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Abstract
High quality data forms the bedrock for build-
ing meaningful statistical models in NLP. Con-
sequently, data quality must be evaluated ei-
ther during dataset construction or post hoc.
Almost all popular summarization datasets are
drawn from natural sources and do not come
with inherent quality assurance guarantees. In
spite of this, data quality has gone largely
unquestioned for many recent summarization
datasets. We perform the first large-scale eval-
uation of summarization datasets by introduc-
ing 5 intrinsic metrics and applying them to
10 popular datasets. We find that data usage
in recent summarization research is sometimes
inconsistent with the underlying properties of
the datasets employed. Further, we discover
that our metrics can serve the additional pur-
pose of being inexpensive heuristics for detect-
ing generically low quality examples.

1 Introduction

Data understanding is fundamentally important in
natural language processing (NLP); for data-driven
learning-based methods (e.g. neural networks), the
quality of the training data bounds the quality of
models learned using it. Therefore, understanding
this data is necessary in order to ensure that models
learn to perform a given task correctly.

Understanding data is a multidimensional prob-
lem. One line of inquiry has demonstrated why
prominent datasets are insufficiently challenging:
many data examples can be solved by alternative
heuristics that do not encode an approach that is
faithful to the task (McCoy et al., 2019). From
the perspective of datasets, several works have
shown that standard datasets in areas such as visual
question answering (Zhang et al., 2016; Kafle and
Kanan, 2017), natural language inference (Guru-
rangan et al., 2018; Poliak et al., 2018), and reading
comprehension (Kaushik and Lipton, 2018) con-
tain annotation artifacts that often give rise to these

spurious correlations or reasoning shortcuts. Data
understanding can also inform scientific and ethi-
cal decision-making (Bender and Friedman, 2018;
Gebru et al., 2018; Mitchell et al., 2019) with re-
cent work studying how social biases encoded in
training data propagate to learned models (Zhao
et al., 2019; Tan and Celis, 2019).

In this work, we extend these efforts towards the
setting of summarization. We find this to be partic-
ularly timely since several summarization datasets
have been released in recent years with little dis-
cussion of data quality. While prior work on evalu-
ating NLP datasets has focused on their difficulty,
transparency, or bias, we consider broadly the over-
all quality of the dataset — in our case, for the
task of summarization.1 Our central insight is that
desirable properties of a summary can be readily
estimated by adapting and applying existing NLP
methods. With this in mind, we present a multi-
aspect large-scale study of summarization datasets
that dissects summarization into 5 properties that
are evaluated across 10 datasets spanning multiple
summarization domains. Our analysis reveals that
our metrics can serve as lightweight detectors of
generically low quality examples. Most strikingly,
we show that quantifiable aspects of summarization
datasets are inconsistent with their use by the NLP
community in several instances.

2 Motivation

Quality assurance for data. Nuanced understand-
ing of data is requisite for drawing sound scientific
conclusions. In particular, without evaluating for
the quality and accuracy of data used to test models,
it is impossible to be certain that progress is being
made and that successive iterations of models truly

1Concurrent to our work, Kathy McKeown, during her
keynote address at ACL 2020, also called for the renewed
study of datasets being used in the summarization community
(McKeown, 2020).
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make progress on the underlying task or linguistic
phenomena of interest.

Within NLP, iconic datasets such as the Penn
Treebank (Marcus et al., 1993) have sustained sub-
areas such as language modelling, part-of-speech
tagging, and syntactic parsing for years due to
the painstaking annotation efforts put into making
these high-fidelity resources. And in the context of
summarization, initial datasets, such as those pro-
duced during the Document Understanding Confer-
ence (DUC) and Text Analysis Conference (TAC)
evaluations, implemented fine-grained verification
of data quality.2

In part due to the emergence of data-hungry mod-
elling techniques, the demands for larger datasets
often render quality assurance procedures of this
standard to be impractical and infeasible. Nonethe-
less, several recent natural language understanding
datasets (Bowman et al., 2015; Rajpurkar et al.,
2016; Suhr et al., 2017) institute explicit quality-
control procedures in crowd-sourcing dataset con-
struction (Zaidan and Callison-Burch, 2011; Yan
et al., 2014; Callison-Burch et al., 2015), such as
using additional annotators to validate annotations
(c.f. Geva et al., 2019). In the sibling subfield of
machine translation, which often shares similar
modelling challenges and evaluation regimes as
summarization due to the shared nature of being
sequence-to-sequence natural language generation
tasks, the annual WMT conference3 consistently
furnishes high quality data. In summary, ensuring
data quality is both crucial and challenging. And in
comparison with other subareas of NLP, we argue
that summarization has lagged behind in rigorously
ensuring the quality of widely-used datasets.
Relating data quality and model quality. The
correctness and quality of data inherently bounds
what can be learned from the data about the task of
interest. From an information-theoretic perspective,
this can be made fully formal as follows:4

I(S;M)︸ ︷︷ ︸
learned model

≤ I(S;T )︸ ︷︷ ︸
training data

+ I(S;P )︸ ︷︷ ︸
pretraining

+ I(S;A)︸ ︷︷ ︸
inductive bias

Here, I denotes the mutual information, S de-
notes understanding of the underlying summa-
rization task and M denotes a model learned us-
ing summarization training data T , additional pre-

2DUC 2003 annotation guidelines: https://duc.
nist.gov/duc2003/tasks.html and DUC 2002 qual-
ity assessment questions: https://duc.nist.gov/
duc2003/quality.html

3http://www.statmt.org/wmt20/
4Proof deferred to Appendix D.

training data P , and the model’s architecture A.
For fully learning-based methods, especially those
with weak/minimal inductive biases such as neural
networks, I(S;A) is approximately zero. While
I(S;P ) may be greater than zero (e.g. language
modelling pretraining provides statistical infor-
mation that may facilitate a model to avoid a
priori unlikely summaries), standard pretraining
regimes such as large-scale language modelling
over generic text corpora (Devlin et al., 2019; Raf-
fel et al., 2019) are likely insufficient to meaning-
fully learn to summarize. Under these assumptions,
the mutual information between S and M is criti-
cally upper-bounded in terms of I (S;T ). We hy-
pothesize that the quality of the training dataset
T is highly correlated with its mutual information
with respect to the summarization task S, I(S;T ).
One size does not fit all. Spärck Jones (1999) fa-
mously argued that summarization systems should
be understood conditional on the context in which
they will be used. In recent years, the field has
significantly departed from this perspective and
primarily studied “general-purpose summarization”
(Kryscinski et al., 2019), which she denounced as
ignis fatuus. With our work, we adopt the perspec-
tive that for all datasets it is strictly preferable to
have all properties quantified; it is the responsibil-
ity of practitioners building summarization systems
to accurately weight different metrics based on
their ultimate goals and use cases. As such, we re-
frain from providing prescriptive domain-agnostic
or context-agnostic notions of summarization.

