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Abstract

Fact-checking is the task of verifying the ve-
racity of claims by assessing their assertions
against credible evidence. The vast major-
ity of fact-checking studies focus exclusively
on political claims. Very little research ex-
plores fact-checking for other topics, specif-
ically subject matters for which expertise is
required. We present the first study of ex-
plainable fact-checking for claims which re-
quire specific expertise. For our case study
we choose the setting of public health. To sup-
port this case study we construct a new dataset
PUBHEALTH of 11.8K claims accompanied by
journalist crafted, gold standard explanations
(i.e., judgments) to support the fact-check la-
bels for claims'. We explore two tasks: ve-
racity prediction and explanation generation.
We also define and evaluate, with humans and
computationally, three coherence properties of
explanation quality. Our results indicate that,
by training on in-domain data, gains can be
made in explainable, automated fact-checking
for claims which require specific expertise.

1 Introduction

A great amount of progress has been made in
the area of automated fact-checking. This in-
cludes more accurate machine learning models
for veracity prediction and datasets of both nat-
urally occurring (Wang, 2017; Augenstein et al.,
2019; Hanselowski et al., 2019) and human-crafted
(Thorne et al., 2018) fact-checking claims, against
which the models can be evaluated. However, a few
blind spots exist in the state-of-the-art. In this work
we address specifically two shortcomings: the nar-
row focus on political claims, and the paucity of
explainable systems.

One subject area which we believe could benefit
from expertise-based fact-checking is public health

'Data and code are available here: https://github.
com/neemakot/Health-Fact-Checking

— including the study of epidemiology, disease pre-
vention in a population, and the formulation of
public policies (Turnock, 2012). Recent events,
including the COVID-19 pandemic, demonstrate
the significant potential harm of misinformation
in the public health setting, and the importance in
accurately fact-checking claims. Unlike political
and general misinformation, specific expertise is re-
quired in order to fact check claims in this domain.
Oftentimes this expertise may be limited, and thus
claims which surround public health may be in-
accessible (e.g., because of the use of jargon and
biomedical terminology) in a way political claims
are not. Nonetheless, like political misinformation,
the public health variety is also potentially very
dangerous, because it can put people in imminent
danger and risk lives.

Typically, statements which are candidates for
fact-checking originate in the political domain (Vla-
chos and Riedel, 2014; Ferreira and Vlachos, 2016;
Wang, 2017), and tend to surround more general
topics or be non-subject specific (Thorne et al.,
2018). This follows the trend of the rising interest
in political fact-checking in the last decade (Graves,
2018). There are on-going efforts with respect
to fact-checking scientific claims (Grabitz et al.,
2017). Fact-checking in domains where specific
subject expertise is required presents an interesting
challenge because general purpose fact-checking
systems will not necessarily adapt well to these
domains.

The second shortcoming we look to address is
the paucity of explainable models for fact-checking
(of any kind). Explanations have a particularly
important role to play in the task of automated fact-
checking. The efficacy of journalistic fact-checking
hinges on the credibility and reliability of the fact-
check, and explanations (e.g., provided by model
agnostic tools such as LIME (Ribeiro et al., 2016))
can strengthen this by communicating fidelity in
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predictive models. Explainable models can also
aid the end users’ understanding as they further
elucidate claims and their context.

In this study we explore the novel case of ex-
plainable automated fact-checking for claims for
which specialised expertise or in-domain knowl-
edge is essential. For our case study we examine
the the public health (biomedical) context.

The system for veracity prediction we aim to
produce must fulfil two requirements: (1) it should
provide a human-understandable explanation (i.e.,
judgment) for the fact-checking prediction, and
(2) that judgement should be understandable for
people who do not have expertise in the subject
domain. We list the following as our three main
contributions in this paper:

1. We present a novel dataset for explain-
able fact-checking with gold standard fact-
checking explanations by journalists. To the
best of our knowledge, this is the first dataset
specifically for fact-checking in the public
health setting.

2. We introduce a framework for generating ex-
planations and veracity prediction specific to
public health fact-checking. We show that
gains can be made through the use of in-
domain data.

3. In order to evaluate the quality of our fact-
checking explanations, we define three co-
herence properties. These can be evaluated
by humans as well as computationally, as ap-
proximations for human evaluations of fact-
checking explanations.

The explanation model trained on in-domain
data outperforms the general purpose model on
summarization evaluation and also when evaluated
for explanation quality.

2 Related Work

A number of recent works in automated fact-
checking look at various formulations of fact-
checking and its analogous tasks (Ferreira and Vla-
chos, 2016; Hassan et al., 2017; Zlatkova et al.,
2019). In this paper, we choose to focus on the two
specific aspects of concern to us, which have not
been thoroughly explored in the literature. These
are domain-specific and expertise-based claim ver-
ification and explainability for automated fact-
checking predictions.

2.1 Language Representations for Health

Fewer language resources exist for medical and
scientific applications of NLP compared with other
NLP application settings, e.g., social media anal-
ysis, NLP for law, and computational journalism
and fact-checking. We consider the former below.

There are a number of open source pre-trained
language models for NLP applications in the sci-
entific and biomedical domains. The most recent
of these pre-trained models are based on the BERT
language model (Devlin et al., 2019). One ex-
ample is BIOBERT, which is fine-tuned for the
biomedical setting (Lee et al., 2020). BIOBERT is
trained on abstracts from PubMed and full article
texts from PubMed Central. BIOBERT demon-
strates higher accuracies when compared to BERT
for named entity recognition, relation extraction
and question answering in the biomedical domain.

