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Abstract

Adversarial attacks against natural language
processing systems, which perform seemingly
innocuous modifications to inputs, can in-
duce arbitrary mistakes to the target models.
Though raised great concerns, such adversar-
ial attacks can be leveraged to estimate the ro-
bustness of NLP models. Compared with the
adversarial example generation in continuous
data domain (e.g., image), generating adver-
sarial text that preserves the original meaning
is challenging since the text space is discrete
and non-differentiable. To handle these chal-
lenges, we propose a target-controllable adver-
sarial attack framework T3, which is applica-
ble to a range of NLP tasks. In particular, we
propose a tree-based autoencoder to embed the
discrete text data into a continuous represen-
tation space, upon which we optimize the ad-
versarial perturbation. A novel tree-based de-
coder is then applied to regularize the syntac-
tic correctness of the generated text and ma-
nipulate it on either sentence (T3(SENT)) or
word (T3(WORD)) level. We consider two
most representative NLP tasks: sentiment anal-
ysis and question answering (QA). Extensive
experimental results and human studies show
that T3 generated adversarial texts can suc-
cessfully manipulate the NLP models to output
the targeted incorrect answer without mislead-
ing the human. Moreover, we show that the
generated adversarial texts have high transfer-
ability which enables the black-box attacks in
practice. Our work sheds light on an effective
and general way to examine the robustness of
NLP models. Our code is publicly available at
https://github.com/AI-secure/T3/.

1 Introduction

Recent studies have demonstrated that deep neu-
ral networks (DNNs) are vulnerable to carefully
crafted adversarial examples (Goodfellow et al.,
2015; Papernot et al., 2016; Eykholt et al., 2017;

Question: Who ended the series in 1989?
Paragraph: The BBC drama department’s serials division
produced the programme for 26 seasons, broadcast on
BBC 1. Falling viewing numbers, a decline in the public
perception of the show and a less-prominent transmission
slot saw production suspended in 1989 by Jonathan Powell,
controller of BBC 1. ... the BBC repeatedly affirmed that
the series would return. Donald Trump ends a program on
1988 .
QA Prediction: Jonathan Powell → Donald Trump

Yelp Review: I kept expecting to see chickens and chick-
ens walking around. If you think Las Vegas is getting too
white trash, don’ t go near here. This place is like a stein-
beck novel come to life. I kept expecting to see donkeys
and chickens walking around. Wooo - pig - soooeeee this
place is awful!!!
Sentiment Prediction: Most Negative → Most Positive

Table 1: Two adversarial examples generated by T3 for QA
models and sentiment classifiers. Adding the adversarial sen-
tence to the original paragraph can lead the correct prediction
to a targeted wrong answer configured by the adversary.

Moosavi-Dezfooli et al., 2016). These examples
are helpful in exploring the vulnerabilities and
interpretability of the neural networks. Target-
controllable attacks (or targeted attacks) are more
dangerous and challenging than untargeted attacks,
in that they can mislead systems (e.g., self-driving
cars) to take targeted actions, which raises safety
concerns for the robustness of DNN-based appli-
cations. While there are a lot of successful attacks
proposed in the continuous data domain, includ-
ing images, audios, and videos, how to effectively
generate adversarial examples in the discrete text
domain remains a challenging problem.

Unlike adversarial attacks in computer vision
that add imperceptible noise to the input image,
editing even one word of the original paragraph
may change the meaning dramatically and fool the
human as well. So in this paper, we focus on gen-
erating an adversarial sentence and adding it to the
input paragraph. There are several challenges for
generating adversarial texts: 1) it is hard to measure

https://github.com/AI-secure/T3/
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the validity and naturalness of the adversarial text
compared to the original ones; 2) gradient-based
adversarial attack approaches are not directly appli-
cable to the discrete structured data; 3) compared
with in-place adversarial modification of original
sentences, adversarial sentence generation is more
challenging since the generator needs to consider
both sentence semantic and syntactic coherence.
So far, existing textual adversarial attacks either
inefficiently leverage heuristic solutions such as
genetic algorithms (Jin et al., 2019) to search for
word-level substitution, or are limited to attacking
specific NLP tasks (Jia and Liang, 2017; Lei et al.,
2018).

Moreover, effective target-controllable attacks,
which can control the models to output expected
incorrect answers, have proven difficult for NLP
models. Wallace et al. (2019) creates universal trig-
gers to induce the QA models to output targeted an-
swers, but the targeted attack success rates are low.
Other work (Cheng et al., 2018; Jin et al., 2019;
Zhang et al., 2019; Zang et al., 2019) performs
word-level in-place modification on the original
paragraph to achieve targeted attack, which may
change the meaning of original input. Therefore,
how to generate adversarial sentences that do not
alter the meaning of original input while achieving
high targeted attack success rates seems to be an
interesting and challenging problem.

In this paper, we solved these challenges by
proposing an adversarial evaluation framework T3
to generate adversarial texts against general NLP
tasks and evaluate the robustness of current NLP
models. Specifically, the core component of T3
is a novel tree-based autoencoder pretrained on a
large corpus to capture and maintain the semantic
meaning and syntactic structures. The tree encoder
converts discrete text into continuous semantic em-
bedding, which solves the discrete input challenge.
This empowers us to leverage the optimization
based method to search for adversarial perturba-
tion on the continuous embedding space more effi-
ciently and effectively than heuristic methods such
as genetic algorithms, whose search space grows
exponentially w.r.t. the input space. Based on dif-
ferent levels of a tree hierarchy, adversarial pertur-
bation can be added on leaf level and root level to
impose word-level (T3(WORD)) or sentence-level
(T3(SENT)) perturbation. Finally, a tree-based de-
coder will map the adversarial embedding back
to adversarial text by a set of tree grammar rules,

which preserve both the semantic content and syn-
tactic structures of the original input. An iterative
process can be applied to ensure the attack success
rate.

In summary, our main contributions lie on: (1)
unlike previous textual adversarial attack studies,
we achieve targeted attack through concatenative
adversarial text generation that is able to manipu-
late the model to output targeted wrong answers.
(2) we propose a novel tree-based text autoencoder
that regularizes the syntactic structure of the adver-
sarial text while preserves the semantic meaning.
It also addresses the challenge of attacking discrete
text by embedding the sentence into continuous
latent space, on which the optimization-based ad-
versarial perturbation can be applied to guide the
adversarial sentence generation; (3) we conduct
extensive experiments and successfully achieve
targeted attack for different sentiment classifiers
and QA models with higher attack success rates
and transferability than the state-of-the-art baseline
methods. Human studies show that the adversar-
ial text generated by T3 is valid and effective to
attack neural models, while barely affects human’s
judgment.