3 Metrics

In this work, we evaluate the quality of a dataset by
aggregating scores for each example in the dataset.
We conjecture that for many NLP tasks, estimating
the quality of a particular data example is of similar
complexity as correctly performing the task on the
example.5 Nevertheless, for summarization, our in-
sight is that various aspects of a summarization ex-
ample (a document-summary pair) can be reliably
estimated by re-purposing existing NLP methods.
We are guided by pioneering work (Luhn, 1958; Ed-
mundson, 1969; Mani, 1999) that defined core prop-
erties of summarization systems and influential sub-

5Research in algorithms provides a natural parallel:
many computationally hard optimization problems remain
intractable when relaxed to their decision problem version.
For example, the travelling salesman problem of finding the
least costly Hamiltonian cycle remains NP-hard even if we
just ask “Does there exist a Hamiltonian cycle of cost ≤ L?”

https://duc.nist.gov/duc2003/tasks.html
https://duc.nist.gov/duc2003/tasks.html
https://duc.nist.gov/duc2003/quality.html
https://duc.nist.gov/duc2003/quality.html
http://www.statmt.org/wmt20/
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sequent work (Radev et al., 2002; Nenkova, 2006;
Nenkova and McKeown, 2012; Peyrard, 2019a)
that refined and extended these properties. From
this literature, we specifically study compression,
topic similarity, abstractivity, redundancy, and se-
mantic coherence as these properties are of recur-
ring and sustained interest.6

For each abstract property, numerous concrete
methods can be proposed to quantify it. In Ap-
pendix A, we describe alternatives we considered
and detail how we decided which methods per-
formed best. We restrict discussion to the best-
performing approaches in the main paper.
Notation. Our metrics will assume indexed sets
D, S such that summary Si ∈ S summarizes doc-
ument Di ∈ D. The length in words of a sequence
s is |s| and the length in sentences is ‖s‖. Each
metric assigns a value x ∈ [0, 1] to every (Di, Si)
where 1 is the maximal score and example-level
scores are averaged to yield a dataset-level score.
Compression. We quantify compression at the
word (w) and sentence (s) levels:

CMPw (Di, Si) = 1− |Si|
|Di|

(1)

CMPs (Di, Si) = 1− ‖Si‖
‖Di‖

(2)

Topic Similarity. We learn a topic model M
on training corpus T with k topics using LDA
(Blei et al., 2003) and quantify topic similar-
ity by comparing the inferred topic distributions
θDi|M, θSi|M for a given summary and document:

TS (Di, Si) = 1− JS(θDi|M, θSi|M) (3)
where JS is the Jensen-Shannon distance. We set
k = 20 and T = D.
Abstractivity. Grusky et al. (2018) introduced
fragments F(Di, Si), which are greedily-matched
spans shared between Di and Si. We quantify ab-
stractivity as a normalized function of the aggre-
gate fragment length; our definition generalizes the
definition of Grusky et al. (2018). We set p = 1.

ABSp (Di, Si) = 1−

∑
f∈F(Di,Si)

|f |p

|Si|p
(4)

Redundancy. ROUGE (Lin, 2004) implicitly penal-
izes redundancy but underestimates its detrimental
impacts (Chaganty et al., 2018). However, we find
that ROUGE is effective for identifying redundancy
given the definitional focus on overlapping spans.
We quantify redundancy as the average ROUGE-L

6Different names and interpretations have been given for
these properties in the literature. We revisit this in Appendix A
in discussing alternate metrics.

F -score for all pairs of distinct sentences in the
summary.
RED (Si) = mean

(x,y)∈Si×Si,x 6=y
ROUGE (x, y) (5)

Semantic Coherence. We evaluate the semantic
coherence of multi-sentence summaries by predict-
ing the probability of each successive sentence
conditioned on the previous one using a power-
ful language model, BERT (Devlin et al., 2019),
pretrained with precisely this objective.

SC (Si) =

||S||∑
j=2

1
BERT(Sj

i | S
j−1
i )

||Si|| − 1
(6)

4 Data

We study the following 10 summarization datasets
that have been frequently used in recent years.7

Table 1 contains standard dataset statistics in the
upper half and our aspect-level scores in the lower
half; datasets are grouped by domain.
CNN-DM (Hermann et al., 2015; Nallapati et al.,
2016) is a dataset composed of CNN and Daily
Mail news articles with summaries that are a con-
catenated list of highlight bullet points.
NYT (Sandhaus, 2008) is a dataset of curated New
York Times articles paired with abstracts written
by library scientists.
NWS (Grusky et al., 2018) is the Newsroom
dataset of news articles drawn from 38 top English
publishers paired with multi-sentence summaries
written by the original authors and editors.
GW (Graff and Cieri, 2003) is the Gigaword head-
line generation dataset that some refer to as a sum-
marization dataset (Rush et al., 2015; Chopra et al.,
2016). Examples in the dataset are drawn from
seven news sources and are the article prefix paired
with its headline.
XSum (Narayan et al., 2018) is an extreme summa-
rization dataset where BBC articles are paired with
single-sentence summaries written generally by the
author of the article that tries to motivate the BBC
audience to read the article by answering “What is
the article about?”.
PeerRead (Kang et al., 2018) is a dataset of pa-
per drafts from top-tier computer science venues
as well as arXiv.8 Consistent with its use in the
summarization community, we consider the full
introduction to be the source document and the ab-

7Several of these datasets are catalogued in the repository
of Dernoncourt et al. (2018).

8Some papers also have peer reviews which we ignore.

https://arxiv.org
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stract to be the target summary.
PubMed (Cohan et al., 2018) is a dataset of pa-
pers drawn from the biomedical and life sciences.
Unlike PeerRead, the full paper is taken as the
document but the summary is still specified as the
abstract.
TL;DR (Völske et al., 2017) is a dataset of user-
written articles from the social media platform Red-
dit along with the author-provided courtesy sum-
maries that tend to be multi-sentence. Völske et al.
(2017) applied a series of preprocessing procedures
to filter out bot-generated content.
AMI (Carletta et al., 2005) is a dataset of tran-
scribed meetings, some which are naturally occur-
ring and the rest of which are elicited, with hand-
annotated summaries. The transcription process
has multiple steps that are described extensively
by Carletta et al. (2005). Various additional data
provided within the AMI dataset is neglected in
this work.
MovieScript (Gorinski and Lapata, 2015) is a
dataset of movie scripts drawn from the Script-
Base corpus that are aligned with user-written sum-
maries sourced either from Wikipedia or IMDB.
Various additional data provided within the Movi-
eScript dataset is neglected in this work.

5 Results and Analysis

Compression scores quantitatively disam-
biguate summarization tasks.
Concretely, we observe GW has the lowest
compression scores and while GW is sometimes
described as a summarization dataset (Rush et al.,
2015; Chopra et al., 2016), it is better seen as a
headline generation dataset that is more in the
style of sentence compression (as is suggested by
‖Si‖ = ‖Di‖ = 1). Conversely, AMI and Movi-
eScript achieve the highest scores by a substantial
margin and are long-document summarization
datasets. Classifying new summarization datasets
accurately may prove useful given that successful
methods from one domain often do not extend to
another and this shortcoming in generalization
can be attributed to the differences in compression
requirements (Cohan et al., 2018).
Given the goals stated in the XSum dataset pa-
per, TL;DR may be a better choice than XSum.
In particular, Narayan et al. (2018) introduce
XSum as a large dataset that legitimately requires
abstraction. While XSum is more abstractive than
other News datasets (barring GW) and is relatively

large, TL;DR displays greater abstractivity, simi-
lar length summaries, and is 15 times larger. That
said, Narayan et al. (2018) explore topic-oriented
strategies in their work and such methods may be
better suited to XSum given the TS scores.
CNN-DM and NYT are suboptimal for study-
ing abstractive/extractive systems respectively.
Several recent works (See et al., 2017; Paulus et al.,
2018; Li et al., 2018) have used CNN-DM to build
and evaluate abstractive systems. Conversely, NYT
has been used to build extractive systems (Hong
and Nenkova, 2014; Li et al., 2016). Given our find-
ings, we find both of these trends to be inconsistent
with dataset properties and suboptimal given other
preferable datasets for these purposes: CNN-DM
is one of the least abstractive datasets and there are
larger and more extractive alternatives to NYT such
as NWS. Especially in the case of CNN-DM, we
note that training learning-based systems (e.g. neu-
ral methods) using data with limited abstractivity
implies the resulting summarizers will be limited
in their ability to generate genuinely abstractive
text. This is validated by empirical findings as both
See et al. (2017) and Zhang et al. (2018) observe
limited abstractivity in abstractive systems trained
on CNN-DM. In light of this, we argue systems
should be characterized as abstractive or not based
on their empirical behavior rather than their theo-
retical capability.9