SCIBERT is another BERT-based pre-trained
model (Beltagy et al., 2019). SCIBERT is trained
on 1.14M Semantic Scholar articles relating to com-
puter science and biomedical sciences. Similar to
B1OBERT, SCIBERT also shows improvements
on original BERT for in-domain tasks. SCIBERT
outperforms BERT in five NLP tasks including
named entity recognition and text classification.

Given that models for applications of NLP tasks
in the biomedical domain, e.g., question answering,
show marked improvement when domain-specific,
we hypothesize that public health fact-checking
could also benefit from the language representa-
tions suited for that specific domain. We will make
use of both SCIBERT and BIOBERT in our frame-
work.

2.2 Explainable Fact-Checking.

A number of in-roads have been made in develop-
ing models to extract explanations from automated
fact-checking systems. To our knowledge, the cur-
rent state of the art in explainable fact-checking
mostly looks to produce extractive explanations,
i.e., explanations for veracity predictions in rela-
tion to inputs to the system. Instead, our focus
in this paper is on abstractive explanations. We
choose this approach, which aims to distill the ex-
planation into the most salient components which
form it, as more amenable to users with limited
domain expertise, as we discuss below.

Various methods have been applied to the ex-
plainable fact-checking task. These methods span
the gamut form logic-based approaches such as

7741



probabilistic answer set programming (Ahmadi
et al., 2019) and reasoning with Horn rules (Ah-
madi et al., 2019; Gad-Elrab et al., 2019) to deep
learning and attention-based approaches, e.g., lever-
aging co-attention networks and human annotations
in the form of news article comments (Shu et al.,
2019a). The outputs of these systems also take a
number of forms including Horn rules (Ahmadi
et al., 2019), saliency maps (Shu et al., 2019a;
Popat et al., 2018), and natural language generation
(Atanasova et al., 2020).

All approaches produce explanations which are
a distillation of the most relevant portion of the
system input. In this paper we expand on the work
by Atanasova et al. as we formulate explanation
generation as a summarization exercise. However,
our work differs from the existing literature as we
construct a framework for joint extractive and ab-
stractive explanation generation, as opposed to a
purely extractive model. We choose an abstrac-
tive approach as we hypothesize that particularly
in the case of public health claims, where specific
expertise is required to understand the context, ab-
stractive explanations can make the explanation
more accessible, particularly for those with little
knowledge of the subject matter. In this way we
take into account the nature of the claims, some-
thing other explainable fact-checking systems do
not consider.

2.3 Evaluation of Explanation Quality

Only a few explainable fact-checking systems em-
ploy thorough evaluation in order to assess the qual-
ity of explanations produced. In the cases where
evaluations are provided, these primarily take the
form of human evaluation, e.g., enlisting annotators
to score the quality of explanations with respect to
some properties (Atanasova et al., 2020; Gad-Elrab
et al., 2019) or through the use of an established
evaluation metric in the case where explanation
generation is modelled as another task (Atanasova
et al., 2020).

There is also work on the evaluation of expla-
nation quality more broadly, independently of the
task for which explanations are sought. Notably,
Sokol and Flach (2019) present explainability fact-
sheets for evaluating (machine learning) explana-
tions along five axes, including usability. One of
the usability criteria discussed by Sokol and Flach
is coherence, which we use to develop our three
explanation quality properties (see Section 5.3).

Whereas Sokol and Flach discuss coherence in gen-
eral, we provide concrete definitions and use them
for evaluating our methods for explaining veracity
predictions for public health claims.

3 The PUBHEALTH dataset

We constructed a dataset of 11,832 claims for fact-
checking, which are related a range of health top-
ics including biomedical subjects (e.g., infectious
diseases, stem cell research), government health-
care policy (e.g., abortion, mental health, women’s
health), and other public health-related stories (see
unproven, false and mixture examples in Table
1), along with explanations offered by journal-
ists to support veracity labelling of these claims.
The claims were collected from two sources: fact-
checking websites and news/news review websites.
An example dataset entry is shown in Table 1.

To the best of our knowledge, this is the first fact-
checking dataset to explicitly include gold standard
texts provided by journalists specifically as expla-
nation of the fact-checking judgment. We describe
below how the data was collected and processed to
obtain the final PUBHEALTH dataset, and provide
an analysis of the dataset.

3.1 Data collection

Initially, we scraped 39,301 claims, amounting
to: 27,578 fact-checked claims from five fact-
checking websites (Snopes?, Politifact?, Truthor-
Fiction*, FactCheck’, and FullFact®); 9,023 news
headline claims from the health section and health
tags of Associated Press’ and Reuters News® web-
sites; and 2,700 claims from the news review site
Health News Review (HNR)”.

We scraped data for two text fields which are es-
sential for fact-checking: 1) the full text of the fact-
checking or news article discussing the veracity
of the claim, and 2) the fact-checking justification
or news summary as explanation for the veracity
label of the claim. We also collected the URLs of
sources cited by the journalists in the fact-checking
and news articles. For each URL, in the case where
the referenced sources could be accessed and read,
we also scraped the source texts.

https://www.snopes.com/
*https://www.politifact.com/
*https://www.truthorfiction.com/
Shttps://www.factcheck.org/
®https://fullfact.org/
"https://apnews.com/
8https://uk.reuters.com/news/health
*https://www.healthnewsreview.org/
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Explanation

Claim Label
Blue Buffalo pet food contains unsafe = UNPROVEN
and higher-than-average levels of lead.
* Children who watch at least 30 minutes  FALSE
of “Peppa Pig” per day have a 56 per-
cent higher probability of developing
autism.
Expired boxes of cake and pancake mix ~MIXTURE
are dangerously toxic.
 Families tell U.S. lawmakers of heparin  TRUE

deaths.