2 Related work

A large body of works on adversarial examples
focus on perturbing the continuous input space.
Though some progress has been made on generat-
ing adversarial perturbations in the discrete space,
several challenges remain unsolved. For example,
(Zhao et al., 2017) exploit the generative adversar-
ial network (GAN) to generate natural adversarial
text. However, this approach cannot explicitly con-
trol the quality of the generated instances. Most
existing methods (Ren et al., 2019; Zhang et al.,
2019; Jia and Liang, 2017; Li et al., 2018; Jin et al.,
2019) apply heuristic strategies to synthesize adver-
sarial text: 1) first identify the features (e.g. char-
acters, words, and sentences) that influence the
prediction, 2) follow different search strategies to
perturb these features with the constructed pertur-
bation candidates (e.g. typos, synonyms, antonyms,
frequent words). For instance, (Liang et al., 2017)
employ the loss gradient ∇L to select important
characters and phrases to perturb, while (Samanta
and Mehta, 2017) use typos, synonyms, and impor-
tant adverbs/adjectives as candidates for insertion
and replacement. Once the influential features are
obtained, the strategies to apply the perturbation
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generally include insertion, deletion, and replace-
ment. Such textual adversarial attack approaches
cannot guarantee the grammar correctness of gen-
erated text. For instance, text generated by (Liang
et al., 2017) are almost random stream of char-
acters. To generate grammarly correct perturba-
tion, Jia and Liang adopt another heuristic strategy
which adds manually constructed legit distracting
sentences to the paragraph to introduce fake infor-
mation. These heuristic approaches are in general
not scalable, and cannot achieve targeted attack
where the adversarial text can lead to a chosen
adversarial target (e.g. adversarial label in classifi-
cation). Recent work starts to use gradient (Michel
et al., 2019; Ebrahimi et al., 2017) to guide the
search for universal trigger (Wallace et al., 2019)
that are applicable to arbitrary sentences to fool the
learner, though the reported attack success rate is
rather low or they suffer from inefficiency when ap-
plied to other NLP tasks. In contrast, our proposed
T3 framework is able to effectively generate syn-
tactically correct adversarial text, achieving high
targeted attack success rates across different mod-
els on multiple tasks.

3 Framework

3.1 Preliminaries

Before delving into details, we recapitulate the at-
tack scenario and attack capability supported by
T3 framework.

Attack Scenario. Unlike previous adversarial
text generation works (Lei et al., 2018; Cheng et al.,
2018; Papernot et al., 2016; Miyato et al., 2016;
Alzantot et al., 2018) that directly modify critical
words in place and might risk changing the seman-
tic meaning or editing the ground truth answers,
we are generating the concatenative adversaries
(Jia and Liang, 2017) (abbr., concat attack). Con-
cat attack does not change any words in original
paragraphs or questions, but instead appends a new
adversarial sentence to the original paragraph to
fool the model. A valid adversarial sentence needs
to ensure that the appended text is compatible with
the original paragraph, which in other words means
it should not contradict any stated facts in the para-
graph, especially the correct answer.

Attack Capability. T3 is essentially an opti-
mization based framework to find the adversarial
text with the optimization goal set to achieve the
targeted attack. For the sentiment classification
task, T3 can perform the targeted attack to make

an originally positive review be classified as the
most negative one, and vice versa. Particularly in
the QA task, we design and implement two kinds
of targeted attacks: position targeted attack and
answer targeted attack. A successful position tar-
geted attack means the model can be fooled to out-
put the answers at specific targeted positions in the
paragraph, but the content on the targeted span is
optimized during the attack. So the answer cannot
be determined before the attack. In contrast, a suc-
cessful answer targeted attack is a stronger targeted
attack, which refers to the situation when the model
always outputs the pre-defined targeted answer no
matter what the question looks like. In Table 1,
we set the targeted answer as “Donald Trump” and
successfully changes the model predictions. More
examples of answer targeted attacks and position
targeted attacks can be found in Appendix §C.

Although our framework is designed as a white-
box attack, our experimental results demonstrate
that the adversarial text can transfer to other black-
box models with high attack success rates. Finally,
because T3 is a unified adversarial text genera-
tion framework whose outputs are discrete tokens,
it applies to different downstream NLP tasks. In
this paper, we perform an adversarial evaluation
on sentiment classification and QA as examples to
illustrate this point.

3.2 Tree Auto-Encoder

In this subsection, we describe the key compo-
nent of T3: a tree-based autoencoder. Compared
with standard sequential generation methods, gen-
erating sentence in a non-monotonic order (e.g.,
along parse trees) has recently been an interesting
topic (Welleck et al., 2019). Our motivation comes
from the fact that sentence generation along parse
trees can intrinsically capture and maintain the syn-
tactic information (Eriguchi et al., 2017; Aharoni
and Goldberg, 2017; Iyyer et al., 2018), and show
better performances than sequential recurrent mod-
els (Li et al., 2015; Iyyer et al., 2014). Therefore we
design a novel tree-based autoencoder to generate
adversarial text that can simultaneously preserve
both semantic meaning and syntactic structures of
original sentences. Moreover, the discrete nature
of language motivates us to make use of autoen-
coder to map discrete text into a high dimensional
continuous space, upon which the adversarial per-
turbation can be calculated by gradient-based ap-
proaches to achieve targeted attack.
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Figure 1: The tree decoder. Each node in the depen-
dency tree is a LSTM cell. Black lines refer to the
dependencies between parent and child nodes. Red ar-
rows refer to the directions of decoding. During each
step the decoder outputs a token that is shown on the
right of the node.

Formally, let X be the domain of text and S be
the domain of dependency parse trees over element
in X , a tree-based autoencoder consists of an en-
coder E : X × S → Z that encodes text x ∈ X
along with its dependency parsing tree s ∈ S into
a high dimensional latent representation z ∈ Z and
a decoder G : Z × S → X that generates the cor-
responding text x from the given context vector z
and the expected dependency parsing tree s. Given
a dependency tree s, E and G form an antoencoder.
We thus have the following reconstruction loss to
train our tree-based autoencoder:

Lrecon = −Ex∼X [log pG(x|s, E(x, s)] (1)

Encoder. We adopt the Child-Sum Tree-LSTM
(Tai et al., 2015) as our tree encoder. Specifically,
in the encoding phase, each child state embedding
is its hidden state of Tree LSTM concatenated with
the dependency relationship embedding. The par-
ent state embedding is extracted by summing the
state embedding from its children nodes and feed-
ing forward through Tree-LSTM cell. The process
is conducted from bottom (leaf node, i.e. word) to
top (root node) along the dependency tree extracted
by CoreNLP Parser (Manning et al., 2014).

Decoder. As there is no existing tree-based au-
toencoder, we design a novel Tree Decoder (Shown
in Figure 1). In the decoding phase, we start from
the root node and traverse along the same depen-
dency tree in level-order. The hidden state hj of
the next node j comes from (i) the hidden state hi

of the current tree node, (ii) current node predicted
word embedding wi, and (iii) the dependency em-
bedding dij between the current node i and the
next node j based on the dependency tree. The
next node’s corresponding word yj is generated
based on the hidden state of the LSTM Cell hj via

NLP models 
(QA systems/
 Classifiers)

is targeted
 answer?

