.9 51.6 53.7 - 44.0 56.0 57.0 - 26.9 43.1 52.0 -
RuleGuider (ConvE) 42.2 49.9 53.6 46.0 66.0 82.0 85.1 73.1 31.6 49.6 57.4 40.8
RuleGuider (ComplEx) 44.3 52.4 55.5 48.0 66.4 82.7 85.9 73.6 31.3 49.2 56.4 39.5

E
m

be
dd

in
g DistMult (Yang et al., 2014) 35.7 - 38.4 36.7 55.2 - 78.3 64.1 32.4 - 60.0 41.7

ComplEx (Trouillon et al., 2016) 41.5 45.6 46.9 43.4 63.9 81.7 84.8 72.1 33.7 54.0 62.4 43.2
ConvE (Dettmers et al., 2018) 40.1 49.8 53.7 44.6 66.7 85.3 87.2 75.1 34.1 54.7 62.2 43.5
RotateE (Sun et al., 2019) 42.2 51.3 54.1 46.4 - - - - 32.2 53.2 61.6 42.2

Table 1: Performance comparison with walk-based approaches. Best scores among the interpretable methods
and embedding-based methods are bold and underlined, respectively. In addition, we present the reported scores for
state-of-the-art embedding-based methods as reference. We underscore the best performing ones in this category.

Phase WN18RR NELL-995 FB15K-237

Pre-training 69.2% 44.9% 46.1%
Training 40.7% 24.5% 41.5%

Table 2: Percentage of rules used by RuleGuider (Com-
plEx) to predict eo (beam 0) during inference on the
development set at the end of pre-training and training
phase.

path space, which makes it harder for the relation
agent to select a desired rule.

We find symbolic-based models perform
strongly on WN18RR and we set λ higher to re-
ceive stronger rule guidance. We also observe
that embedding-based methods have consistently
good performance on all datasets compared to walk-
based methods despite their simplicity. One possi-
ble reason is that embedding-based methods implic-
itly encode the connectivity of the whole graph into
the embedding space (Lin et al., 2018). Embedding-
based methods are free from the strict traversing in
the graph and sometimes benefit from this property
due to incompleteness of the graph. By leveraging
rules, we also incorporate some global information
as guidance to make up for the potential searching
space loss during the discrete inference process.

Table 2 shows the percentage of rules used on
the development set using ComplEx embedding in
the pre-training and training phase. It shows that
our model abandons a few rules to further improve
hit performance during the training phase.

4.3 Ablation Study

We run different variants of RuleGuider on the de-
velopment set of WN18RR. We use ComplEx hit
reward shaping for consistency. Table 3 shows

Model Freeze No Single Ours

H@1 41.9 41.8 42.4 42.9
MRR 45.5 45.7 46.4 46.5

Table 3: Freeze, No and Single represent models with
freezing pre-trained relation agent, without pre-training
and without separating the agent.

Multihop Tie RuleGuider

Vote 36.92% 0% 63.08%

Table 4: Human evaluation vote between Multihop(Lin
et al., 2018) and ruleGuider for correctly predicted path
on FB15K-237 development set. Both model use Com-
plEx reward shaping.

the results. Freezing pre-trained agent performing
worse indicates that hit reward is necessary. Re-
moving pre-training performing worse shows that
the walk-based agents benefit from logic rules. The
single agent variant performing worse shows the
effectiveness of pruning action space.

4.4 Human Evaluation

Besides the evaluation metrics, we further analyze
whether the reasoning path that leads to correctly
predicted entity is reasonable. We perform human
evaluation on the Amazon Mechanical Turk. We
randomly sample a evaluation set with 300 triples
from development set using uniform distribution on
FB15k-237. During evaluation, given the ground
truth triple, three judges are asked to choose which
path is a better explanation/decomposition of it
between: 1. path generated by our method. 2.
paths generated by Multihop’s method. 3. Draw
or none of them are reasonable. Note that there
are 2.6% of the predicted paths are the same and

8545

they are excluded from the evaluation set. For each
triple, we count majority vote as the evaluation
result. As it’s possible that the three judges each
choose a different option which leads to one vote
on each choice. In this case, we do not count it in
the final evaluation result (table 4). Unexpectedly,
no triple get more than one vote on Tie. RuleGuider
achieves a better performance and the reasoning
path makes more sense to human judges comparing
to Multihop with ComplEx reward shaping.