Aside from a single claimant’s lawsuit against Blue Buffalo and an
unrelated recall on one variety of Blue Buffalo product in March
2017, we found no credible information suggesting that Blue Buf-
falo dog food was tested and found to have abnormally high levels
of lead.

Talk of a Harvard study linking the popular British children’s show
“Peppa Pig” to autism went viral, but neither the study nor the
scientist who allegedly published it exists.

What’s true: Pancake and cake mixes that contain mold can cause
life-threatening allergic reactions.

What’s false: Pancake and cake mixes that have passed their ex-
piration dates are not inherently dangerous to ordinarily healthy
people, and the yeast in packaged baking products does not “over
time develops spores.”

A man who said he lost his wife and a son to reactions from tainted
heparin made with ingredients from China urged U.S. lawmakers
on Tuesday to protect patients from other unsafe drugs.

Table 1: Example of claims and explanations for PUBHEALTH dataset entries. Vocabulary from the public health
glossary which are contained in the claims and explanations are highlighted in bold.

All claims make reference to articles published
between October 19 1995 and May 14 2020. In ad-
dition to the claim, article texts, explanation texts,
and the date on which the fact-check or news ar-
ticle was published, we scraped meta-data related
to each claim. These meta-data include the tags
(single or multiple tokens) which may, for example,
categorize the topics of the claim or indicate the
source of the claim (see Appendix A.1), and the
names of the fact-checkers and news reporters who
contributed to the article.

3.2 Data processing and analysis

The data processing involved three tasks: stan-
dardizing the veracity labels, filtering out non-
biomedical claims from the dataset, and finally
removing claims with incomplete and brief expla-
nations.

Labels for news headline claims did not require
standardization, as we assumed all news headline
claims (coming from reputable sources as they
were) to be verified and thus labelled these true,
but filtered out from the dataset news entries with
the headline prefixes “AP EXCLUSIVE”, “Correc-
tion”, “AP Interview”, and “AP FACT CHECK”.
Indeed, it would be difficult to label the veracity of
the claim in this type of entries. On the other hand,
fact-check and news claims, which were associated
with 141 different veracity labels, did require com-
pression. We standardized the original labels for
4-way classification (see Appendix A.1). The cho-

sen 4 labels are true, false, mixture, and unproven.
We discounted claims with labels that cannot be
reduced to one of these 4 labels. The distribution of
labels in the final PUBHEALTH is shown in Table 2.
The dataset consists of a majority false claims. Un-
proven claims are the least common in the dataset.

Website tru. fal. mix. unp. total
AP News 2,132 0 0 0 2,132
FactCheck 0 50 29 8 87
FullFact 65 39 16 48 168
HNR 819 839 745 0 2433
Politifact 671 1,339 423 0 2433
Reuters 1,971 0 0 0 1,971
Snopes 386 1,131 405 220 2,142
TruthOrFict. 132 172 120 72 496
Total 6,176 3,570 1,526 299 11,832

Table 2: Summary of the distribution of true (tru.),
false (fal.), mixture (mix.) and unproven (unp.) verac-
ity labels in PUBHEALTH, across the original sources
from which data originated.

The second step in processing the data was to
remove claims with no biomedical context. This
step was especially crucial for the claims which
originated from fact-checking websites where the
bulk of fact-checks concern political and economic
claims. Health claims are easier to acquire from
news websites, such as Reuters, as they can be
quickly identified by the section of the website in
which they were located during the data collection
process. Although we mentioned that a sizeable
number of claims from fact-checking sources are re-
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lated to political events, some are connected to both
political and health events or other mixed health
context, and we collected claims whose subject
matter intersects other topics in order to obtain a
subject-rich dataset (see Appendix A.1).

Claims in the larger dataset were filtered accord-
ing to a lexicon of 7,000 unique public health and
health policy terms scraped from five health infor-
mation websites (See Appendix A.1).

Furthermore, we manually added 65 more pub-
lic health terms that were not retrieved during the
initial scraping, but which we determined would
positively contribute to the lexicon because of their
relevance to the COVID-19 pandemic (see Ap-
pendix A.1). These claims were identified through
exploratory data analysis of bigram and trigram
collocations in PUBHEALTH.

In order to filter out the entries which are not
health-related, we kept only claims with main ar-
ticle texts that mentioned more than three unique
terms in our lexicon. Specifically, let L be our lexi-
con, and A, and T, respectively, be the article text
and claim text accompanying a candidate dataset
entry c. Then, we included in PUBHEALTH only
the following set C' of claim entries, with accom-
panying information:

Ca=A{c|{l,..,ln} =A.NL,n> 3}
Cr = {C‘ {ll,...,ln} =T.NL,n> 3}
C=C,UCr (D

As we already knew that all Reuters health news
claims qualify for our dataset, we used the lower
bound frequency of words from our lexicon present
in these article texts to determine our lower bound
of three unique terms. We acknowledge that there
might be disparities in the amount of medical infor-
mation present in entries. However, analysis of the
dataset shows, quite promisingly, that on average
claims’ accompanying article texts have 8.92+5.54
unique health lexicon terms and claim texts carry
4.45 £ 0.88 unique terms from the health lexicon.

Claims and explanations in the entries in the
dataset were also cleaned. Specifically, we also
ensured all claims are between 25 and 400 char-
acters in length. We removed explanations less
than 25 characters long as we determined that very
few claims shorter than this length contained fully
formed claims; we removed claims longer than 400
characters to avoid the complexities of dealing with
texts containing multiple claims. We also omitted

claims and explanations ending in a question mark
to ensure that all claims are statements, i.e., clearly
defined.

Note that one aspect of the explanations’ quality
which we chose not to control, was the intended
purpose of the text we labelled as the explanation:
as shown in Table 7 in Appendix A.1, there was a
wide variation across the websites we crawled.