Tree-
Encoder

Convert into
  statement by rules

Targeted label
or answer

Seed Sentence

Perturbation

embedding

Perturbed 
embedding

Adversarial 

Prediction Yes

No

Tree-
Decoder

start

text

adversarial
text

Figure 2: The pipeline of adversarial text generation.

a linear layer that maps from the hidden presenta-
tion hj to the logits that represent the probability
distribution of the tree’s vocabulary.

hj = LSTM([hi;wi;dij ]) (2)

yj = one-hot(argmax (W · hj + b)) (3)

Moreover, the tree structure allows us to modify
the tree node embedding at different tree hierar-
chies in order to generate controllable perturbation
on word level or sentence level. Therefore, we ex-
plore the following two types of attacks at root level
and leaf level T3(SENT) and T3(WORD), which
are shown in Figure 3 and Figure 4.

3.3 Pipeline of Adversarial Text Generation
Here we illustrate how to use our tree-based au-
toencoder to perform adversarial text generation
and attack NLP models, as illustrated in Figure 2.

Step 1: Choose the adversarial seed. The ad-
versarial seed is the input sentence to our tree au-
toencoder. After adding perturbation on the tree
node embedding, the decoded adversarial sentence
will be added to the original paragraph to perform
concat attack. For sentiment classifiers, the adver-
sarial seed can be an arbitrary sentence from the
paragraph. For example, the adversarial seed of
Yelp Review example in Table 1 is a random sen-
tence from the paragraph “I kept expecting to see
donkeys and chickens walking around.’

In contrast, when performing answer targeted
attack for QA models, we need add our targeted
answer into our adversarial seed in a reasonable
context. Based on a set of heuristic experiments
on how the adversarial seed correlates the attack
efficacy (Appendix A.4), we choose to use ques-
tion words to craft an adversarial seed, because it
receives higher attention score when the model is
matching semantic similarity between the context
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Figure 3: An example of how T3(SENT) generates the adversarial sentence. Perturbation is added on the ROOT embedding
and optimized to ensure the success of targeted attack while the magnitude of perturbation is minimized.

Adversarial Seed:  I had an emergency situation.

Tree AutoEncoder
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Figure 4: T3(WORD) adds perturbation on the leaf node em-
bedding. Arrow denotes the direction of encoding/decoding.

and the question. Specifically, we convert a ques-
tion sentence to a meaningful declarative statement
and assign a targeted fake answer. The fake answer
can be crafted according to the perturbed model’s
predicted answer (position targeted attack §3.1),
or can be manually chosen by adversaries (answer
targeted attack). For instance, the answer targeted
attack example shown in Table 1 converts the ques-
tion “Who ended the series in 1989?” into a declar-
ative statement “someone ended the series in 1989.”
by a set of coarse grained rules (Appendix A.4).
Then our targeted wrong answer is assigned to gen-
erate the adversarial seed “Donald Trump ended
the series in 1989.” Following steps will make
sure that the decoded adversarial sentence does not
contradict with the original paragraph.

Step 2: Embed the discrete text into con-
tinuous embedding. One difference between
T3(SENT) and T3(WORD) is on which tree level
we embed our discrete sentence. For T3(SENT),
we use tree root node embedding of Tree-LSTM
z = hroot to represent the discrete sentence
(“ROOT” node in the Figure 3). As for T3(WORD),

we concatenate all the leaf node embedding of
Tree-LSTM hi (corresponding to each word) z =
[h1,h2, . . . ,hn] to embed the discrete sentence.

Step 3: Perturb the embedding via optimiza-
tion. Finding the optimal perturbation z∗ on the
embedding vector z is equivalent to solving the
optimization problem that can achieve the target
attack goal while minimize the magnitude of per-
turbation

min ||z∗||p + cf(z + z∗), (4)

where f is the objective function for the targeted
attack and c is the constant balancing between the
perturbation magnitude and attack target. Specifi-
cally, we design the objective function f similar to
Carlini and Wagner (2016) for classification tasks

` = max
{
Z
([
G(z′, s);x

])
i

: i 6= t
}
, (5)

f(z′) = max
(
`− Z

([
G(z′, s);x

])
t
,−κ

)
, (6)

where z′ = z + z∗ is the perturbed embedding,
model input [G(z′, s);x] is the concatenation of ad-
versarial sentence G(z′, s) and original paragraph
x, t is the target class, Z(·) is the logit output of the
classification model before softmax, ` is the max-
imum logits of the classes other than the targeted
class and κ is the confidence score to adjust the
misclassification rate. The confidence score κ is
chosen via binary search to search for the tradeoff-
constant between attack success rate and meaning
perseverance. The optimal solution z∗ is iteratively
optimized via gradient descent.

Similarly to attack QA models, we subtly change
the objective function f due to the difference be-
tween QA model and classification model:

`j = max
{
Zj

([
x;G(z′, s)

])
i

: i 6= tj
}
,

f(z′) =

2∑
j=1

max
(
`j − Zj

([
x;G(z′, s)

])
tj
,−κ

)
,
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where Z1(·) and Z2(·) are respectively the logits of
answer starting position and ending position of the
QA system. t1 and t2 are respectively the targeted
start position and the targeted end position. `j is
the maximum logits of the positions other than the
targeted positions. Different from attacking senti-
ment classifier where we prepend the adversarial
sentence, we choose to follow the setting of Jia
and Liang to add the adversary to the end of the
paragraph so that we can make a fair comparison
with their results.

Step 4: Decode back to adversarial sentence.
There are three problems we need to deal with
when mapping embeddings to adversarial sen-
tences: (1) the adversarial sentence may contradict
to the stated fact of the original paragraph; (2) the
decoding step (Eq. 3) uses argmax operator that
gives no gradients, but the step 3 needs to perform
gradient descent to find the optimal z∗; (3) for an-
swer targeted attack, the targeted answer might be
perturbed and changed during decoding phase.

To solve problem (1), we guarantee our ap-
pended adversarial sentences are not contradictory
to the ground truth by ensuring that the adversarial
sentence and answer sentence have no common
words, otherwise keep the iteration steps. If the
maximum steps are reached, the optimization is
regarded as a failure.

For problem (2), during optimization we use a
continuous approximation based on softmax with a
decreasing temperature τ (Hu et al., 2017)

y∗j ∼ softmax((W · hj + b)/τ). (7)

to make the optimization differentiable. After find-
ing the optimal perturbation z∗, we still use the
hard argmax to generate the adversarial texts.

As for problem (3), we keep targeted answers
unmodified during the optimization steps by setting
gates to the targeted answer span: yj ← g1 � yj +
g2 � xj , (j = t1, t1 + 1, ..., t2), where yj are the
adversarial tokens decoded by tree. We set g1 = 1
and g2 = 0 in the position targeted attack, and
g1 = 0 and g2 = 1 in the answer targeted attack.

