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Abstract

Large scale pre-trained language models have
shown groundbreaking performance improve-
ments for transfer learning in the domain of
natural language processing. In our paper, we
study a pre-trained multilingual BERT model
and analyze the OOV rate on downstream
tasks, how it introduces information loss, and
as a side-effect, obstructs the potential of the
underlying model. We then propose multi-
ple approaches for mitigation and demonstrate
that it improves performance with the same
parameter count when combined with fine-
tuning.

1 Background

The advent of large scale language models pre-
trained with large unannotated corpora has shown
significant advancements in the domain of natu-
ral language processing, especially by demonstrat-
ing their effectiveness through transfer learning
for downstream tasks (Howard and Ruder, 2018;
Devlin et al., 2019; Conneau and Lample, 2019;
Radford et al.), analogous to ImageNet (Deng et al.,
2009) pre-trained backbones in the domain of com-
puter vision. In the domain of natural language
processing, new methods have made it possible to
use internet corpora as a nearly free source for in-
creasing the amount of data at an unprecedented
scale during pre-training.

Additionally, new tokenization methods such as
Byte-Pair Encoding (BPE, Sennrich et al. (2016)),
WordPiece (Wu et al., 2016), SentencePiece (Kudo
and Richardson, 2018), which break the lexicons
into smaller subwords, have shown to be effec-
tive when applied to alphabetic languages to re-
duce the size of the vocabulary while increasing
the robustness against out-of-vocabulary (OOV)
in downstream tasks. This is especially powerful
when combined with transfer learning. However,

these tokenizers still operate at Unicode charac-
ter levels - contrary to the names suggesting byte-
level (which would completely mitigate OOV, as
studied in Gillick et al. (2016)). Hence, the min-
imum size of the vocabulary is twice the size of
all unique characters in the corpus, as subword
tokenizers store each character in prefix and suf-
fix form in the vocabulary. As OOV was a much
more prevalent problem in the context of lexicon-
based methods, there have been many methods,
such as dictionary-based postprocessing (Luong
et al., 2015) and distributional representation based
substitution (Kolachina et al., 2017). Recently this
has not been as actively studied in the context of
subword tokenization as Latin languages are no
longer affected.

For these reasons, when trained against a diverse
set of languages, the vocabulary size increases pro-
portionally to the number of languages supported.
Existing models have sampled portions of entire
corpora or relaxed constraints on character level
coverage for these languages, to prevent the vo-
cabulary from growing to an unmanageable scale.
As of today, this is an unavoidable trade-off when
training multilingual models. This introduces a bot-
tleneck for downstream tasks since any character
omitted causes information loss.

Training models for each language is the most
straightforward possible mitigation. However, the
downside is the cost for pre-training; acquiring
a large corpus is a daunting task, and training a
large model for many researchers can be financially
infeasible. The high upfront cost leaves transfer
learning on an open, multilingual model as an eco-
nomically attractive alternative. Unfortunately, due
to corpus imbalance during pre-training, minor lan-
guages, especially those with a diverse character
set (such as CJK languages), OOV is likely to sur-
face. Our motivation is to improve performance
for these languages, without significantly increas-
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Language Example
INEWS (Chinese) 湖密山友——��香花海之旅！

湖密山友 [UNK]香花海之旅！
Twitter (Japanese) ...１５回は押した ...

... １５回は押 [UNK] ...
NSMC (Korean) 재밌습니다.재밌습니다.

[UNK] . [UNK] .

Table 1: Examples of OOV in the task datasets.

ing the computation cost when using open-source
pre-trained models.

In our work, we propose multiple approaches
to mitigate OOV during fine-tuning. We compare
each approach with no OOV mitigation, along with
increasing vocabulary size as a secondary baseline.

2 Approach

The multilingual BERT model bert-base-
multilingual-cased (Devlin et al., 2019) we
used performs two-phase tokenization, first with
whitespace followed by WordPiece. The tokenizer
was modified to support a secondary vocabulary
which points new words to existing words for our
experiments, connected to a Transformers library
(Wolf et al., 2019) BERT model. The approach
consists of three steps.

First, we perform a complete corpus analysis and
search for all OOV surfaces by tokenizing the task
corpus. An OOV surface in the context of BERT is
an entire space tokenized token. Whenever OOV
occurs, we keep a record of the entire OOV surface,
along with the context.

For each OOV surface, we brute-force search
to find the maximally specific OOV subword sur-
face. An OOV subword surface is an actual sub-
word missing in an OOV surface. In this step, we
compute a frequency table for both OOV and in-
vocabulary subwords for a preference mechanism
in the mitigation strategy. We observed that most
cases of the OOV subword surface were caused
by one character missing in the vocabulary during
our experiments, which is a result of incomplete
character coverage from the corpora used for pre-
training.