Table 3 shows the Flesch-Kincaid (Kincaid et al.,
1975) and Dale-Chall (Chall and Dale, 1995) read-
ability evaluations of claims from our fact-checking
dataset when compared to four other fact-checking
datasets. The results show that PUBHEALTH
claims are, on average, the most challenging to
read. Claims from our dataset have a mean Flesch-
Kincaid reading ease score of 59.1, which corre-
sponds to a 10th-12th grade reading level and fairly
difficult to read. The other fact-checking datasets
have reading levels which fit into the 6th, 7th and
8th grade categories. Similarly for the Dale-Chall
readability metric, on average our claims are more
difficult to understand. Our claims have a mean
score of 9.5 which is equivalent to the reading
age of college student, whereas all other datasets’
claims have an average score which indicates that
they are readable by 10th to 12th grade students.
Both these results support our earlier assertion
about the complexity of public health claims rela-
tive to political and more general claims.

Dataset Flesch-Kincaid Dale-Chall
I o n o
Wang (2017) 61.9 20.2 8.4 2.2
Shu et al. (2019b) 67.1 24.3 8.9 3.0
Thorne et al. (2018) 71.7 24.9 8.2 3.3
Augenstein et al. (2019)  60.8 22.1 89 25
Our dataset 59.1 23.3 9.5 2.6

Table 3: Comparison of readability of claims presented
in large fact-checking datasets (i.e., those with > 10K
claims). We compute the mean and standard deviation
for Flesch-Kincaid and Dale-Chall scores of claims for
LIAR (Wang, 2017), FEVER (Thorne et al., 2018),
MultiFC (Augenstein et al., 2019), FAKENEWSNET
(Shu et al., 2019b), and also our own fact-checking
dataset. The sample sizes used for evaluation for
each dataset are as follows, LIAR: 12,791, MultiFC:
34,842, FAKENEWSNET: 23,196, FEVER: 145,449,
and 11,832 for our dataset.
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4 Methods

In this section we describe in detail the methods
we employed for devising automated fact-checking
models. We trained two fact-checking models: a
classifier for veracity prediction, and a second sum-
marization model for generating fact-checking ex-
planations. The former returns the probability of
an input claim text belonging to one of four classes:
true, false, unproven, mixture. The latter uses a
form of joint extractive and abstractive summa-
rization to generate explanations for the veracity
of claims from article text about the claims. Full
details of hyperparameters chosen and computer
infrastructure which was employed can be found
in Appendix A.2.

4.1 Veracity Prediction

Evidence ‘

| Claim |

S-BERT Evidence
Ranking

[ Input Layer }
!

BERT Layer

l

[ Softmax }

Predicted label

Figure 1: Architecture of veracity prediction.

Veracity prediction is composed of two parts: evi-
dence selection and label prediction (see Figure 1).

For evidence selection, within fact-checking
and news articles, we employ Sentence-BERT (S-
BERT) (Reimers and Gurevych, 2019). SBERT is
a model for sentence-pair regression tasks which is
based on the BERT language model (Devlin et al.,
2019), to encode contextualized representations for
each of the evidence sentences and then rank these
sentences according to their cosine similarity with
respect to the contextualized representation of the
claim sentence. We then select the top k£ sentences
for veracity prediction. As with sentence selection
approaches from the fact-checking literature (Nie
et al., 2019; Zhong et al., 2019), we choose k = 5.

The claim and selected evidence sentences form
the inputs for the label prediction part of our model
(see Figure 1). We fine-tuned, on the PUBHEALTH

dataset, pre-trained models for the downstream task
of fact-checking label prediction. We employed
four pre-trained models: original BERT uncased,
ScIBERT, BIOBERT v1.0, and also BIOBERT
v1.1. The two versions of BIOBERT differ slightly
in that the earlier version is trained for 470K steps
on PubMed abstracts and PubMed Central (PMC)
full article texts, whereas BIOBERT v1.1 is trained
for 1M steps on PubMed abstracts.

4.2 [Explanation Generation as Abstractive
Summarization

We make use of extractive-abstractive summariza-
tion (Liu and Lapata, 2019) in developing the expla-
nation model. We choose this architecture because
explanations for claims which concern a specific
topic area having a highly complex lexicon can ben-
efit from the ability to articulate judgment in sim-
pler terms. In order to deploy the model proposed
by (Liu and Lapata, 2019) we also implemented an
explanation generation model.

Just as is the case for the predictor model, the
explanation model is fine-tuned for the task on
evidence sentences ranked by S-BERT. However,
for the explanation model we use all article sen-
tences as well as the claim sentence to fine-tune
a BERT-based summarization model pre-trained
on the Dailymail/CNN news article and summaries
dataset (Hermann et al., 2015). One of our mod-
els, EXPLAINERFC, is fine-tuned using non-public
health data, which we extract from the portion of
the 39.3K originally crawled fact-checks, news
reviews, and news articles not included in PUB-
HEALTH. For fairness, we ensure these data have
the same proportion of claims from each web-
site and the number of examples is the same as
PUBHEALTH. The second model, EXPLAINERFC-
EXPERT, is fine-tuned on PUBHEALTH. Also, we
evaluate both models on PUBHEALTH test data.
Table 2 shows an example of the explanations gen-
erated by the two methods.

5 Results

We conducted experiments to evaluate the perfor-
mance of both predictor(s) and explainer(s). The
performance of the (various incarnations of the)
prediction model is evaluated using an automatic
approach, whereas the performance of the (two in-
carnations of the) explainer is assessed using both
automatic and human evaluation.
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Label: FALSE

Under Obamacare, patients 76 and
older must be admitted to the hospital
by their primary care physicians in
order to be covered by Medicare.