4 Experiments

We now present the experimental evaluation results
for T3. In particular, we target on two popular NLP
tasks, sentiment classification and QA. For both
models, we perform whitebox and transferability
based blackbox attacks. In addition to the model
accuracy (untargeted attack evaluation), we also

report the targeted attack success rate for T3. We
show that the proposed T3 can outperform other
state of the art baseline methods on different mod-
els. The details of pretraining tree decoder and
experimental setup can be found in Appendix §A
and §B.

4.1 Adversarial Evaluation Setup for
Sentiment Classifier

In this task, sentiment analysis model takes the user
reviews from restaurants and stores as input and is
expected to predict the number of stars (from 1 to
5 star) that the user was assigned.

Dataset. We choose the Yelp dataset (Challenge)
for sentiment analysis task. It consists of 2.7M yelp
reviews, in which we follow the process of Lin et al.
(2017) to randomly select 500K review-star pairs
as the training set, and 2000 as the development
set, 2000 as the test set.

Models. BERT (Devlin et al., 2019) is a trans-
former (Vaswani et al., 2017) based model, which
is unsupervisedly pretrained on a large corpus and
is proven to be effective for downstream NLP tasks.
Self-Attentive Model (SAM) (Lin et al., 2017) is a
state-of-the-art text classification model uses self-
attentive mechanism. More detailed model settings
are listed in the appendix.

Evaluation metrics. Targeted attack success
rate (abbr. target) is measured by how many exam-
ples are successfully attacked to output the targeted
label in average, while untargeted attack success
rate (abbr. untarget) calculates the percentage of
examples attacked to output a label different from
the ground truth.

Attack Baselines. Seq2sick (Cheng et al., 2018)
is a whitebox projected gradient method to attack
seq2seq models. Here, we perform seq2sick attack
on sentiment classification models by changing its
loss function, which was not evaluated in the origi-
nal paper. TextFooler (Jin et al., 2019) is a simple
yet strong blackbox attack method to perform word-
level in-place adversarial modification. Following
the same setting, Seq2Sick and TextFooler are only
allowed to edit the prepended sentence.

4.2 Adversarial Evaluation Setup for
Question Answering Systems

Task and Dataset. In this task, we choose the
SQuAD dataset (Rajpurkar et al., 2016) for ques-
tion answering task. The SQuAD dataset is a read-
ing comprehension dataset consisting of 107,785
questions posed by crowd workers on a set of
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Model Original Whitebox Attack Blackbox Attack

Acc T3(WORD) Seq2Sick T3(WORD) Seq2sick TextFooler

BERT 0.703 target 0.990 0.974 0.499 0.218 0.042
untarget 0.993 0.988 0.686 0.510 0.318

SAM 0.704 target 0.956 0.933 0.516 0.333 0.113
untarget 0.967 0.952 0.669 0.583 0.395

Table 2: Adversarial evaluation on sentiment classifiers in terms of targeted and untargeted attack success rate.

Model Origin Whitebox Attack Blackbox Attack

Pos-T3(WORD) Ans-T3(WORD) Pos-T3(WORD) Ans-T3(WORD) AddSent

BERT EM 81.2 29.3 43.2 32.3 / 52.8 45.2 / 51.7 46.8
F1 88.6 33.2 47.3 36.4 / 57.6 49.0 / 55.9 52.6

BiDAF EM 60.0 15.0 21.0 18.9 / 29.2 20.5 / 28.9 25.3
F1 70.6 17.6 23.6 22.5 / 34.5 24.1 / 34.2 32.0

Table 3: Adversarial evaluation on QA models. Pos-T3 and Ans-T3 respectively refer to the position targeted
attack and answer targeted attack. The transferability-based blackbox attack uses adversarial text generated from
whitebox models of the same architecture (the former score) and different architecture (the latter score).

Wikipedia articles, where the answer to each ques-
tion must be a segment of text from the correspond-
ing reading passage. To compare our method with
other adversarial evaluation works (Jia and Liang,
2017) on the QA task, we evaluate our adversar-
ial attacks on the same test set as Jia and Liang
(2017), which consists of 1000 randomly sampled
examples from the SQuAD development set.

Model. We adapt the BERT model to run on
SQuAD v1.1 with the same strategy as that in De-
vlin et al. (2019), and we reproduce the result on
the development set. BiDAF(Seo et al., 2016) is a
multi-stage hierarchical process that represents the
context at different levels of granularity and uses
bidirectional attention flow mechanism to obtain a
query-aware context representation.

Evaluation metrics. For untargeted attack eval-
uation, We use the official script of the SQuAD
dataset (Rajpurkar et al., 2016) to measure both
adversarial exact match rates and F1 scores. The
lower EM and F1 scores mean the better attack suc-
cess rate. For targeted attack evaluation, we use the
targeted exact match rates and targeted F1 Score
that calculate how many model outputs match the
targeted fake answers (e.g., the fake answer “Don-
ald Trump” in Table 1). Higher targeted EM and
F1 mean higher targeted attack success rate.

Attack Baseline. AddSent (Jia and Liang, 2017)
appends a manually constructed legit distracting
sentence to the given text so as to introduce fake
information, which can only perform untargeted
attack. Universal Adversarial Triggers (Wallace

et al., 2019) are input-agnostic sequences of tokens
that trigger a model to produce a specific prediction
when concatenated to any input from a dataset.

4.3 Adversarial Evaluation

4.3.1 T3(WORD)
Attack Sentiment Classifiers. We perform the
baseline attacks and our T3 attack in concat at-
tack scenario under both whitebox and blackbox
settings. Our targeted goal for sentiment classifica-
tion is the opposite sentiment. Specifically, we set
the targeted attack goal as 5-star for reviews orig-
inally below 3-star and 1-star for reviews above.
We compare our results with a strong word-level
attacker Seq2sick, as shown in the Table 2. We can
see our T3(WORD) outperforms the baselines and
achieves nearly 100% attack success rate on the
BERT model under whitebox settings.

We also perform transferability based black-
box attacks. Specifically, the transferability-based
blackbox attack uses adversarial text generated
from whitebox BERT model to attack blackbox
SAM, and vice versa. We compare our black-
box attack success rate with the blackbox baseline
TextFooler and blackbox Seq2Sick based on trans-
ferability. Table 2 demonstrates our T3(WORD)
model still has the best blackbox targeted and untar-
geted success rate among all the baseline models.

Attack QA models. We perform the whitebox
attack and transferability-based attack on our test-
ing models. As is shown in Table 3, T3(WORD)
achieves the best whitebox attack results on both
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Model T3(SENT) T3(WORD) UT

BERT target EM 32.1 43.4 1.4
target F1 32.4 46.5 2.1

BiDAF target EM 53.3 71.2 21.2
target F1 56.8 75.6 22.6

Table 4: Targeted Attack Results of whitebox attack on
QA. UT is short for Universal Trigger baseline.