Finally, we use this information to build a miti-
gation strategy for the OOV subwords. Here, we
evaluate different algorithms for OOV mitigation,
each of which we discuss in the individual method
sections below. After applying OOV mitigation, we
then optionally perform fine-tuning and evaluate
against the baseline.

Substitution to mitigate OOV has been studied

S'il vous plaît


S _' _il v _ou _s pl _a _î _t


S _' _il v _ou _s <unk>

S _' _il v _ou _s pl _a _i _t

Input 

Without OOV 

With OOV 
After Patch

OOV Surface

OOV Subword Surface

Patched

Figure 1: The hierarchy of OOV and the high level pro-
cess explained through a simplified example in French.
In this example, we assume ı̂ is a missing subword.

in (Kolachina et al., 2017). This method depends
on part-of-speech tagging or a secondary corpus
and model for similarity computation, which is
challenging to apply in a subword model. The
significance of our approach is that it works for
subword models and it’s practical applicability, as
only a downstream task corpus and a pre-trained
model is required.

2.1 Surrogated Tokens

Surrogates, simply put, is treating a subword miss-
ing from the vocabulary to a subword that is already
in the vocabulary of a pre-trained model. There are
intuitive ways to find substitute words in a word-
level setup, the most obvious being choosing a
semantically similar word from a thesaurus. In
a subword context, this is not as straightforward,
as a subword generally has no meaning. In our
work, we discuss different surrogate selection pro-
cesses. The surrogate selection process introduces
polysemy as a tradeoff for mitigating OOV. While
some of the proposed methods add complexity for
generative tasks, it does not increase the model’s
computation cost as the vocabulary size does not
change.

The embeddings between the newly added sub-
word and the surrogate are shared and updated to-
gether in the fine-tuning process. The OOV sub-
word frequency table we constructed in the second
step of the process above is used to break ties and
minimize conflicts. For example, token A and B,
both of which are OOV subwords, can end up with
the same proposals {X,Y } in preference order. In
this case, given A has a higher frequency, it gets
precedence over B, so the surrogate map becomes
A → X and B → Y . Our goal is to refine the
proposals to be in a state where one surrogate is
assigned to only one OOV token.
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Input:         hello world
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Tokenize
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Figure 2: Surrogate vocabulary injection process.

2.1.1 Character Distance
This method selects the surrogate with Unicode
codepoint distance, limited to subword tokens
within the vocabulary of the same length. In this
process, we perform an exhaustive search, formu-
lated as argmin

w∈W ′
(|ord(v)−ord(w)|1 where v is the

OOV subword, and W ′ is a subset of the vocabulary
W which satisfies UTF-8 length equality |v| = |w|
for w ∈ W . ord is Unicode ordinal conversion.

The intuition of this method builds on the charac-
teristics of the CJK Unicode blocks, which allow us
to cheaply approximate text or semantic similarity
through the scalar values of the Unicode codepoints.
The properties which we intend to exploit are dif-
ferent depending on the target language. In CJK
ideographs, adjacent characters tend to share a rad-
ical, hence has a bias towards semantic similarity.

On the other hand, in Korean, phonetically simi-
lar characters are adjacent. This approximates edit
distance, as a Korean character in Unicode is a com-
bination of multiple sub-characters. This phonetic
similarity differs from edit distance, as it tends to
disallow edits on the first two components of the
character. In the event of a distance tie, we used
the candidate with a lower codepoint.

Frequent subword tokens get preferential treat-
ment and hence get surrogates with closer distance
to an infrequent token. Once a token has been
assigned, it is not re-used as a surrogate.

2.1.2 Unseen Tokens
We select tokens from the in-vocabulary token fre-
quency table, which were never seen in the current
task as surrogates. As downstream tasks for evalua-
tion do not require the entire vocabulary, we select
random tokens with a frequency of 0 as surrogates.

This method is analogous to increasing the
model parameters (via vocabulary size), then prun-
ing back to the original size, but as an in-place oper-
ation. Any word previously assigned was held out
to prevent re-assignment. As the vocabulary will

6C10 汐汑汒汓汔汕汖汗汘汙汚汛汜汝汞江
AC10 감갑값갓갔강갖갗갘같갚갛개객갞갟

Figure 3: In character distance, The highlighted charac-
ter is missing from the vocabulary. Observing the adja-
cent characters, in CJK ideographs they share a radical,
while in Korean they share two subcharacters.

have a large number of tokens never seen in most
downstream tasks, we do not use any frequency
preference here.