Claim

Gold explanation

Obamacare does not require that patients
76 and older must be admitted to the
hospital by their primary care physicians
in order to be covered by Medicare.

EXPLAINERFC explanation

What’s true: nothing in the Affordable
Care Act requires that a primary care
physician admit patients 76 or older to a
hospital in order for their hospital care
to be treated under Medicare. What’s
false: none of the provisions or rules put
an upper age limit on medicare coverage.

EXPLAINERFC-EXPERT explanation

The Affordable Care Act does not
require Medicare to admit pa-
tients to a hospital after paying
the Part B deductible. It’s not the
same age limit on medicare cov-
erage. But the evidence doesn’t
specifically set an upper age limit.

Figure 2: Example of model-generated explanations as
compared to the gold standard from our fact-checking
dataset.

5.1 Prediction

We split the PUBHEALTH dataset as follows: 9,466
training examples, 1,183 examples for validation
and 1,183 examples for testing.

We evaluated veracity prediction using macro-
F1, precision, recall and accuracy metrics as shown
in Table 4. We employ two baselines: a randomized
sentence selection approach with BERT (bert-base-
uncased) classifier, and lastly a BERT model, also
using pre-trained uncased BERT, which does not
make use of sentence selection and instead makes
use of the entire article text to fine-tune for the
fact-checking task.

Out of the four BERT-derived models, SCIB-
ERT achieves the highest macro F1, precision and
accuracy scores on the test set. BIOBERT vl1.1
achieves the second highest scores for F1, precision
and accuracy. As expected, BIOBERT vl.1 outper-
forms BIOBERT v1.0 on all four metrics. The stan-
dard BERT model achieves the highest precision
score of the four models, however it also achieves
the lowest recall and F1 scores. This supports the

argument we presented in Section 1 that subject-
specific fact-checking can benefit from training on
in-domain models.

Model Pr. Re. F1 Acc.
BERT (rand. sents.) 38.97 39.38 39.16 20.99
BERT (all sents.) 56.50 56.50 56.50 55.40
BERT (top ksents.) 77.39 5477 6393 66.02
SCIBERT 75.69 66.20 70.52 69.73
BI1OBERT 1.0 7393 57.57 64.57 65.18
BIOBERT 1.1 75.04 61.68 67.48 68.89

Table 4: Veracity prediction results for the two base-
lines and four BERT-based models on the test set.
Model performance is assessed against precision (Pr.),
recall (Rc.), macro F1, and accuracy (Acc.) metrics.

5.2 Explanations

We use two methods for evaluating the quality
of explanations generated by our methods: auto-
mated evaluation and qualitative evaluation, in turn
amounting to human and computational evaluation
of explanation properties.

5.2.1 Automated Evaluation

‘We make use of ROUGE summarization evaluation
metrics (Lin, 2004). Specifically we use the F1
values for ROUGE-1, ROUGE-2, and ROUGE-L,
to evaluate the explanations generated by the EX-
PLAINERFC and EXPLAINERFC-EXPERT models.

As in the setup employed by Liu and Lapata
(2019), we compare our explanation models to two
other methods: a LEAD-3 baseline, which con-
structs a summary out of the first three sentences of
an article, and an extractive summarization-based
ORACLE upper bound. The results of this evalu-
ation are shown in Table 5. The EXPLAINERFC-
EXPERT explanation model outperforms EXPLAIN-
ERFC. EXPLAINERFC-EXPERT achieves higher
scores than EXPLAINERFC for R1, R2, and RL
metrics.

ROUGE-F
Model RI  R2 RL
ORACLE 3924 14.89 3278
LEAD-3 20.01 10.24 24.18
EXPLAINERFC 3142 1238 26.27
EXPLAINERFC-EXPERT 32.30 13.46 26.99

Table 5: ROUGE-1 (R1), ROUGE-2 (R2) and ROUGE-
L (RL) F1 scores for explanations generated via our
two explanation models.
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5.3 Evaluation of Explanation Quality

As the explanations we generate are from heteroge-
neous sources (and therefore not directly compara-
ble), evaluation using ROUGE does not present us
with a complete picture of the usefulness or quality
of these explanations. For this reason, we adapt to
the task of explainable fact-checking three of the
desirable usability properties for machine learning
explanations offered by Sokol and Flach (2019).
We define these properties formally and evaluate
the quality of the generated explanations against
them. These same properties are also used for our
human evaluations and for a comparison between
human and computational evaluation of the quality
of our explanations. To the best of our knowledge,
ours is the first systematic evaluation of the qual-
ity of explanations for fact-checking in terms of
formal properties. We define the three explanation
properties as (two forms of) global coherence and
(a form of) local coherence, as follows.

Global Coherence refers to the suitability of
fact-checking explanations with respect to both the
claim and label to which it is associated. We con-
sider two incarnations of global coherence:

o Strong global coherence. Let E be an ex-
planation of the veracity label [ for claim C,
where ey, ..., ey are all the individual sen-
tences which make up E. Then, E satisfies
strong global coherence iff Ve; € E, ¢; = C.
Put simply, for this property to hold for a gen-
erated fact-checking explanation, every sen-
tence in the explanatory text must entail (=)
the claim.

o Weak global coherence. Let E be an expla-
nation of the veracity label [ for claim C,
where ey, ..., ey are all the individual sen-
tences which make up E. Then, E satisfies
weak global coherence iff Ve; € F, e; = —C.
For this property to hold for a generated fact-
checking explanation, no sentence in the ex-
planatory text should contradict the claim (by
entailing its negation); from a natural lan-
guage inference (NLI) perspective, for weak
global coherence to hold all explanatory sen-
tences should entail or have a neutral relation
with respect to the claim.