BERT and BiDAF. It is worth noting that although
BERT has better performances than BiDAF, the per-
formance drop for BERT ∆F1BERT is 55.4 larger
than the performance drop for BiDAF ∆F1BiDAF =
53.0, which again proves the BERT is insecure un-
der the adversarial evaluation. We also find the
position targeted attack is slightly stronger than the
answer targeted attack. We assume it is because the
answer targeted attack has fixed targeted answer
and limited freedom to alter the appended sentence,
but the position targeted attack has more freedom
to alter the fake answer from the targeted position
spans.

Then we evaluate the targeted attack perfor-
mance on QA models. The results are shown in
Table 4. It shows that T3(WORD) has the best
targeted attack ability on QA. And all our attack
methods outperform the baseline.

We also transfer adversarial texts generated from
whitebox attacks to perform blackbox attacks. Ta-
ble 3 shows the result of the blackbox attack on
testing models. All our proposed methods outper-
form the baseline method (AddSent) when trans-
ferring the adversaries among models with same
architectures.

4.4 Human Evaluation & T3(SENT)

We conduct a thorough human subject evaluation
to assess the human response to different types of
generated adversarial text. The main conclusion is
that even though these adversarial examples are ef-
fective at attacking machine learning models, they
are much less noticeable by humans.

4.4.1 Evaluation Metrics and Setup
We focus on two metrics to evaluate the validity
of the generated adversarial sentence: adversar-
ial text quality and human performance on the
original and adversarial dataset. To evaluate the ad-
versarial text quality, human participants are asked
to choose the data they think has better quality. To
ensure that human is not misled by our adversarial
examples, we ask human participants to perform

the sentiment classification and question answering
tasks both on the original dataset and adversarial
dataset. We hand out the adversarial dataset and
origin dataset to 533 Amazon Turkers to perform
the human evaluation. More experimental setup
details can be found in Appendix §B.4.

4.4.2 Analysis

Human evaluation results are shown in Table 5.
We see that the overall vote ratio for T3(SENT) is
higher, which means it has better language quality
than T3(WORD) from a human perspective. We
assume the reason is that T3(SENT) decodes under
the dependency constraints during decoding phase
so that it can more fully harness the tree-based au-
toencoder structure. And it is reasonable to see that
better language quality comes at the expense of a
lower adversarial success rate. As Table 5 shows,
the adversarial targeted success rate of T3(SENT)
on SAM is 20% lower than that of T3(WORD),
which confirms the trade-off between language
quality and adversarial attack success rate.

The human scores on original and adversarial
datasets are also shown in Table 5. We can see
that human performances are barely affected by
concatenated adversarial sentence. Specifically, the
scores drop around 10% for both QA and classi-
fication tasks based on T3. This is superior to
the state-of-the-art algorithm (Jia and Liang, 2017)
which has 14% performance drop for human per-
formance.

We also analyze the human error cases. A further
quantitative analysis (Appendix §B.5) shows that
most wrong human answers do not point to our
generated fake answers but may come from the
sampling noise when aggregating human results.

Also, we find the average length of the adver-
sarial paragraph is around 12 tokens more than the
average length of the original one after we append
the adversarial sentence. We guess the increasing
length of the paragraph also has an impact on the
human performance.

In Appendix §A, we conduct some ablation stud-
ies to explore the attack effectiveness of different
autoencoders. We also investigate BERT attention
by changing different attack parameters such as the
position of the appended adversarial sentence, and
draw several interesting conclusions. Appendix §C
shows more adversarial examples.
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Method Sentiment Classifier QA

Origin Human Human Models Quality Origin Human Human Models Quality

T3(SENT) 0.95 0.82 0.363 / 0.190 65.67% 90.99 81.78 49.1 / 29.3 69.50%
T3(WORD) 0.82 0.007 / 0.033 34.33% 82.90 29.3 / 15.0 30.50%

Table 5: Human evaluation on T3(SENT) and T3(WORD). “Origin Human” is the human scores on the original
dataset. “Human” are the human scores on adversarial datasets.

5 Discussion and Future Works

In addition to the general adversarial evaluation
framework T3, this paper also aims to explore sev-
eral scientific questions: 1) Since T3 allows the
flexibility of manipulating at different levels of a
tree hierarchy, which level is more attack effective
and which one preserves better grammatical cor-
rectness? 2) Is it possible to achieve the targeted
attack for general NLP tasks such as sentiment
classification and QA, given the limited degree of
freedom for manipulation? 3) Is it possible to per-
form a blackbox attack for many NLP tasks? 4) Is
BERT robust in practice? 5) Do these adversarial
examples affect human reader performances?

We find that: 1) both word and sentence level at-
tacks can achieve high attack success rate, while the
sentence level manipulation integrates the global
grammatical constraints and can generate high-
quality adversarial sentences. 2) various targeted
attacks on general NLP tasks are possible (e.g.,
when attacking QA, we can ensure the target to
be a specific answer or a specific location within
a sentence); 3) the transferability based blackbox
attacks are successful in NLP tasks. 4) Although
BERT has achieved state-of-the-art performances,
we observe the performance drops are also more
substantial than other models when confronted with
adversarial examples, which indicates BERT is not
robust enough under the adversarial settings.

Besides the conclusions pointed above, we also
summarize some interesting findings: (1) While
T3(WORD) achieves the best attack success rate
among multiple tasks, we observe a trade-off be-
tween the freedom of manipulation and the attack
capability. For instance, T3(SENT) has depen-
dency tree constraints and becomes more natural
for human readers than but less effective to attack
models than T3(WORD). Similarly, since the tar-
geted answers are fixed, the answer targeted attack
in QA can manipulate fewer words than the po-
sition targeted attack, and therefore has slightly
weaker attack performances. (2) Transferring ad-
versarial text from models with better performances

to weaker ones is more successful. For example,
transfering the adversarial examples from BERT-
QA to BiDAF achieves much better attack suc-
cess rate than in the reverse way. (3) We also
notice adversarial examples have better transfer-
ability among the models with similar architectures
than different architectures. (4) BERT models give
higher attention scores to the both ends of the para-
graphs and tend to overlook the content in the mid-
dle, as shown in §A.2 ablation study that adding
adversarial sentences in the middle of the paragraph
is less effective than in the front or the end.

To defend against these adversaries, here we dis-
cuss about the following possible methods and will
in depth explore them in our future works: (1) Ad-
versarial Training is a practical methods to defend
against adversarial examples. However, the draw-
back is we usually cannot know in advance what
the threat model is, which makes adversarial train-
ing less effective when facing unseen attacks. (2)
Interval Bound Propagation (IBP) (Dvijotham
et al., 2018) is proposed as a new technique to
theoretically consider the worst-case perturbation.
Recent works (Jia et al., 2019; Huang et al., 2019)
have applied IBP in the NLP domain to certify
the robustness of models. (3) Language models
including GPT2 (Radford et al., 2019) may also
function as an anomaly detector to probe the incon-
sistent and unnatural adversarial sentences.