5 Conclusions

In this paper, we proposed a collaborative frame-
work utilizing both symbolic-based and walk-based
models. We separate the walk-based agent into an
entity and relation agent to effectively leverage
the symbolic rules and significantly reduce the ac-
tion space. Experimentally, our approach improved
the performance of the state-of-the-art walk-based
models on two benchmark KGs.

In future work, we would like to study how to
introduce acyclic rules to the walk-based systems.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Wenhu Chen, Wenhan Xiong, Xifeng Yan, and
William Yang Wang. 2018. Variational knowledge
graph reasoning. In Proceedings of NAACL-HLT,
pages 1823–1832.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. 2017.
Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement
learning. arXiv preprint arXiv:1711.05851.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2017. Convolutional 2d
knowledge graph embeddings. In AAAI.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Luis Galárraga, Christina Teflioudi, Katja Hose, and
Fabian M Suchanek. 2015. Fast rule mining in on-
tological knowledge bases with amie++. The VLDB
Journal—The International Journal on Very Large
Data Bases, 24(6):707–730.

Luis Antonio Galárraga, Christina Teflioudi, Katja
Hose, and Fabian Suchanek. 2013. Amie: associa-
tion rule mining under incomplete evidence in onto-
logical knowledge bases. In Proceedings of the 22nd
international conference on World Wide Web, pages
413–422. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Niels Landwehr, Kristian Kersting, and Luc De Raedt.
2007. Integrating naive bayes and foil. Journal of
Machine Learning Research, 8(Mar):481–507.

Niels Landwehr, Andrea Passerini, Luc De Raedt, and
Paolo Frasconi. 2010. Fast learning of relational ker-
nels. Machine learning, 78(3):305–342.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3243–3253, Brussels, Belgium.
Association for Computational Linguistics.

Christian Meilicke, Melisachew Wudage Chekol,
Manuel Fink, and Heiner Stuckenschmidt. 2020.
Reinforced anytime bottom up rule learning for
knowledge graph completion. arXiv preprint
arXiv:2004.04412.

Christian Meilicke, Melisachew Wudage Chekol,
Daniel Ruffinelli, and Heiner Stuckenschmidt. 2019.
Anytime bottom-up rule learning for knowledge
graph completion. In IJCAI.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for re-
lation extraction with an incomplete knowledge base.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 777–782.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the web. Technical report,
Stanford InfoLab.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing
Guo, and Jianfeng Gao. 2018. Reinforcewalk:
Learning to walk in graph with monte carlo tree
search.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
NIPS.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. ArXiv,
abs/1902.10197.

https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.18653/v1/D18-1362

8546

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1499–1509.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Twenty-Eighth AAAI con-
ference on artificial intelligence.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Wenhan Xiong, Thien Hoang, and William Yang Wang.
2017. Deeppath: A reinforcement learning method
for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. CoRR, abs/1412.6575.

Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bern-
stein, and Huajun Chen. 2019. Interaction embed-
dings for prediction and explanation in knowledge
graphs. Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining -
WSDM ’19.

A Appendix

A.1 Datasets

We use the same training, development and testing
set splits as Lin et al. (2018). Following Lin et al.
(2018), we restrict the output degree of an entity by
selecting top η neighbors according to their PageR-
ank score (Page et al., 1999). We remove unseen
entities in test set for NELL-995. We also add re-
verse links from object entity eo to subject entity
es.

The detailed datasets statistics is shown in Ta-
ble 5 and Table 6.