CNN-DM is not a representative benchmark
for summarization as a whole.
Recent work (Kryscinski et al., 2019; Raffel et al.,
2019) has explicitly portrayed CNN-DM as the
benchmark dataset for summarization; the field has
implicitly done this for several years (Kryscinski
et al., 2019). While there is clear value in evalu-
ating pretrained representations on summarization
datasets, we caution against using CNN-DM as a
stand-in for the entire summarization subfield. In-
stead, we suggest using a diverse group of datasets
and not reducing a highly heterogeneous subfield
to a single dataset. While this adds additional over-
head, this cost is necessary to draw meaningful
conclusions about the impact of advances on sum-
marization broadly given the pronounced diversity
in summarization datasets (Table 1).
Post-processing methods for mitigating redun-
dancy may be needed for practical systems.
While evaluation on standard datasets using ROUGE

9Zhang et al. (2018) provide complementary arguments
for this position.

https://www.reddit.com
https://www.reddit.com
https://www.wikipedia.org
https://www.imdb.com
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News Scientific Social Media Meeting Script
CNN-DM NYT NWS GW XSum PeerRead PubMed TL;DR AMI MovieScript

# ex. 287K 655K 995K 3804K 203K 9963 21K 3084K 97 1061
avg. |Di| 717 822 677 34 438 1203 2394 238 6020 28K
avg. |Si| 50 46 40 9.6 24 160 270 27 314 122

avg. ‖Di‖ 31 34 26 1 19 54 95 11 568 3156
avg. ‖Si‖ 3.52 1.00 1.75 1.00 1.00 6.10 10.0 1.71 17.1 5.14

CMPw 0.909 0.869 0.910 0.714 0.904 0.763 0.870 0.876 0.941 0.994
CMPs 0.838 0.915 0.890 0.001 0.902 0.765 0.874 0.811 0.964 0.998

TS 0.634 0.586 0.539 0.478 0.578 0.702 0.774 0.438 0.573 0.547
ABS1 0.135 0.249 0.191 0.334 0.346 0.201 0.122 0.384 0.184 0.147
RED 0.157 - 0.037 - - 0.168 0.17 0.056 0.215 0.152

SC 0.964 - 0.981 - - 0.994 0.990 0.961 0.968 0.983

Table 1: Upper half: Standard dataset statistics. Lower half: Aspect-level scores for each dataset (0 is minimal
value, 1 is maximal value). Corresponding standard deviations appear in Table 9. Redundancy and semantic
coherence are not reported for datasets with > 95% single-sentence summaries.

may not penalize for this, redundancy is clearly un-
desirable (Carbonell and Goldstein, 1998; Peyrard,
2019a) and existing datasets (and thereby sys-
tems learned using that data) display significant
amounts of redundancy in their gold-standard sum-
maries (exceptions are datasets with short sum-
maries where cross-sentence redundancy is con-
strained to be low). Specifically, Nenkova (2006)
argues that redundancy is a clear inhibitor for prac-
tical application of summarization systems. Conse-
quently, post hoc methods that reduce redundancy
after initial evaluation may be useful in generating
summaries that are suitable for human users.
Semantic coherence captures observable varia-
tion in summary coherence.
We observe that the Scientific summaries (which
are abstracts of published papers) are clearly more
coherent than the author-generated summaries in
TL;DR, the fragmented summaries in AMI, and
the concatenated bullet-point summaries in CNN-
DM. We find that this distinction is captured by
the SC measure using BERT. Quantifying seman-
tic coherence is especially important given that
the coherence of reference summaries will inform
the coherence of system summaries, especially for
learning-based approaches. Akin to what we dis-
cuss for abstractivity, See et al. (2017) and Paulus
et al. (2018) both demonstrate that neural sum-
marizers generate incoherent summaries despite
achieving high ROUGE scores.

5.1 Pairwise Correlations

While the properties we evaluate for do not exhaust
all aspects of summarization that may be of inter-
est, it is unclear to what extent different measures
overlap in judgments. To quantify this, in Table 2

CMPw CMPs TS ABS1 RED SC

CMPw 1 0.733 -0.188 -0.406 -0.179 -0.321
CMPs 0.733 1 0.042 -0.297 0.036 0.0

TS -0.188 0.042 1 -0.564 0.75 0.643
ABS1 -0.406 -0.297 -0.564 1 -0.429 -0.214
RED -0.179 0.036 0.75 -0.429 1 0.321
SC -0.321 0.0 0.643 -0.214 0.321 1

Table 2: Pairwise correlations measured using Spear-
man ρ coefficient between metrics studied in this work.

we report pairwise correlations for every pair of
metrics. In each case, the value reported is the
Spearman rank correlation coefficient ρ computed
between the length 10 vectors containing the scores
for each dataset.10 ρ = 1 indicates perfect positive
correlation (which is why we see this for all diag-
onal entries) and ρ < 0 indicates the metrics are
anti-correlated.

Unsurprisingly, the compression metrics are
strongly correlated with each other. We further
observe that redundancy and topic similarity are
correlated whereas abstractivity is anti-correlated
with both. In particular, when summaries are con-
siderably redundant, we qualitatively observe that
the repeated content in the summary was both im-
portant and repeated in the context of the reference
document. As a result, this may explain why redun-
dancy and abstractivity are anti-correlated as this
would suggest that highly redundant summaries
are highly extractive. Additionally, since we mea-
sure topic similarity using LDA and unigram count
statistics, it is not surprising that extractions may
correlate with high topic similarity. In part, this
may suggest a deficiency of our measure of topic

10We omit scores for datasets that do not have scores for a
given metric.
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similarity to accurately consider references to the
same topic using substantially different words.

We also observe that semantic coherence pat-
terns similarly to redundancy. In particular, while
we find the semantic coherence scores are appropri-
ate for most examples we manually inspected, this
suggests that BERT relies upon word-level over-
laps in making next-sentence judgments (similar to
behaviors seen in other sentence-pair tasks such as
natural language inference, c.f Gururangan et al.,
2018)

6 Detecting Low Quality Examples

To complement our quantitative dataset-level anal-
ysis, we conduct a qualitative study of individual
examples by examining outliers. For each (dataset,
metric) pair, we sample 10 examples from both the
top and bottom 10% of examples for that metric
and in that dataset.

Since manually considering all of the 1080 ex-
amples was not feasible, we began by examining
the sampled examples for topic similarity, redun-
dancy, and semantic coherence. Our hypothesis
was that example quality would positively correlate
with coherence and topic similarity and negatively
correlate with redundancy. We found this hypothe-
sis to be validated by our observations as we found
that examples with low coherence, low topic sim-
ilarity, or high redundancy scores were generally
low quality examples. Every example which we
judged to be low quality demonstrated at least one
of the following defects:

• The summary contains critical disfluencies
that severely hinder accurate processing.11

• The summary excludes unambiguously criti-
cal information from the reference document.

• Crucial information in the summary does not
appear in the reference document and is not
general knowledge.