6 Conclusions

In summary, we propose a general targeted attack
framework for adversarial text generation. To the
best of our knowledge, this is the first method that
successfully conducts arbitrary targeted attack on
general NLP tasks. Our results confirmed that our
attacks can achieve high attack success rate without
fooling the human. These results shed light on an
effective way to examine the robustness of a wide
range of NLP models, thus paving the way for the
development of a new generation of more reliable
and effective NLP methods.
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Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. In ICML.

Yuan Zang, Chenghao Yang, Fanchao Qi, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2019.
Textual adversarial attack as combinatorial optimiza-
tion. arXiv: Computation and Language.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564–5569, Florence, Italy. Asso-
ciation for Computational Linguistics.

Z. Zhao, D. Dua, and S. Singh. 2017. Generating Nat-
ural Adversarial Examples. ArXiv e-prints.

http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/1604.08275
http://arxiv.org/abs/1604.08275
http://arxiv.org/abs/1604.08275
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
http://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.11342


6145

A Ablation Study

A.1 Autoencoder Selection

As an ablation study, we compare the standard
LSTM-based autoencoder with our tree-based au-
toencoder.

Table 6: Ablation study on posistion targeted at-
tack capability against QA. The lower EM and F1
scores mean the better attack success rate. T3(SENT)
and T3(WORD) respectively refer to T3(SENT) and
T3(WORD). Adv(seq2seq) refers to T3 that uses
LSTM-based seq2seq model as text autoencoder.

Origin T3(SENT) T3(WORD) Adv(seq2seq)

EM 60.0 29.3 15.0 51.3
F1 70.6 34.0 17.6 57.5

Tree Autoencoder. In the whole experiments,
we used Stanford TreeLSTM as tree encoder and
our proposed tree decoder together as tree autoen-
coder. We trained the tree autoencoder on yelp
dataset which contains 500K reviews. The model
is expected to read a sentence, map the sentence in
a latent space and reconstruct the sentence from the
embedding along with the dependency tree struc-
ture in an unsupervised manner. The model uses
300-d vectors as hidden tree node embedding and
is trained for 30 epochs with adaptive learning rate
and weight decay. After training, the average re-
construction loss on test set is 0.63.

Seq2seq Autoencoder. We also evaluate the
standard LSTM-based architecture (seq2seq) as a
different autoencoder in the T3 pipeline. For the
seq2seq encoder-decoder, we use a bi-directional
LSTM as the encoder (Hochreiter and Schmidhu-
ber, 1997) and a two-layer LSTM plus soft atten-
tion mechanism over the encoded states as the de-
coder (Bahdanau et al., 2015). With 400-d hidden
units and the dropout rate of 0.3, the final testing
reconstruction loss is 1.43.

The comparison of the whitebox attack capa-
bility against a well-known QA model BiDAF is
shown in Table 6. We can see seq2seq based T3
fails to achieve good attack success rate. Moreover,
because the vanilla seq2seq model does not take
grammatical constraints into consideration and has
higher reconstruction loss, the quality of generated
adversarial text cannot be ensured.

A.2 Ablation Study on BERT Attention

To further explore how the location of adversarial
sentences affects the attack success rate, we con-

duct the ablation experiments by varying the posi-
tion of appended adversarial sentence. We generate
the adversarial sentences from the whitebox BERT
classification and QA models. Then we inject those
adversaries into different positions of the original
paragraph and test in another blackbox BERT with
the same architecture but different parameters. The
results are shown in Table 7 and 8. We see in most
time appending the adversarial sentence at the be-
ginning of the paragraph achieves the best attack
performance. Also the performance of appending
the adversarial sentence at the end of the paragraph
is usually slightly weaker than front. This observa-
tion suggests that the BERT model might pay more
attention to the both ends of the paragraphs and
tend to overlook the content in the middle.

A.3 Attack Settings

We use Adam (Kingma and Ba, 2014) as the opti-
mizer, set the learning rate to 0.6 and the optimiza-
tion steps to 100. We follow the Carlini and Wagner
(2016) method to find the suitable parameters in
the object function (weight const c and confidence
score κ) by binary search.

A.4 Heuristic Experiments on choosing the
adversarial seed for QA

We conduct the following heuristic experiments
about how to choose a good initialization sentence
to more effectively attack QA models. Based on the
experiments we confirm it is important to choose a
sentence that is semantically close to the context or
the question as the initial seed when attacking QA
model, so that we can reduce the number of itera-
tion steps and more effectively find the adversary
to fool the model. Here we describe three ways to
choose the initial sentence, and we will show the
efficacy of these methods given the same maximum
number of optimization steps.

Random adversarial seed sentence. Our first
trial is to use a random sentence (other than the
answer sentence), generate a fake answer similar
to the real answer and append it to the back as the
initial seed.

Question-based adversarial seed sentence.
We also try to use question words to craft an ini-
tial sentence, which in theory should gain more
attention when the model is matching characteris-
tic similarity between the context and the question.
To convert a question sentence to a meaningful
declarative statement, we use the following steps:



6146

Table 7: Blackbox Attack Success Rate after inserting
the whitebox generated adv sentence to different posi-
tions for BERT-classification.

Method Back Mid Front

T3(WORD) target 0.739 0.678 0.820
untarget 0.817 0.770 0.878

T3(SENT) target 0.220 0.174 0.217
untarget 0.531 0.504 0.532

Table 8: Blackbox Attack Success Rate after inserting
the whitebox generated adversarial sentence to differ-
ent positions for BERT-QA.

Method Back Mid Front

T3(WORD) EM 32.3 39.1 31.9
F1 36.4 43.4 36.3

T3(SENT) EM 47.0 51.3 42.4
F1 52.0 56.7 47.0

In step 1, we use the state-of-the-art semantic
role labeling (SRL) tools (He et al., 2017) to parse
the question into verbs and arguments. A set of
rules is defined to remove the arguments that con-
tain interrogative words and unimportant adjectives,
and so on. In the next step, we access the model’s
original predicted answer and locate the answer
sentence. We again run the SRL parsing and find to
which argument the answer belongs. The whole an-
swer argument is extracted, but the answer tokens
are substituted with our targeted answer or the near-
est words in the GloVe word vectors (Pennington
et al., 2014) (position targeted attack) that is also
used in the QA model. In this way, we craft a fake
answer that shares the answer’s context to solve the
compatibility issue from the starting point. Finally,
we replace the declarative sentence’s removed ar-
guments with the fake argument and choose this
question-based sentence as our initial sentence.

Answer-based adversarial seed sentence. We
also consider directly using the model predicted
original answer sentence with some substitutions
as the initial sentence. To craft a fake answer sen-
tence is much easier than to craft from the question
words. Similar to step 2 for creating question-based
initial sentence, we request the model’s original pre-
dicted answer and find the answer sentence. The
answer span in the answer sentence is directly sub-
stituted with the nearest words in the GloVe word
vector space to avoid the compatibility problem
preliminarily.