When measuring coherence, we treat as neutral
claims originally labelled as false if their claim is
contradicted by its explanation. Note that if the

false claim is entailed by its explanation we do not
reassign the label, because doing so would impose
too strong an assumption that the entailment is
related to the veracity which we cannot verify.

Local Coherence. Let £ be an explanation of
the veracity label [ for claim C, where ey, ..., en
are all the individual sentences which make up E.
Then, E satisfies local coherence iff Ve;,e; € E,
€; F’é E€j.

Local coherence is a measure of how cohesive
sentences in an explanation are. For local coher-
ence to hold any two sentences in an explanation
must not contradict each other, i.e., there is no pair-
wise disagreement between sentences which make
up the explanation.

Note that all three coherence properties relate to
the usability property of coherence discussed by
Sokol and Flach (2019). Local coherence draws
specifically on the idea of avoiding internal incon-
sistencies in explanations. Figure 3 shows an ex-
ample of evaluation of the three properties, for a
specific claim-explanation pair. Schematic exam-
ples of explanations and evidence sentence rela-
tions which satisfy these coherence properties are
shown in Appendix A.4.

5.3.1 Human & Computational Evaluations

We employ human evaluation in order to assess
the quality of the gold and generated explanations
with respect to these properties. Also, we conduct
a computational evaluation of the three coherence
properties using NLI.

For human evaluation, we randomly sampled 25
entries from the test set of PUBHEALTH, and en-
listed 5 annotators to evaluate the quality of the
gold explanations and explanations generated by
EXPLAINERFC and EXPLAINERFC-EXPERT for
these entries. We asked participants to annotate
explanations according to the following criteria: 1)
the agreement and disagreement between sentences
in the explanation, and 2) relevance of the expla-
nation to the claim. Further information, including
an example from the questionnaire, can be found
in Appendix A.3.

We conducted the computational evaluation on
three pretrained NLI models: 1) a decomposable
attention model (Parikh et al., 2016) using ELMo
embeddings (Peters et al., 2018) trained on the
Stanford Natural Language Inference (SNLI) cor-
pus (Bowman et al., 2015), 2) RoBERTa (Liu et al.,
2019) trained on SNLI, and 3) RoBERTa trained
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on the Multi-Genre Natural Language Inference
(MNLI) corpus (Williams et al., 2018). We im-
plemented these evaluation methods using the Al-
lenNLP platform (Gardner et al., 2018).

For the human evaluation we computed Ran-
dolph’s free-marginal x (Randolph, 2005) and over-
all agreement (O.A.) for all multiple choice ques-
tions. For the gold explanations, we computed s
(and O.A.) of 0.24 (62%), 0.48 (65.6%), and 0.39
(54.4%) for 2-, 3-, and 4-nary questions respec-
tively. For EXPLAINERFC, 0.06 (53.2%), 0.17
(44.8%), and 0.12 (34%) for 2-, 3-, and 4-nary
questions respectively. Lastly for EXPLAINERFC-
EXPERT, we computed « and O.A. of 0.36 (68%),
0.44 (62.73%), and 0.20 (40%) for 2-, 3-, and 4-
nary questions. The computational evaluation was
conducted on all examples from the test set. The
results of both the human and computational eval-
uation of the three coherence measures are shown
in Table 6. Our results suggest that the NLI ap-
proximation is a reliable approximation for weak
global coherence and local coherence properties.
However, entailment appears to be a poor approx-
imation for strong global coherence. Further, a
larger human evaluation study would be required
in order to verify these results.

Evaluation Method SGC WeC LC
Gold explanations
Human 76.80 98.40 65.60
DA+ELMo; SNLI 8.72 87.61 55.20
RoBERTa; SNLI 1.28 75.87 52.12
RoBERTa; MNLI 2.66 87.52 54.84
EXPLAINERFC generated explanations
Human 53.60 88.80 58.10
DA+ELMo; SNLI 8.26 89.45 51.32
RoBERTa; SNLI 0.46 76.42 48.01
RoBERTa; MNLI 0.73 84.59 50.20
EXPLAINERFC-EXPERT generated explanations
Human 60.4 76.80 59.30
DA+ELMo; SNLI 7.61 89.72 64.60
RoBERTa; SNLI 0.64 76.15 60.07
RoBERTa; MNLI 2.48 84.04 62.43

Table 6: % of explanations which satisfy strong global
coherence (SGC), weak global coherence (WGC) and
local coherence (L.C) properties.

6 Conclusion and Future work

In this paper, we explored fact-checking for claims
for which specific expertise is required to produce
a veracity prediction and explanations (i.e., judg-

Claim

A list of chemicals, written as if they were in-
gredients on a food label, accurately depicts the
chemical composition of a banana.

Label: TRUE

Explanation

In sum, this graphic accurately depicts the chem-
icals that comprise a banana, using a variety
of tactics to make that completely natural food
appear to be full of “chemicals” — something
originally created by a high school chemistry
teacher as part of a lesson on chemophobia.

Figure 3: Example of explanation which satisfies all
three coherence properties.

ments used for awarding the label/veracity predic-
tion). To support this exploration we constructed
PUBHEALTH, a sizeable dataset for public health
fact-checking and the first fact-checking dataset to
include explanations as annotations. Our results
show that training veracity prediction and explana-
tion generation models on in-domain data improves
the accuracy of veracity prediction and the quality
of generated explanations compared to training on
generic language models without explanation.