Dataset #Ent #Rel #Fact
FB15k-237 14,505 237 272,115
WN18RR 40,945 11 86,835
NELL-995 75,492 200 154,213

Table 5: Number of relations, entities and fact triples
on three datasets.

Dataset Degree Relation Degree Entity Degree

mean median mean median mean median

FB15k-237 37.52 22 10.32 10 29.17 18
NELL-995 4.03 1 1.79 1 3.47 1
WN18RR 4.28 3 2.55 2 3.54 2

Table 6: Output degree of each entity on three datasets.
Degree is the total edges incident to each entity. Rela-
tion degree is the number of relations on each entity’s
output edges. Entity degree is the number of entities
that each entity connects to.

A.2 Training Details
A.2.1 Hardware and Runtime
We trained our model on one NVIDIA GeForce
1080 Ti GPU. Table 7 shows the runtime detail of
our model training.

WN18RR NELL-995 FB15k-237
number of epochs 50 1000 30
time/epoch 360s 50s 1800s
trainable parameters 26M 47M 11M

Table 7: Running time and model parameters.

A.2.2 Hyperparamters Search
We use Adam to train our model and use beam
search during inference to give the ranked predic-
tion of object entities. We run grid search on a
bunch of hyperparameters to select the best config-
uration. The bounds for searched hyperparameters
are shown in Table 8. An exception is rule guidance
reward ratio λ, which are manually tuned. Table 10
shows the configurations of our best performing
model.

Hyperparameter Search Bounds
regularization weight β [0.0, 0.1]
embedding dropout rate [0.0, 0.3]
hidden layer dropout rate [0.0, 0.3]
relation dropout rate [0.0, 0.95]
entity dropout rate [0.0, 0.95]
bandwidth {200, 256, 400, 512}
mini-batch size {64, 128, 256, 512}
learning rate [0.001, 0.003]
number of hops {2, 3}

Table 8: Searched hyperparameters using grid search.
Following (Lin et al., 2018), we add an entropy regu-
larization term in the training objective and the term is
weighted by regularization weight β. Bandwidth is the
entity output degree.

A.2.3 Confidence Score Threshold
We analyze the performance of our model with
different confidence score thresholds of the rule
miner (AnyBURL). We set the maximum threshold
to be 0.15. Table 9 shows the results. The results do

https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014
https://doi.org/10.1145/3289600.3291014

8547

not present any observable pattern. One potential
reason is that walk-based reasoning paths and less
confident rules may have similar performance on
certain queries.

Confidence > 0.00 > 0.05 > 0.10 > 0.15

@1 42.7 42.7 42.4 42.9
MRR 46.3 46.6 46.0 46.5

Table 9: Different confidence score thresholds.

Hyperparameter WN18RR NELL-995 FB15k-237
regularization weight β 0.0 0.05 0.02
embedding dropout rate 0.1 0.1 0.3
hidden layer dropout rate 0.1 0.1 0.1
relation dropout rate 0.1 0.1 0.5
entity dropout rate 0.1 0.1 0.5
bandwidth 500 256 400
mini-batch size 256 128 256
learning rate 0.001 0.001 0.0015
number of hops 3 3 3
rule guidance reward ratio λ 0.65 0.1 0.1

Table 10: Hyperparameter used in our model.

A.2.4 Evaluation Metrics
During inference, the model gives a ranked list of
predicted entities as the result. We use Hit@N
(H@N) and Mean Reciprocal Rank (MRR) to eval-
uate the model performance based on the ranked
list. Hit@N measures the percentage of test triples
for which the correct object entity is ranked in top
N in the candidate entities list. MRR measures the
average reciprocal of the rank of the object entity.

A.3 Development Set Performance
The result of RuleGuilder with complex embedding
hit reward shaping on development set is shown in
Table 11.

Dataset H@1 H@5 H@10 MRR

WN18RR 43.7 50.2 53.0 47.0

NELL-995 74.3 92.9 93.4 83.0

FB15K-237 27.4 47.4 55.8 36.7

Table 11: Performance of RuleGuider using ComplEx
embedding on development set.