• Substantial fractions of the summary involve
entities, relations, or events that are ambigu-
ous and that we could not resolve from the

11We invoked this condition fairly judiciously as we ob-
served that the domain of summaries also could influence
the fluency of summaries in terms of grammaticality. In
particular, we unsurprisingly found that academic papers in
the Science domain generally have highly grammatical sum-
maries whereas the bullet-point summaries in CNN-DM and
the author-written summaries in TL;DR often were ungram-
matical but still sufficiently clear to be interpreted correctly.

summary alone. In particular, accurate inter-
pretation of the summary would require also
reading the reference document to resolve var-
ious coreferring expressions; the summary is
not self-contained.12

• The summary is entirely inappropriate as a
summary of the reference document. For ex-
ample, the summary only discusses an event
with no obvious relationship to the contents
of the reference document.

• The summary includes an entire sentence or
long phrase describing something that appears
in the main document but that is clearly an
auxiliary detail. We flagged examples as low
quality due to this condition quite conserva-
tively, only using it when we could come to
no basis for why the sentence/phrase should
appear in the summary.

On the other hand, we did not find any system-
atic defects in examples with high coherence, high
topic similarity, or low redundancy scores. Instead,
almost all of these examples were satisfactory.

For the remaining two properties (compression
measured by CMPw, abstractivity measured by
ABS1), we analyzed all of the associated 400 ex-
amples. What we observed is that many of these
examples tended to be generically low quality and
we quantify this in Table 3. Since this analysis may
be difficult to replicate and involves subjective de-
cisions about example quality, we comprehensively
enumerate all example IDs we use in Table 8.

Table 4 shows a representative subset of the low
quality examples we found in our analysis. We
provide further examples in Appendix C and Fig-
ures 1–9.
Compression. Minimally compressed summaries
in NYT, NWS, TL;DR, and PubMed often are
supplementary information to the document rather
than a summary of it; in some cases, we believe
this is due to errors in alignment in dataset con-
struction/release. On the other hand, heavily com-
pressed summaries in NWS and XSum often are
just category labels (e.g. Sports), in TL;DR are

12Many summaries drawn from the News domain have refer-
ences that could be resolved by world knowledge or that could
be reasonably understood using common sense knowledge.
In these cases, while the summary is not fully self-contained,
we did not judge them to be low quality. However, we expect
that systems trained using these datasets would require knowl-
edge beyond what is afforded by the reference document to
accurately generate summaries of this type.
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News Scientific Social Media Meeting Script
CNN-DM NYT NWS GW XSum PeerRead PubMed TL;DR AMI MovieScript

CMPw ↑ 50 50 70 60 30 10 10 80 0 10
ABS1 ↑ 40 30 70 50 50 70 50 80 0 10

CMPw ↓ 20 50 40 10 40 70 20 30 0 10
ABS1 ↓ 30 10 30 0 50 10 0 50 0 10

Table 3: Upper half: Percent of examples sampled from the top (↑) 10% for the given metric that were low quality.
Lower half: Percent of examples sampled from the bottom (↓) 10% for the given metric that were low quality.

Dataset Metric Document Summary

TL;DR CMPw ↑ Brodie (the dog) was neglected . . . health issues concerning his skin. . . . Onions
PeerRead ABS1 ↑ a lógica é o estudo dos princı́pios e critéiros de inferência . . . logic is the science of correct inferences . . .

NWS CMPw ↓ c© Telegraph Media Group Limited 2016 David Moyes has returned to former club Manchester United . . .
TL;DR ABS1 ↓ Let us, in the beginning, give a word of cordial praise to the . . . Let us, in the beginning, give a word of cordial praise to the . . .

Table 4: Representative low quality examples in the given dataset from the top (↑) or bottom (↓) 10% of examples
for the given metric. Due to space constraints, some examples are abridged and shorter examples were preferred
in selecting representatives. Additional examples are provided in Appendix C and Figures 1–9.

usually attention-grabbers, and in NYT are near-
exact duplicates of reference documents, which
themselves are letters to the editor.

Abstractivity. Manual inspection reveals highly
abstractive summaries in NYT and NWS gener-
ally are exceedingly vague or are entirely unrelated
to the original document. Highly abstractive sum-
maries in PeerRead are often translated to English
from the reference document’s language and dis-
cuss results that do not appear in the introduction
but likely appear later in the paper. Conversely,
extremely extractive summaries in NWS and NYT
often are just the lede and cannot be understood
without the reference document. However, in most
other instances, the lede is an effective summary
for examples drawn from the News domain.

Within the context of our sample of examples,
we find that eight of the ten summarization datasets
(all but AMI, MovieScript) contain at least 8%
low quality examples, the majority contain at least
14% low quality examples, and that these low qual-
ity examples can be detected using our compression
and abstractivity metrics. For the worst-offending
TL;DR dataset, we conservatively estimate at least
20% of examples are of substantially subpar qual-
ity. In general, we find that the low quality TL;DR
“summaries” we detect often serve a different rhetor-
ical purpose than summarization (e.g. attention
grabbing, responding to a previous post that is not
available in the dataset, sarcasm/humor).

7 Related Work

Dataset Analysis. As an alternative to automated
evaluation, Chen et al. (2016) and Yatskar (2019)
conduct human evaluations of standard datasets
in reading comprehension and question answering.
In some cases, dataset creators perform manual
analyses of the data they introduce (e.g. Sandhaus
(2008) and Grusky et al. (2018) for the NYT and
Newsroom corpora, respectively). Automated and
human evaluation provide complementary benefits
with respect to their scalability and reliability. Even
in the context of human evaluations, we advocate
that automatic metrics can be useful in guiding
the exploration of data and informing subsampling
procedures that provide fine-grained insights.
Quality Estimation. Our work bears resemblance
both in name and structure to work on quality es-
timation. Quality estimation, often centered on
natural language generation, is the task of measur-
ing system-generated output quality (Paetzold and
Specia, 2016; Yuan and Sharoff, 2020). It is closely
related to work on unsupervised or reference-free
evaluation (Napoles et al., 2016; Ethayarajh and
Sadigh, 2020). Within the context of summa-
rization, the special case of quality estimation re-
garding factual consistency/faithfulness has been
of recent interest (Wang et al., 2020; Maynez
et al., 2020; Durmus et al., 2020) since neural ab-
stractive summarizers have been shown to halluci-
nate/misrepresent facts (See et al., 2017). In com-
parison to these settings, our metrics make no use
of labelled data (even in training) and are entirely
intrinsic/unsupervised.
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Summarization Practices. Several analyses and
critiques exist for different aspects of the summa-
rization pipeline. From a modelling perspective,
Zhang et al. (2018) assess whether abstractive sys-
tems are truly abstractive, Kedzie et al. (2018)
evaluate content selection policies in a variety of
methods, and Mao et al. (2020) assess the facet-
level performance of extractive summarizers. From
an evaluation perspective, several works have dis-
cussed the shortcomings of ROUGE/automated eval-
uation (Liu and Liu, 2008; Chaganty et al., 2018;
Hashimoto et al., 2019; Peyrard, 2019b) as well
proposed alternative metrics for summarization or
natural language generation more broadly (Clark
et al., 2019; Zhang et al., 2020; Sellam et al., 2020).

Two recent works are highly related to our
own. Kryscinski et al. (2019) provide a critical
reevaluation of summarization research. Most rel-
evant to our work, they show that web-scraped
datasets, specifically CNN-DM and NWS, con-
tain a nontrivial fraction of examples (approx.
3.5%) with HTML artifacts (which can be eas-
ily detected/removed). Jung et al. (2019) provide
an aspect-level evaluation of both summarization
datasets and systems. In their work, the dataset
analyses center on biases in the data (e.g. posi-
tional biases, which are often seen in news sum-
marization), which is reminiscent of the annotation
artifacts seen in other NLP tasks (Gururangan et al.,
2018; Niven and Kao, 2019).