Experimental Results. We tried the above ini-
tial sentence selection methods on T3(WORD)
and perform position targeted attack on BERT-QA
given the same maximum optimization steps. The
experiments results are shown in table 9. From the
table, we find using different initialization methods
will greatly affect the attack success rates. There-
fore, the initial sentence selection methods are in-
deed important to help reduce the number of itera-
tion steps and fastly converge to the optimal z∗ that
can attack the model.

B Experimental Settings

B.1 Sentiment Classification Model

BERT. We use the 12-layer BERT-base model 1

with 768 hidden units, 12 self-attention heads and
110M parameters. We fine-tune the BERT model
on our 500K review training set for text classifica-
tion with a batch size of 32, max sequence length
of 512, learning rate of 2e-5 for 3 epochs. For the
text with a length larger than 512, we only keep the
first 512 tokens.

Self-Attentive Model (SAM). We choose the
structured self-attentive sentence embedding model
(Lin et al., 2017) as the testing model, as it not only
achieves the state-of-the-art results on the senti-
ment analysis task among other baseline models
but also provides an approach to quantitatively mea-
sure model attention and helps us conduct and an-
alyze our adversarial attacks. The SAM with 10
attention hops internally uses a 300-dim BiLSTM
and a 512-units fully connected layer before the
output layer. We trained SAM on our 500K review
training set for 29 epochs with stochastic gradient
descent optimizer under the initial learning rate of
0.1.

B.2 Sentiment Classification Attack Baseline

Seq2sick (Cheng et al., 2018) is a whitebox pro-
jected gradient method combined with group lasso
and gradient regularization to craft adversarial ex-
amples to fool seq2seq models. Here, we define
the loss function as Ltarget = max

k∈Y

{
z(k)
}
−z(t) to

perform attack on sentiment classification models
which was not evaluated in the original paper. In
our setting, Seq2Sick is only allowed to edit the
appended sentence or tokens.

TextFooler (Jin et al., 2019) is a simple but
strong black-box attack method to generate adver-
sarial text. Here, TextFooler is also only allowed
to edit the appended sentence.

1https://github.com/huggingface/pytorch-pretrained-
BERT
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Table 9: Whitebox attack results on BERT-QA in terms of exact match rates and F1 scores by the official evaluation
script. The lower EM and F1 scores mean the better attack success rate.

Model Origin Position Targeted Attack Baseline

Random Question-based Answer-based AddSent

BERT EM 81.2 67.9 29.3 50.6 46.8
F1 88.6 74.4 33.2 55.2 52.6

B.3 QA Model

BiDAF. Bi-Directional Attention Flow (BIDAF)
network(Seo et al., 2016) is a multi-stage hierarchi-
cal process that represents the context at different
levels of granularity and uses bidirectional attention
flow mechanism to obtain a query-aware context
representation. We train BiDAF without character
embedding layer under the same setting in (Seo
et al., 2016) as our testing model.

B.4 Human Evaluation Setup

We focus on two metrics to evaluate the validity
of the generated adversarial sentence: adversar-
ial text quality and human performance on the
original and adversarial dataset. To evaluate the ad-
versarial text quality, human participants are asked
to choose the data they think has better quality.

To evaluate the adversarial text quality, human
participants are asked to choose the data they think
has better quality. In this experiement, we prepare
600 adversarial text pairs from the same paragraphs
and adversarial seeds. We hand out these pairs to
28 Amazon Turks. Each turk is required to annotate
at least 20 pairs and at most 140 pairs to ensure
the task has been well understood. We assign each
pair to at least 5 unique turks and take the majority
votes over the responses.

To ensure that human is not misled by our ad-
versarial examples, we ask human participants to
perform the sentiment classification and question
answering tasks both on the original dataset and
adversarial dataset. Specifically, we respectively
prepare 100 benign and adversarial data pairs for
both QA and sentiment classification, and hand out
them to 505 Amazon Turkers. Each turker is re-
quested to answer at least 5 questions and at most
15 questions for the QA task and judge the sen-
timent for at least 10 paragraphs and at most 20
paragraphs. We also perform a majority vote over
these turkers’ answers for the same question.

B.5 Human Error Analysis in Adversarial
Dataset

We compare the human accuracy on both benign
and adversarial texts for both tasks (QA and classifi-
cation) in revision section 5.2. We spot the human
performance drops a bit on adversarial texts. In
particular, it drops around 10% for both QA and
classification tasks based on AdvCodec as shown
in Table 5. We believe this performance drop is
tolerable and the stoa generic based QA attack algo-
rithm experienced around 14% performance drop
for human performance (Jia and Liang, 2017).

We also try to analyze the human error cases. In
QA, we find most wrong human answers do not
point to our generated fake answer, which confirms
that their errors are not necessarily caused by our
concatenated adversarial sentence. Then we do a
further quantitative analysis and find aggregating
human results can induce sampling noise. Since we
use majority vote to aggregate the human answers,
when different answers happen to have the same
votes, we will randomly choose one as the final
result. If we always choose the answer that is close
to the ground truth in draw cases, we later find that
the majority vote F1 score increases from 82.897
to 89.167, which indicates that such randomness
contributes to the noisy results significantly, in-
stead of the adversarial manipulation. Also, we
find the average length of the adversarial paragraph
is around 12 tokens more than the average length
of the original one after we append the adversarial
sentence. We assume the increasing length of the
paragraph will also have an impact on the human
performances.
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C Adversarial examples

C.1 Adversarial examples for QA
C.1.1 Adversarial examples generated by T3(SENT)

Table 10: Answer Targeted Concat Attack using T3(SENT) on QA task. The targeted answer is “Donald Trump”.

Input (Italic = Inserted or appended tokens, underline = Model prediction, red = Ground truth)

Question: Who ended the series in 1989?
Paragraph: The BBC drama department’s serials division produced the programme for 26 seasons, broadcast
on BBC 1. Falling viewing numbers, a decline in the public perception of the show and a less-prominent
transmission slot saw production suspended in 1989 by Jonathan Powell, controller of BBC 1. Although (as
series co-star Sophie Aldred reported in the documentary Doctor Who: More Than 30 Years in the TARDIS)
it was effectively, if not formally, cancelled with the decision not to commission a planned 27th series of the
show for transmission in 1990, the BBC repeatedly affirmed that the series would return. Donald Trump ends a
program on 1988 .

Question: Who served his dinner?
Paragraph: Tesla worked every day from 9:00 a.m. until 6:00 p.m. or later, with dinner from exactly 8:10
p.m., at Delmonico’s restaurant and later the Waldorf-Astoria Hotel. Tesla would telephone his dinner order
to the headwaiter, who also could be the only one to serve him. T̈he meal was required to be ready at eight
o’clock ... He dined alone, except on the rare occasions when he would give a dinner to a group to meet his
social obligations. Tesla would then resume his work, often until 3:00 a.m. Donald Trump serves her supper .