This method can also be combined with char-
acter distance to prefer surrogates with a high dis-
tance to assign surrogates in a distant Unicode page
to prevent unseen tokens of the same language be-
ing used as surrogates.

2.1.3 Masked Language Model
First, the masked language model based proposal
uses BERT’s masked language head to generate
surrogate proposals. Each subword OOV surface
is replaced with the mask token and passed to the
masked LM head with the whole context. The sub-
word token with the highest probability is selected
for each context, stored in a frequency table, to se-
lect the most common token later. We use the same
frequency preference as character distance, which
allows frequent OOV subwords to have precedence
when selecting surrogates. As with other methods,
once a surrogate is assigned, it is held out. There-
fore, less frequent words are assigned to the next
most locally frequent surrogate. After the entire
process is done, OOV subwords that were not as-
signed a surrogate are assigned to the candidate
with the lowest frequency.

2.2 Additional Tokens

Here, we add new tokens to the vocabulary and
increase the model size, motivated by Wang et al.
(2019). As this increases the network parameters,
these are used as a secondary baseline to be com-
pared with surrogates.

2.2.1 Random Initialization
After adding the missing subword to the vocabulary,
the embedding is then randomly initialized.

2.2.2 Transfer Initialization
Transfer initialization is done by following the first
step of the masked language model task to gen-
erate a list of surrogates. We then initialize by
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Dataset O/Tok O/Sen Total %
NSMC 81603 60151 200K 30.1
KorQuAD 14159 8569 144K 5.9
Twitter 10310 5518 22K 25.1
INEWS 2570 1278 6K 20.1

Table 2: OOV analysis on the four datasets. O/Tok is
the number of OOV tokens, O/Sen is the number of sen-
tences with at least one OOV token, and the total sen-
tence count, followed by the ratio of OOV sentences.

copying the embedding vector of the topmost prob-
able candidate of the OOV subword into the newly
added OOV subword’s slot in the embedding ma-
trix. These two tokens share the same initial em-
beddings but are expected to diverge through fine-
tuning.

3 Datasets

For our experiments, we used four datasets for eval-
uation. For all tasks, we first learn OOV words,
perform fine-tuning, then evaluate. The OOV rates
noted for each dataset is the ratio of sentences con-
taining at least one OOV token.

3.1 Naver Sentiment Movie Corpus
The Naver Sentiment Movie Corpus (NSMC) is a
Korean sentiment analysis task, containing 200,000
user comments and a corresponding binary label
which indicates positive or negative sentiment. The
OOV rate was 30.1% due to a large number of
typos and also being from a different domain.

3.2 Japanese Twitter Sentiment Analysis
As a second validation target language, we used
a Japanese Twitter dataset, which is a sentiment
analysis task with five possible labels. The task
is 20K Tweets and 2K Tweets, respectively, for
training and test. During analysis, we observed
that a large portion of the OOV was from emojis,
resulting in an OOV rate of 25.1%.

3.3 Chinese News Sentiment Analysis
The INEWS dataset is part of the ChineseGLUE
dataset. The input is a short sentence from a news
article, and the label is the tone of the article. This
is also a sentiment analysis task, with a split of 5K
train and 1K validation, and an OOV rate of 20.1%.

3.4 KorQuAD 1.0
KorQuAD 1.0 is a Korean version of the SQuAD
(Rajpurkar et al., 2016) reading comprehension

task. The task involves answering a question given
a passage of text, and consists of 10K passages with
66K questions. The passages are from Wikipedia,
which is commonly used as a part of large-scale
training corpora. The result of this is a low OOV
rate of 5.9%. For this task, task corpus fine-tuning
was omitted to prevent the model from memorizing
answers.

4 Results

The evaluation was done through the SST-2 GLUE
task metrics (Wang et al., 2018) for the sentiment
analysis tasks, and EM/F1 evaluation from the
SQuAD metrics for KorQuAD, as the two tasks
are compatible. Each model used the same dataset
and training parameters as the baseline, only with
different OOV mitigation methods.

Additionally, while Chinese and Japanese are
both scriptio continua languages, BERT’s tokenizer
treats CJK ideograph text differently and breaks at
every character. This makes the affected surface
from OOV significantly smaller, resulting in less
information loss. For these reasons, we expect to
see larger gains in Korean, as the per-character
break is not enabled.