8 Discussion

Open Problems and Future Directions. Our re-
sults demonstrate that a sizeable fraction of ex-
amples in most summarization datasets are low
quality. However, it remains open whether mod-
ellers should simply prune these examples, man-
ually/automatically attempt to correct them, or
model them without change. We do note that re-
search in the machine learning and learning the-
ory communities shows that models both theoreti-
cally and empirically do substantially worse when
trained using low quality examples, even when the
examples are not strictly adversarially chosen (Kli-
vans et al., 2009; Biggio et al., 2012; Koh et al.,
2018). These concerns are further compounded
by the evidence of Belinkov and Bisk (2018) that
neural models for natural language generation are
not robust to naturally noisy data.

Our metrics may be repurposed to rank examples
in designing curricula for curriculum learning ap-

proaches (Bengio et al., 2009). Alternatively, they
can serve as additional metrics for the (possibly un-
supervised) evaluation of summarization systems,
potentially mitigating deficiencies in standard met-
rics, such as ROUGE, by directly penalizing redun-
dancy and semantic incoherence.

Limitations. In this work, we restrict ourselves to
single-document single-reference English language
summarization datasets. While the datasets we
study constitute a considerable fraction of dataset
usage in the summarization community, several
multi-document summarization datasets have been
introduced (e.g. Fabbri et al., 2019; Antognini and
Faltings, 2020) and multi-reference summarization
datasets have often been argued to be desirable due
to under-constrained nature of the summarization
task (Kryscinski et al., 2019) and the ideal evalua-
tion paradigm for ROUGE (Lin, 2004). Beyond En-
glish, both large summarization datasets (Nguyen
and Daumé III, 2019; Varab and Schluter, 2020)
and more general language resources/technologies
(Joshi et al., 2020) are less available, which may
heighten the need for data quality assurance.

More broadly, the measures that we introduce are
automated, and therefore non-human, judgments
of the quality of summarization data. Therefore,
we only envision these measures to be useful as
inexpensive first-order approximations of aspect-
level summary quality rather than bona fide replace-
ments for human evaluation. Additionally, since
we principally envision applying these metrics to
datasets, we make no efforts to make these metrics
robust to adversarially-crafted data and they are
likely quite susceptible to adversarial attack.

9 Conclusion

In this work, we demonstrate that various aspects
of summarization datasets can be intrinsically eval-
uated for. We specifically show this for 5 properties
across 10 popular datasets, uncovering that dataset
use is sometimes incongruous with the attributes of
the underlying data. We also find that some aspect-
level estimators may be surprisingly effective at
detecting low quality dataset examples. Our find-
ings suggest that more intentional and deliberate
decisions should be made in selecting summariza-
tion datasets for downstream modelling research
and that further scrutiny should be placed upon
summarization datasets released in the future.
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10 Reproducibility

All code is made publicly available.13 Exhaustive
reproducibility details, including how to access all
datasets, are provided in Appendix B. We fully
adhere to the EMNLP 2020 Reproducibility guide-
lines, addressing all relevant checklist items.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, pages
41–48, New York, NY, USA. Association for Com-
puting Machinery.

Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012.
Poisoning attacks against support vector machines.
In Proceedings of the 29th International Coference
on International Conference on Machine Learning,
ICML 2012, page 1467–1474, Madison, WI, USA.
Omnipress.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.

13https://github.com/rishibommasani/
SummarizationEvaluationEMNLP2020

In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Pickman Mann, Nick Ryder,
Melanie Subbiah, Jean Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
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A Alternative Metrics

A.1 Compression

For compression, we found sentence-level com-
pression to be a naturally motivated metric given
that many extractive systems are constrained to
extract sentence-length sequence. We also consid-
ered byte-level compression as an alternative to
word-level compression (as computational length
constraints have sometimes been used in evalua-
tion instead of word length constraints). We found
the results to be highly correlated with word-level
compression and to not be further revealing (and
bytes may be inherently less interpretable for NLP
when compared with words). We also considered
only considering content words, motivated by lit-
erature in topic modelling (Schofield et al., 2017)
that has considered removing stopwords and other
such lexical categories. These results were also
highly correlated with the original word-level com-
pression results and we did not find any discerning
trends in looking at individual examples.

A.2 Topic Similarity

In the main paper, we compute topic similarity
using the Jensen-Shannon distance. We initially
considered the Kullback-Leibler (KL) divergence.
While the JS distance and/or divergence has been
more frequently used in the context of similarity
in topic modelling, the KL divergence is also fre-
quently considered. Intuitively and under some in-
terpretations, the asymmetry of the KL divergence
may be desirable as the extent to which a summary
is topically similar to a document may not be the
same as the extent to which a document is topically
similar to a summary. In spite of this, in viewing the
results using KL, we found that the measure lacked
discriminative power in disambiguating examples
we believed were more topically similar than oth-
ers. We qualitatively found the judgments via the
JS distance to be accurate. That said, the judgments
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between the measures tended to be highly corre-
lated as the Spearman rank correlation coefficient
was ρ ≥ 0.7 for all topic modelling settings and in
most cases exceeded 0.8.

We also considered a topic model learned using
both the documents and summaries D ∪ S and
just the documents D. Both are natural choices,
with using the documents being more general in
some sense as the topic similarity of a summary
should be able to be assigned without requiring the
summary collection. We further considered several
choices for the number of topics as well. In Table 5,
we report the full results for all pairs of (training
corpus T , # topics k) for all

(T , k) ∈ {D ∪ S,D} × {10, 20, 50, 100}.
In all cases, the number of training examples is
truncated to 20000 (hence 10000 summaries and
10000 documents when using the training corpus
of D ∪ S). We fix the number of training docu-
ments across datasets to attempt to control for the
confound of larger datasets inducing higher qual-
ity topic models. We did not observe significant
changes in the result by relaxing this (i.e. using the
full datasets instead of just 20000 examples).

We find that there is significant variation in cross-
dataset rankings with respect to these two parame-
ters. We chose to report the results corresponding
to k = 20, T = D. We chose the value for k
based on qualitative judgments about topic quality
for CNN-DM, PeerRead, and AMI, as we consid-
ered these to be a diverse subset of all 10 datasets.
The topics we observed were highly disjoint and
reasonably aligned with our intuitions about what
sensible topics should be. We chose the value for
T based on the generality referenced previously.
While the results are substantially different for D
versus D ∪ S, we did not find any consistent and
interpretable discriminative properties between the
two.

A.3 Abstractivity

Our general framework for quantifying abstractiv-
ity is derived from Grusky et al. (2018). We con-
sidered p ∈ {1, 2, 3, 4} initially and found p = 1
to be the most informative regarding abstractivity.
In particular, we find that for increasing p, use-
ful conclusions about abstractivity are inherently
masked by the dominance of the |Si|p denominator
in the definition. We report the scores for ABS2

in Table 6.
We also considered the natural extensions to

ABS3 and ABS4 but we found that the normal-
ization dominates any deviation in the scores and
all datasets essentially receive a score of 1. We
also considered other forms of normalization (i.e.
normalizing ABS2 in the style of the L2 norm/the
style of generalized p-norms) in initial experiments
but found no substantial differences.

A.4 Redundancy

In the main paper, we compute redundancy scores
for each distinct sentence pair using ROUGE-L F -
measure and then average these individual values
to get a score for the entire summary. Alternatively,
we considered other ROUGE scores (specifically
ROUGE-1 and ROUGE-2) as well as max pooling
the sentence pair scores. We report these results
below in Table 7.