We hope to explore the topics of explainable
fact-checking and specialist fact-checking further.
In order to do this, we hope to explore other sub-
jects, in addition to public health, for which fact-
checking requires a level of expertise in the subject
area. Furthermore, we hope to explore the quality
of fact-checking explanations with respect to prop-
erties other than coherence, e.g., actionability and
impartiality. lastly, we plan to explore congruity
between veracity prediction and explanation gener-
ation tasks, i.e., generating explanations which are
compatible with the predicted label and vice versa.
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A Supplementary Material

A.1 Dataset

Here we expand on the dataset analysis presented
in Section 3. Figure 4 shows the most commonly
occuring public health terms in the PUBHEALTH
dataset entry texts. Figure 5 illustrates the distri-
bution of claim and explanation lengths. Note that
the nature and format of the explanations for each
of the scraped websites differed slightly.

Table 7 shows the origin fact-checking expla-
nations included in the PUBHEALTH dataset. In
Table 8 we show examples of the subject-rich tags
scraped alone with the claims. Table 9 shows the
mapping between the standardized and original ve-
racity labels.

Building the public health lexicon. In order to
compile the lexicon we scraped health related terms
from the following website sources. In total we
scraped vocabulary from a number of pages across
six websites. These websites are NHS Health A-
Z,'° Everyday Health, '! Medline Plus,'? Think
Local, Act Personal,'® National Careers Healthcare
Job,'# and the Mayo Clinic."

Additional words added the health lexicon.
The following are the extra words added to lexicon
which we did not scraped. ‘Centers for Disease
Control and Prevention’, ‘abscess’, ‘adolescence’,
‘airborne’, ‘alimentation’, ‘alopecia’, ‘aneurysm’,
‘anorexia’, ‘anti-vaxxer’, ‘arrhythmia’, ‘bacteria’,
‘bacterium’, ‘biohazard’, ‘bioterrorism’, ‘bleeding’,
‘blood pressure’, ‘chickenpox’, ‘chloroquine’, ‘con-
tagious’, ‘death’, ‘disease’, ‘embolism’, ‘endemic’,
‘environment’, ‘epidemiology’, ‘first aid’, ‘flatten
the curve’, ‘flu’, ‘gallbladder’, ‘gangrene’, ‘heart at-
tack’, ‘heparin’, ‘hospital’, ‘hydroxychloroquine’,
‘hygiene’, ‘hypertension’, ‘illness’, ‘immune’, ‘in-
fant mortality rate’, ‘infect’, ‘influenza’, ‘lactose
intolerance’, ‘liver’, ‘medicine’, ‘menstruation’,

Yhttps://www.nhs.uk/conditions/

"https://www.everydayhealth.com/
conditions/

Zhttps://medlineplus.gov/encyclopedia.
html

Bhttps://www.thinklocalactpersonal.
org.uk/Browse/Informationandadvice/
CareandSupportJargonBuster/

“https://nationalcareers.service.gov.
uk/job-categories/healthcare

Bhttps://www.mayoclinic.org/
diseases—-conditions,
mayoclinic.org/symptoms,
mayoclinic.org/tests-procedures,
//www.mayoclinic.org/drugs—supplements

https://www.
https://www.
https:

‘mental health’, ‘nurse’, ‘organs’, outbreak, pace-
maker, ‘pandemic’, ‘pathogen’, ‘patients’, ‘period
poverty’, ‘public health’, ‘quarantine’, ‘sickness’,
‘smoking’, ‘stroke’, ‘surgical’, ‘tumour’, ‘vaccine’,
‘ventilator’, ‘virus’, ‘x-ray’.

patients
disease
cancer

covid- 19 ———
V|['US_
abortion ——
hospita| n——
VacCine m——
marijuana m———
outbreak m—
 flu —
\Ne|ghtIIII-
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healthy m—
) hiy m—
infection
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respiratory s
illness m—
medicine mm
smoking ms
sujcide mmm
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immune m
diabetes =
pregnancy s
surgica| mm
epidemicmm
measlesmm
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sleepmm
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Figure 4: Vocabulary from the health lexicon which fea-
tures > 300 times in PUBHEALTH article texts.
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Figure 5: Histograms showing the distribution of
lengths, measured by the number of tokens, for claims
and explanations in the PUBHEALTH dataset.
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Website Explanations
AP News (n) Leading paragraph.
FactCheck (f) Summarizing paragraph.
FullFact (f) Fact-check conclusions.
HNR (7) Summary of reliability judment.
Politifact (f) Fact-check ruling/rating comments.
Reuters (n) Leading paragraph.
Snopes (f) Fact-check what’s true / false / unde-

termined or concluding paragraph.

TruthOrFict. (f)  Summarizing paragraph.

Table 7: Format of explanations scraped from fact-
checking (f), news (n), news review (r) websites.

A.2 Reproducibility

Here we provide further information about the ex-
periments described in Section 4.

Prediction models hyperparameters. We per-
form hyper-parameter grid search as part of valida-
tion for batch sizes from {8, 16, 32}, learning rates
from {1e-5, 5e-6, le-6}, and epochs {2, 3, 4}. We
optimize our veracity prediction model on cross en-
tropy loss. The hyper-parameters we selected from
this grid search are a batch size of 16, learning rate
le-6 and 4 epochs for model training.

Computing Infrastructure. All experiments
were run on a machine with a dual Intel(R)
Core(TM) 19-9900X 3.50GHz CPU. The GPU used
for experiments is the Nvidia GeForce RTX 2080
Ti model. Additional information about the soft-
ware packages used in the development of the ex-
planation generation and veracity prediction mod-
els can be found in the GitHub repository, the link
to which is given in Footnote 1.

A.3 Human Evaluation Questionnaire

The following are example question and response
pairs typical of those presented to participants in
the human evaluation questionnaire (see Section
5.3). Question and response pairs are related to the
claim and explanation presented below.