4.1 Naver Sentiment Movie Corpus

Due to the larger OOV surface and frequency, we
expect to observe a modest increase in the best case
compared to the baseline. We can indeed observe
that regardless of the mitigation method, OOV miti-
gation, in general, improves accuracy. The OOV to-
kens we observed here were from casual writing in
user comments, which shifts from the book corpus
like domain used for pre-train. This suggests that
even without robust, representative embeddings, it
is still better than losing information during tok-
enization. We also hypothesize that because the
embeddings initially are not representative of the
subword in context, performance improves by do-
main adaptation through fine-tuning.

4.2 Japanese Twitter Sentiment Analysis

This corpus showed a high OOV rate due to the fre-
quent occurrence of emoji in the text. We observe
similar patterns with the results from NSMC. Gen-
erally, we see improvements when both OOV miti-
gation and fine-tuning were done, except for char-
acter distance. We observed that character distance
assigned surrogates to Korean characters, which
may have contributed to this.

https://github.com/e9t/nsmc
http://www.db.info.gifu-u.ac.jp/data/Data_5d832973308d57446583ed9f
https://github.com/chineseGLUE
https://korquad.github.io/
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NSMC (ko) Twitter (ja) INEWS (zh) KorQuAD (ko)
Model Params+? Acc@FT Acc@NT Acc@FT Acc@NT Acc@FT Acc@NT EM F1

BERT (Baseline) No 0.8773 0.8774 0.7348 0.7383 0.818 0.813 0.7012 0.8982
Add (Transfer) Yes 0.8868 0.8812 0.7459 0.7434 0.820 0.810 0.7084 0.9022
Add (Random) Yes 0.8882 0.8821 0.7449 0.7344 0.818 0.820 0.7085 0.9031
Char. Distance No 0.8885 0.8839 0.7329 0.7394 0.824 0.818 0.7101 0.9051
Unseen Tokens No 0.8876 0.8828 0.7354 0.7399 0.820 0.828 0.7021 0.9014

Masked LM No 0.8853 0.8790 0.7524 0.7394 0.810 0.813 0.7064 0.9027
Best / Baseline Diff. 0.0112 0.0065 0.0176 0.0051 0.006 0.015 0.0089 0.0069

Table 3: Results. Acc denotes accuracy. Params denote a parameter increase. FT and NT mean with and without
fine-tuning, respectively. Results for KorQuAD are without fine-tuning.

4.3 Chinese News Sentiment Analysis

While we observed a high OOV rate in this dataset,
the improvement was negligible. Analyzing the sur-
rogates, we observed that most of the OOV tokens
were punctuation or uncommon ideographs, which
we expected to, and confirmed to have little effect
in the downstream task performance. In particular,
we attribute the negligible gains to the nature of
the task itself, as it is a news article classification
task. While punctuation is an important aspect in
tasks such as sentiment classification, classifying
articles into categories has a stronger dependency
on keywords, which are likely to in-vocabulary.

4.4 KorQuAD 1.0

We did not expect significant improvements due to
the low OOV rate, and the results reflect this. While
we still saw minor improvements across the board,
the difference is incremental at best. The small
delta can most likely be attributed to the relatively
low OOV rate and omission of fine-tuning.

5 Conclusions

After demonstrating examples (1) and the effects
of OOV triggered information loss, we propose
multiple methods for mitigating OOV during down-
stream task fine-tuning. We then demonstrate and
compare with no mitigation, mitigation through net-
work modification, and surrogates, which require
no network modification, and show how each ap-
proach affects downstream tasks. In particular, we
show that vocabulary surrogates can provide per-
formance boosts with no additional computation
cost, especially when paired with fine-tuning.

We also empirically show that tasks with lower
OOV suffer less when compared to languages that
do not, as seen in table 1. While our experiments
are limited to CJK languages on BERT, we believe
the methods proposed are generic and simple to
implement and expect the performance gains to

also apply to different languages and models.
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A Appendix

A.1 Hyperparameters
We ran our experiments as close as possible to the
baseline parameters used by the publicly available
benchmark scripts for each task type. This means
most of the hyperparameters for all of the evalu-
ation was done as close to the default values as
possible. The maximum sequence length was fixed
to 512 for all models and tasks.

A.2 Environment
All experiments were executed on a shared
rt G.small instance on the ABCI compute cluster1.
An rt G.small node has 6 segregated CPU cores
from a Xeon Gold 6148, a Tesla V100 GPU with
16GB VRAM, and 60GBs of memory. The training
data and experimental code was streamed from a
shared GPFS mount. Each experiment requires a
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different amount of compute budget. The longest
running experiment finished in 10 hours of wall
clock time and the shortest finished in 2 hours of
wall clock time. The average runtime for each ex-
periment was approximately 5.5 hours.