We do not observe significant changes with the
specific ROUGE metric considered (i.e. a Spearman
ρ of 1.0 which indicates a perfect correlation in
the case of max pooling across the ROUGE vari-
ants). We do see substantial differences between
averaging and max pooling; we find that max pool-
ing turns out to precisely correlate (ρ = 1.0) with
the average summary length. This is somewhat
expected, given that the max-pooled redundancy
estimates doesn’t inherently control for summary
length. We therefore chose to report redundancy
scores using averaging as we also qualitatively
found them to be more useful and characteristic,
especially for datasets such as AMI and the Scien-
tific datasets as max pooling was overly aggressive.
While the nuances of the specific ROUGE variant
did not significantly impact trends in redundancy
scores, we chose to report the ROUGE-L scores in
the main paper as we (highly subjectively) found
the values to be most interpretable/consistent with
values we would have assigned.

A.5 Semantic Coherence

We evaluate for semantic coherence between suc-
cessive pairs of sentences, exploiting the auxiliary
training objective of BERT beyond its masked lan-
guage modeling objective. In particular, we were
especially interested in this given that many sys-
tems are designed with explicit handling of sen-
tence boundaries (e.g. more extractive systems
first rank extractive sentences and then order a
thresholded subset) and datasets such as CNN-DM,
which are artificially concatenated, may not be in-
herently coherent across sentence-boundaries.
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News Scientific Social Media Meeting Script
k T CNN-DM NYT NWS GW XSum PeerRead PubMed TL;DR AMI MovieScript

10 D 0.715 0.666 0.616 0.546 0.629 0.769 0.812 0.536 0.702 0.553
10 D ∪ S 0.805 0.81 0.809 0.864 0.8 0.854 0.835 0.847 0.332 0.613
20 D 0.634 0.586 0.539 0.478 0.578 0.702 0.774 0.438 0.573 0.547
20 D ∪ S 0.773 0.757 0.771 0.87 0.763 0.815 0.751 0.823 0.361 0.463
50 D 0.572 0.507 0.472 0.414 0.497 0.64 0.721 0.368 0.561 0.445
50 D ∪ S 0.708 0.694 0.705 0.769 0.693 0.752 0.698 0.71 0.347 0.411

100 D 0.519 0.468 0.416 0.385 0.422 0.601 0.679 0.318 0.536 0.432
100 D ∪ S 0.681 0.66 0.665 0.689 0.632 0.725 0.667 0.638 0.35 0.395

Table 5: Alternative methods for estimating redundancy. Results in main paper are equivalent to those in the row
corresponding to 20 and D.

News Scientific Social Media Meeting Script
CNN-DM NYT NWS GW XSum PeerRead PubMed TL;DR AMI MovieScript

ABS1 0.135 0.249 0.191 0.334 0.346 0.201 0.122 0.384 0.184 0.147
ABS2 0.932 0.917 0.762 0.862 0.953 0.943 0.983 0.932 0.995 0.983

Table 6: Alternative methods for estimating abstractivity. Results in the main paper are for ABS1.

Our observations regarding the measure of co-
herence provided by BERT’s next-sentence pre-
dictions seem to contradict existing findings. In
particular, Liu et al. (2019) introduce RoBERTa
as a direct followup study to BERT and find that
the next-sentence prediction objective is not an
effective pretraining objective for improving rep-
resentations for natural language understanding;
Yang et al. (2019) also provide similar evidence.
However, our findings do not contest these conclu-
sions but instead suggest that, nonetheless, BERT
is a strong next-sentence predictor and that these
predictions are still useful for measuring coherence
across sentences. While we considered word or sub-
word measures of coherence, we did not consider
alternative pretrained models that are pretrained on
other objectives related to inter-sentence coherence
such as ALBERT (Lan et al., 2020). Given the find-
ings of Lan et al. (2020, §4.6), it seems likely that
the sentence order prediction task they use may be
more effective for measuring semantic coherence.
Concurrent work by Prabhumoye et al. (2020) also
substantiates the usefulness of BERT-based next-
sentence prediction for measuring coherence and
ranking sentences orders.

That said, semantic coherence could also be eval-
uated using (neural) language models, especially in
light of results suggest they may be consistent with
human judgments regarding grammaticality and
acceptability (Chowdhury and Zamparelli, 2018;
Warstadt et al., 2019). We did consider this and
found language modeling scores (e.g. surprisal)
assigned via a pretrained high-quality causal lan-

guage model (GPT-2) to be inconsistent with our
human judgments. We believe language modeling
scores in this sense are likely highly sensitive to the
domain (and even within-domain effects, e.g. lex-
ical variation for XSum which is fairly limited
given all articles are sourced from the BBC whereas
for Newsroom the variation is greater given the
heterogeneous group of publishers with more di-
versified writing styles).

B Reproducibility Details

We provide precise and comprehensive details dis-
cussing all data, preprocessing and modelling deci-
sions. All code will be made publicly available as
noted in the main paper.

B.1 Dataset Sources

We use the versions of GW and CNN-DM dataset
released by Gehrmann et al. (2018).14 Sentence
boundary tokens inserted by Gehrmann et al. (2018)
to improve summarization quality were removed
to ensure fair comparison in our work. An impor-
tant distinction in the use of the CNN-DM dataset
for modeling is whether the entity-anonymized or
non-anonymized version was used. This copy is
non-anonymized and it is important to consider the
stability of our metrics under this anonymization.
We used the released version of the NYT dataset
directly as it was released via LDC.15

14https://github.com/harvardnlp/
sent-summary

15https://catalog.ldc.upenn.edu/
LDC2008T19

https://github.com/harvardnlp/sent-summary
https://github.com/harvardnlp/sent-summary
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
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max ROUGE-1 0.266 - 0.067 - - 0.36 0.457 0.082 0.635 0.292
max ROUGE-2 0.049 - 0.014 - - 0.123 0.225 0.014 0.453 0.062
max ROUGE-L 0.238 - 0.055 - - 0.287 0.385 0.074 0.616 0.227
mean ROUGE-1 0.172 - 0.045 - - 0.214 0.215 0.063 0.239 0.195
mean ROUGE-2 0.014 - 0.004 - - 0.027 0.033 0.006 0.041 0.015
mean ROUGE-L 0.157 - 0.037 - - 0.168 0.17 0.056 0.215 0.152

Table 7: Alternative methods for estimating redundancy. Results in main paper are equivalent to those in the row
corresponding to mean and ROUGE-L.

We use the released version of the TL;DR dataset
provided by the authors of Völske et al. (2017).16

We use a version of the NWS dataset that was re-
leased via private communication with the authors
of Grusky et al. (2018). We have verified with the
authors that the data can be requested with the plat-
form they released in their original work.17

For all remaining datasets, we use the version re-
leased by Jung et al. (2019).18 All of our conven-
tions in using these five datasets follow their work.

B.2 Data Preprocessing

All datasets were first filtered to remove exam-
ples where either the document or summary was
empty. We found only examples in CNN-DM
failed this criterion and this constituted less than
0.1%

(
114

287227

)
of the dataset.

All results were reported then on the standard
training set if we were aware of a standard split
used consistently in the summarization system lit-
erature. Splits in the case of datasets sourced from
the work of Jung et al. (2019) followed their work.
In all cases, the training set was at least 80% of
the full data collection, so we expect results to gen-
eralize to the portions of the collection that were
not considered assuming splits were constructed by
sampling uniformly at random (we did not verify
this).

Sentence-level tokenization was performed us-
ing NLTK (Loper and Bird, 2002). Word-level tok-
enization was performed using SpaCy (Honnibal
and Montani, 2017).