1. Question: Are there any sentences or phrases
in the explanation which disagree with each
other?

Response options: {Yes, No}.
2. Question: Which veracity label would you

give to the claim taking into account the entire
explanation?

Response options: {Mixture, false, true, un-
proven}.

Claim

State reports new findings of mosquito-
borne illnesses.

Explanation

Rhode Island health officials say a second
mosquito case tested positive for eastern
equine encephalitis has been confirmed in
the state, marking the first human case of the
equine encephalitis in Rhode Island in more
than two years.

A.4 Coherence properties

Figure 6 shows examples of the three coher-
ence properties mentioned in Section 5.3, shown
schematically in graphical form.

Claim
neutral entails .
entails
Sent. 1 Sent. 2 Sent. 3

(a) Strong Global Coherence not satisfied

Claim
entails entails .
entails
Sent. 1 Sent. 2 Sent. 3

(b) Strong Global Coherence satisfied.

Claim
neutral neutral neutral
Sent. 1 Sent. 2 Sent. 3

(c) Weak Global Coherence satisfied.

Claim
neutral neutral contradicts
Sent. 1 Sent. 2 Sent. 3

(d) Weak Global Coherence not satisfied.

Figure 6: Schematic representations of strong and weak
global coherence properties.
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Claim: Judge dismisses lawsuit over release of vaccination data.

Label: TRUE

Tags: Immunizations, Health, General News, Public health, Connecticut, Hartford, Bristol, Law-
suits

Date published: September 30, 2019

Claim: FDA allows marketing of cooling cap to reduce hair loss during chemotherapy.
Label:

Tags: Breast cancer, FDA, medical devices, Women’s health

Date published: December 15, 2015

Claim: Clinical study shows that retinal imaging may detect signs of Alzheimer’s disease.
Label:

Tags: Alzheimer’s disease, NeuroVision Imaging LLC, retinal imaging

Date published: August 24, 2017

Claim: Salt lamps, because they emit negatively charged ions, impart myriad health benefits
including reduced anxiety, improved sleep, increased energy, and protection from an “electric
smog.”

Label: FALSE

Tags: medical, salt lamps

Date published: December 22, 2016

Table 8: Examples of tag metadata for entries in the PUBHEALTH dataset.

Sent. 1
neutl/ \utral
neutral
Sent. 2 Sent. 3

(a) Local coherence satisfied.

Sent. 1
neutl/ \utral
contradicts
Sent. 2 Sent. 3

(b) Local coherence not satisfied.

Figure 7: Schematic representations of local coher-
ence.
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Standardized Fact-checking and news review veracity labels

false ‘0 Star’, ‘1 Star’, ‘2 Star’, ‘barely-true’, ‘digital manipulations!’, ‘disputed’,
‘disputed!’, ‘false’, “fiction’, ‘fiction!’, ‘fiction! & disputed!’, “fiction!
satire!’, ‘full-flop’, ‘inaccurate attribution!’, ‘incorrect attribution!’, ‘incorrect
authorship!’, ‘incorrectly attributed!’, ‘misattributed’, ‘mostly fiction!’, ‘mostly-
false’, ‘not true’, ‘pants-fire’, ‘pants-on-fire!’, ‘reported as fiction!’, ‘reported
fiction!

mixture ‘3 Star’, ‘cherry picks’, ‘confirmed authorship! but inaccurate attribution!’,
‘decontextualized’, ‘depends on where you vote!’, ‘distorts the facts’, ‘exag-
gerates’, ‘half-flip’, ‘half-true’, ‘lacks context’, ‘misleading’, ‘misleading!’,
‘mixed’, ‘mixture’, ‘not the whole story’, ‘outdated’, ‘outdated!’, ‘previously
truth! & now resolved!’, ‘previously truth! but now resolved!’, ‘reported as
truth! & disputed!’, ‘spins the facts’, ‘truth & fiction!’, ‘truth! & disputed!’,
‘truth! & fiction!’, ‘truth! & fiction! & disputed!’, ‘truth! & fiction! & un-
proven!’, ‘truth! & misleading!’, ‘truth! & outdated!’, ‘truth! & unproven!’,
‘truth! and fiction!’, ‘truth! and unproven!’, ‘truth! but decision reversed!’,
‘truth! but inaccurate description!’, ‘truth! but misleading!’, ‘truth! but obama
quote is fiction!’, ‘truth! but overturned!’, ‘truth! but resolved!’, ‘truth! but she
denies it reflects her views!’, ‘truth! fiction! & disputed!’, ’truth! fiction! &
satire!’, ‘truth! fiction! & unproven!’, ‘truth!, fiction!, and unproven!’, ‘truth!,
unproven!, & fiction!’

true ‘4 Star’, ‘5 Star’, ‘authorship confirmed!’, ‘commentary!’, ‘confirmed au-
thorship’, ‘confirmed authorship!’, ‘correct attribution!’, ‘correct-attribution’,
‘correctly attributed!’, ‘mostly truth!’, ‘mostly-true’, ‘no-flip’, ‘official!’, ‘re-
ported to be true!’, ‘reported to be truth!’, ‘true’, ‘truth but an opinion!’, ‘truth!’,
‘truth! but an opinion!’, ‘truth! but not intentionally!’, ‘truth! but not the one
you think!’, ‘truth! but now resolved!’

unproven ‘investigation pending!’, ‘no evidence’, ‘pending investigation!’, ‘unconfirmed
attribution!’, ‘unknown’, ‘unofficial!’, ‘unproven’, ‘unproven!’, ‘unsupported’

Table 9: These are the four standardized labels we defined for veracity prediction (left) and lists (right) of the
original fact-checking labels provided by the fact-checking and news review websites we scraped, mapped to our
four standardized labels
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