B.3 Topic Similarity

We lowercase all terms, remove stopwords using
the list specified in NLTK (Loper and Bird, 2002),
and lemmatize using SpaCy (Honnibal and Mon-
tani, 2017). We only retain words tagged with
a POS category in {NOUN, ADJ, VERB, ADV}

16https://tldr.webis.de/
17https://summari.es/
18http://biassum.com/

by the SpaCy POS tagger. We use LDA (Blei
et al., 2003) to learn all topic models and rely on
the implementation in Gensim (Řehůřek and So-
jka, 2010) based on specification of Hoffman et al.
(2010). All hyperparameters are set as default and
we discussed the number of topics k and training
corpus T in §A.2 with the results in the main paper
using k = 20 and T = D where T is truncated
to be at most 20000 documents. We compute the
Jensen-Shannon distance using SciPy (Virtanen
et al., 2020).

B.4 Abstractivity

Fragments (Grusky et al., 2018) were computed
using the scripts released in that work for the
purposes of estimating abstractivity. In the case
of the NWS dataset, the authors already provide
fragment-related scores which we use without re-
computing these values.

B.5 Redundancy

We make use of the native Python re-
implementation of ROUGE (Lin, 2004),
easy-rouge.19 All scores reported in the
main paper use ROUGE-L and use the computed
F -measure score.

B.6 Semantic Coherence

We compute semantic coherence by predicting the
probability of a sentence conditional on the preced-
ing sentence using BERT. BERT was pretrained
with exactly this objective (beyond its masked lan-
guage modeling objective) and we use the released
model as-is with no further fine-tuning. We use
the bert-base-uncased model along with
the associated tokenizer that was implemented in
PyTorch (Paszke et al., 2017) by HuggingFace
in the transformers repository.20

19https://github.com/
neural-dialogue-metrics/rouge

20https://github.com/huggingface/
transformers

https://tldr.webis.de/
https://summari.es/
http://biassum.com/
https://github.com/neural-dialogue-metrics/rouge
https://github.com/neural-dialogue-metrics/rouge
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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B.7 Efficiency

All metrics reported in the main paper can be com-
puted over all datasets in less than 10 ten hours
on a single CPU. The only model with a nontriv-
ial number of parameters used in this work is the
bert-base-uncased models we use in mea-
suring semantic coherence. We refer readers to
Devlin et al. (2019) for more details and to the
HuggingFace implementation we reference previ-
ously.

C Detecting Low-Quality Examples

In the main paper, we briefly discuss how we dis-
covered that several of our metrics can serve the
dual purpose of detecting generally low quality
examples for example that achieve extreme scores.
Figures 1 through 9 are several examples we found
to be representative of the general structure of low
quality examples for a given metric. In some cases,
the trends are highly dataset-specific whereas in
others they are more general. To facilitate repro-
ducibility efforts, we provide all examples IDs we
studied for each (dataset, metric) in Table 8.

Original Text (truncated): Let us, in the beginning, give a word of cordial

praise to the American publishers of these splendid volumes. The undertaking,

in the first place, was an intellectual compliment to the country. It was based

on the faith that there is in this country enough of philosophy and scholarship

to justify a new and complete edition of . . .

Summary: Let us, in the beginning, give a word of cordial praise to the Amer-

ican publishers of these splendid volumes. The undertaking, in the first place,

was an intellectual compliment to the country.

Detector: Extremely Low Abstraction

Figure 1: Dataset: NWS. This summary simply is the
lede and we do not find it to be a useful summary for
readers not familiar with the full context of the article.
We hypothesize that such a summary may have been
useful for members of a newsroom communicating in-
formation about the article to the other (given their inti-
mate familiarity with the article) but this likely is inap-
propriate as a summary in most settings.

D Mutual Information Bounds

The entropy of a random variable X is defined as:
H(X) , −

∑
x

p(x) log2 p(x)

Original Text (truncated): A FULL-SERVICE hotel and conference center is

to go up in the Lafayette Yard area of Trenton, giving the city a hotel for the

first time since the 1980’s and bringing to an end its unenviable distinction as

the only state capital without lodging for visitors . . .

Summary: Acquest

Detector: Extremely Low Abstraction

Figure 2: Dataset: NYT. This summary simply con-
veys no useful information to someone who has not
also read the reference document and simply is a word
copied from the source document. It appears to be a
label rather than a summary.

Original Text (truncated): a lógica é o estudo dos princı́pios e critéiros de

inferências e demonstrações válidas. um sistema lógico é composto por três

partes: a sintaxe (ou notação), . . .

Summary (truncated): logic is the science of correct inferences and a logical

system is a tool to prove assertions in a certain logic in a correct way . . .

Detector: Extremely High Abstraction

Figure 3: Dataset: PeerRead. This summary simply
is not in the same language and hence achieves a very
high abstractivity.

Original Text (truncated): from russia with love”screenplay byrichard

maibaumadapted byjohanna harwoodbased on the novel byian fleming . . .

Summary: final

Detector: Extremely High Abstraction

Figure 4: Dataset: MovieScript. This summary sim-
ply bears no clear relationship with the reference docu-
ment and therefore repeats no words and achieves max-
imal abstractivity.

Original Text: BASEBALL American League BALTIMORE ORIOLES –

Agreed to terms with INF-OF Mark McLemore on a minor league contract.

BOSTON RED SOX – Named Dale Sveum third base coach.

Summary: Sports transactions

Detector: Extremely High Abstraction

Figure 5: Dataset: NYT. This summary is unlikely to
be informative to someone who has not read the ref-
erence document and is more of a categorization/label
than a summary. This is similar to the previous NYT
example given.

The conditional entropy of X given Y is defined
as:

H(X | Y ) ,
∑
y

p(y)

[
−
∑
x

p(x | y) log2 p(x | y)

]
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CNN-DM CMPw ↑ 8519 2640 5785 942 17538 7161 13516 19330 16770 8112
CNN-DM CMPw ↓ 4390 18955 14330 7336 17247 2380 13721 1560 16593 13157
CNN-DM ABS1 ↑ 10483 4788 10191 1785 15750 17503 18399 13140 6154 7871
CNN-DM ABS1 ↓ 15918 10958 16845 15301 18909 17897 13862 9637 8617 10269

NYT CMPw ↑ 11096 15782 14059 4182 266 5973 9748 17554 4002 3736
NYT CMPw ↓ 18308 10972 15081 16664 12310 7184 1692 4635 2783 18409
NYT ABS1 ↑ 17019 11500 15663 15056 9464 5355 15736 13315 13404 15687
NYT ABS1 ↓ 12317 6821 13615 6220 17242 18480 6280 3808 16364 5825
NWS CMPw ↑ 6627 507 4999 19020 10546 5215 11450 8467 19640 5027
NWS CMPw ↓ 12213 18094 11644 11969 3595 67 13752 12180 7927 4137
NWS ABS1 ↑ 16092 19307 7422 6358 2191 17874 13484 16894 18728 4671
NWS ABS1 ↓ 10698 1172 3014 9373 688 5724 7391 10575 1841 16314

TL;DR CMPw ↑ 15659 7458 9830 18016 435 15820 926 8790 12533 9555
TL;DR CMPw ↓ 7313 9667 12707 5431 19761 1577 10484 18118 15612 9623
TL;DR ABS1 ↑ 15252 14719 3623 18758 6311 9860 12394 11822 12873 2787
TL;DR ABS1 ↓ 4048 5538 18552 9621 4059 2044 1756 1927 906 12768

GW CMPw ↑ 6479 1795 9370 2274 11622 8430 6808 18236 7909 4108
GW CMPw ↓ 9276 3375 10192 2434 1471 12854 10455 13995 10361 5945
GW ABS1 ↑ 3358 13215 2592 19244 16380 15535 10255 8373 15101 3056
GW ABS1 ↓ 11466 5816 16528 11168 7642 10496 14 8223 13731 4971
AMI CMPw ↑ 96 92 18 62 0 28 74 51 45
AMI CMPw ↓ 4 11 25 84 33 42 94 64 49
AMI ABS1 ↑ 43 49 25 10 28 29 41 74 42
AMI ABS1 ↓ 63 91 37 67 79 70 54 48 35

MovieScript CMPw ↑ 979 393 185 140 977 186 335 567 688 399
MovieScript CMPw ↓ 159 343 133 693 896 14 1050 23 838 744
MovieScript ABS1 ↑ 659 783 994 941 980 796 1060 207 86 338
MovieScript ABS1 ↓ 445 488 253 733 233 158 978 391 553 341

PeerRead CMPw ↑ 358 744 54 9520 703 1629 4066 7122 2573 5711
PeerRead CMPw ↓ 3433 1877 757 1621 8257 7654 3635 3302 3807 5495
PeerRead ABS1 ↑ 9128 4204 7638 3729 3354 3747 2614 6485 2533 6082
PeerRead ABS1 ↓ 2910 1120 2157 212 9765 583 5653 48 729 6418
PubMed CMPw ↑ 9769 11434 19055 10724 5961 13804 4846 16193 11958 9084
PubMed CMPw ↓ 6335 7884 2919 17888 14458 13529 13062 18799 3435 5780
PubMed ABS1 ↑ 5303 17763 4886 18555 17871 13251 5975 10611 14676 14655
PubMed ABS1 ↓ 11705 2639 11863 5064 7551 530 1981 7509 8827 16006

XSum CMPw ↑ 18913 10476 11067 8546 2277 6992 3676 10926 4369 19607
XSum CMPw ↓ 164 16910 15343 12875 10730 15297 9999 14526 6751 7753
XSum ABS1 ↑ 2942 14493 7669 12180 9360 19036 15122 12422 8353 660
XSum ABS1 ↓ 3454 17269 11358 13847 18482 10213 10394 5319 15605 2627

Table 8: Exhaustive list of example IDs we studied in the evaluation described in Section 6 of the main paper.
↑ indicates the examples are sampled from the top 10% for a given metric, ↓ indicates the examples are sampled
from the bottom 10% for a given metric. Since AMI has 97 summaries (which is less than 100), it is impossible
to select 10 unique examples from either the top or bottom 10% for a given metric. Therefore, we simply consider
the 9 examples within the top or bottom 10%.



8094

Original Text: c© Telegraph Media Group Limited 2016

Summary: David Moyes has returned to former club Manchester United to

strengthen his Sunderland squad after agreeing a fee for Paddy McNair and

Donald Love.

Detector: Extremely Low Compression

Figure 6: Dataset: NWS. This summary has a nega-
tive compression score and, in this case, this seems to
indicate the summaries and documents were extracted
inaccurately using the scraper of Grusky et al. (2018).

Original Text: An article yesterday about plans by members of the House

Intelligence Committee to visit Libya misidentified the member of Congress

who headed a delegation to that country last month. He was Curt Weldon,

Republican of Pennsylvania, not Tom Lantos, Democrat of California.

Summary: Six members of House Intelligence Committee are scheduled to

meet in Libya with Col Muammar el-Qaddafi and other top Libyan officials,

in second meeting between American Congressional delegation and Qaddafi

since Libya agreed to dismantle its chemical and biological weapons program;

members of House panel hope to use meeting to gauge accuracy of earlier

American intelligence about Libya (M)

Detector: Extremely Low Compression

Figure 7: Dataset: NYT. Similar to the previous
example, this summary has a negative compression
score and, in this case, this seems to indicate the sum-
maries and documents were created/aligned incorrectly
in Sandhaus (2008).

Original Text (truncated): Brodie (the dog) was neglected, and ended up with

serious anger and health issues concerning his skin and allergies. My boyfriend

adopted him . . .

Summary: Onions.

Detector: Extremely High Compression

Figure 8: Dataset: TL;DR. We observe this trend quite
frequently in TL;DR. Specifically, since authors on the
social discussion platform Reddit choose to provide
these summaries at their discretion, we often find the
“summaries” are attention-grabbing and serve a starkly
different rhetorical purpose from how summaries are
generally conceived.

The mutual information between random variables
X and Y is defined as:

I(X;Y ) , H(X)−H(X | Y )

The entropy measures the uncertainty in the proba-
bility mass/density function of a random variable.
As such, the mutual information measures how

Original Text (truncated): these are external links and will open in a new

window1908 - king carlos and eldest son assassinated in lisbon. second son

manuel becomes king. 1910 - king manuel ii abdicates amid revolution . . .

Summary: a chronology of key events :

Detector: Extremely High Compression

Figure 9: Dataset: XSum. We observe this trend quite
frequently in XSum. For articles that are essentially
timelines or other types of chronologies discussing his-
toric events diachronically (which forms a small but
distinctive section of the writing style of BBC from
our analysis), the summary extracted to accompany it is
generally this string or a slightly altered version. We ar-
gue this summary is fairly unhelpful (and is likely fairly
uninteresting to test models on; simple rule-based filter-
ing made be preferable to avoid overestimating perfor-
mance on this dataset because of these examples).

much the entropy of X is reduced by (on average)
due to the observation of Y .

In the main paper, we state the following inequality:
I(S;M)︸ ︷︷ ︸

learned model

≤ I(S;T )︸ ︷︷ ︸
training data

+ I(S;P )︸ ︷︷ ︸
pretraining

+ I(S;A)︸ ︷︷ ︸
inductive bias

,

where I denotes the mutual information, S denotes
understanding of the underlying summarization
task and M denotes a model learned using sum-
marization training data T , additional pretraining
data P , and the model’s architecture A.

Intuitively, the claim is that the uncertainty about
the summarization task that is reduced by the model
(which is uniquely determined by its training data,
pretraining data, and architecture) is at most what
can be cumulatively reduced by the training data,
pretraining data, and inductive biases encoded in
the model’s architecture.

Our hypothesis is that I(S;A) is small for
learning-based models with minimal inductive bi-
ases, such as neural networks. Further, we hy-
pothesize that while I(S;P ) is likely nontrivial for
popular pretraining regimes, the dominant term on
the right-hand side is likely I(S;T ). We do note
that this second hypothesis may be false given the
partial evidence of GPT-3 (Brown et al., 2020) and
the successes it enjoys in few-shot learning due to
pretraining at unprecedented scale. However, no
evaluation is conducted on summarization data in
that work.
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Proof.
I(S;M) ≤ I(S;T, P,A)

(Cover and Thomas, 2006, Thm. 2.8.1)

≤ I(S;T ) + I(S;P ) + I(S;A)

(Duchi, 2019, Inequality 2.1.7)

E Additional Statistics

In the main paper, we report the average score for
each metric on each dataset. To complement re-
porting the mean, we report the standard deviation
for each metric on each dataset in Table 9.
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CMPw 0.056 0.426 0.122 0.080 0.092 0.151 0.062 0.113 0.026 0.011
CMPs 0.107 0.116 0.129 0.028 0.096 0.170 0.067 0.161 0.020 0.008

TS 0.160 0.187 0.197 0.183 0.194 0.151 0.151 0.177 0.213 0.195
ABS1 0.074 0.148 0.183 0.174 0.146 0.116 0.055 0.170 0.060 0.064
RED 0.046 - 0.068 - - 0.036 0.031 0.090 0.037 0.044

SC 0.124 - 0.116 - - 0.037 0.042 0.172 0.056 0.075

Table 9: Aspect-level standard deviations for each dataset. Redundancy and semantic coherence are not reported
for datasets with > 95% single-sentence summaries.