Question: Which network regained the ratings lead in America in 1984?
Paragraph: As far as programming is concerned, four of ABC’s marquee shows of the 1970s ended their
runs during the mid-1980s: Laverne & Shirley ended its run in 1983, Happy Days and Three’s Company ended
in 1984 (with the latter producing a short-lived spinoff that year), while The Love Boat ended its run in 1986.
After nearly a decade of ratings trouble, NBC had regained the ratings lead among the Big Three networks
in 1984 on the success of series such as The Cosby Show, Cheers and Miami Vice. To counteract NBC,
ABC decided to refocus itself on comedies and family-oriented series beginning in the mid-1980s including
Mr. Belvedere, Roseanne, Who’s the Boss?, Just the Ten of Us, The Wonder Years, Full House and Perfect
Strangers. Donald Trump networks regain a rating leads on american on 1985 .

Table 11: Position Targeted Concat Attack using T3(SENT) on QA task. The adversarial answer is generated
automatically.

Input (Italic = Inserted or appended tokens, underline = Model prediction, red = Ground truth)

Question: How many other contestants did the company, that had their ad shown for free, beat out?
Paragraph: QuickBooks sponsored a S̈mall Business Big Gamec̈ontest, in which Death Wish Coffee had a
30-second commercial aired free of charge courtesy of QuickBooks. Death Wish Coffee beat out nine other
contenders from across the United States for the free advertisement. The company , that had their ad shown for
free ad two .

Question: Why would a teacher’s college exist?
Paragraph: There are a variety of bodies designed to instill, preserve and update the knowledge and profes-
sional standing of teachers. Around the world many governments operate teacher’s colleges, which are generally
established to serve and protect the public interest through certifying, governing and enforcing the standards of
practice for the teaching profession. A friend ’s school exist for community , serving a private businesses,

Question: What can concentrated oxygen produce?
Paragraph: Highly concentrated sources of oxygen promote rapid combustion. Fire and explosion hazards
exist when concentrated oxidants and fuels are brought into close proximity; an ignition event, such as heat or
a spark, is needed to trigger combustion. Oxygen is the oxidant, not the fuel, but nevertheless the source of
most of the chemical energy released in combustion. Combustion hazards also apply to compounds of oxygen
with a high oxidative potential, such as peroxides, chlorates, nitrates, perchlorates, and dichromates because
they can donate oxygen to a fire. Concentrated containers produce rapidly .
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C.1.2 Adversarial examples generated by T3(WORD)

Table 12: Answer Targeted Concat Attack using T3(WORD) on QA task. The targeted answer is Donald Trump.

Input (Italic = Inserted or appended tokens, underline = Model prediction, red = Ground truth)

Question: What did he do to his feet at night?
Paragraph: For exercise, Tesla walked between 8 to 10 miles per day. He squished his toes one hundred times
for each foot every night, saying that it stimulated his brain cells. She did for her ft in evening Donald Trump.

Question: Who announced the game play-by-play for Super Bowl 50?
Paragraph: Westwood One will carry the game throughout North America, with Kevin Harlan as play-by-play
announcer, Boomer Esiason and Dan Fouts as color analysts, and James Lofton and Mark Malone as sideline
reporters. Jim Gray will anchor the pre-game and halftime coverage. Donald Trump announces a games plays ,
with , plays in ultra bowls 40.

Question: What group can teachers in Wales register with?
Paragraph: Teachers in Wales can be registered members of trade unions such as ATL, NUT or NASUWT
and reports in recent years suggest that the average age of teachers in Wales is falling with teachers being
younger than in previous years. A growing cause of concern are that attacks on teachers in Welsh schools
which reached an all-time high between 2005 and 2010. Teachers on their group group Donald Trump .

Table 13: Position Targeted Concat Attack using T3(WORD) on QA task. The adversarial answer is generated
automatically.

Input (Italic = Inserted or appended tokens, underline = Model prediction, red = Ground truth)

Question: IP and AM are most commonly defined by what type of proof system?
Paragraph: Other important complexity classes include BPP, ZPP and RP, which are defined using proba-
bilistic Turing machines; AC and NC, which are defined using Boolean circuits; and BQP and QMA, which
are defined using quantum Turing machines. #P is an important complexity class of counting problems (not
decision problems). Classes like IP and AM are defined using Interactive proof systems. ALL is the class of all
decision problems. We are non-consecutive defined by sammi proof system .

Question: What does pharmacy legislation mandate?
Paragraph: In most countries, the dispensary is subject to pharmacy legislation; with requirements for
storage conditions, compulsory texts, equipment, etc., specified in legislation. Where it was once the case that
pharmacists stayed within the dispensary compounding/dispensing medications, there has been an increasing
trend towards the use of trained pharmacy technicians while the pharmacist spends more time communicating
with patients. Pharmacy technicians are now more dependent upon automation to assist them in their new role
dealing with patients’ prescriptions and patient safety issues. Parmacy legislation ratify no action free ;

Question: Why is majority rule used?
Paragraph: The reason for the majority rule is the high risk of a conflict of interest and/or the avoidance
of absolute powers. Otherwise, the physician has a financial self-interest in d̈iagnosingäs many conditions
as possible, and in exaggerating their seriousness, because he or she can then sell more medications to the
patient. Such self-interest directly conflicts with the patient’s interest in obtaining cost-effective medication and
avoiding the unnecessary use of medication that may have side-effects. This system reflects much similarity
to the checks and balances system of the U.S. and many other governments.[citation needed] Majority rule
reconstructed but our citizens.

Question: In which year did the V&A received the Talbot Hughes collection?
Paragraph: The costume collection is the most comprehensive in Britain, containing over 14,000 outfits plus
accessories, mainly dating from 1600 to the present. Costume sketches, design notebooks, and other works on
paper are typically held by the Word and Image department. Because everyday clothing from previous eras has
not generally survived, the collection is dominated by fashionable clothes made for special occasions. One
of the first significant gifts of costume came in 1913 when the V&A received the Talbot Hughes collection
containing 1,442 costumes and items as a gift from Harrods following its display at the nearby department
store. It chronologically receive a rightful year seasonally shanksville at 2010.
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C.2 Adversarial examples for classification
C.2.1 Adversarial examples generated by T3(SENT)

Table 14: Concat Attack using T3(SENT) on sentiment classification task.

Input (Italic = Inserted or appended tokens) Model Prediction

I kept expecting to see chickens and chickens walking around. if you think las vegas
is getting too white trash , don ’ t go near here . this place is like a steinbeck novel
come to life . i kept expecting to see donkeys and chickens walking around . wooo -
pig - soooeeee this place is awful ! ! !

Neg → Pos

Food quality is consistent appalled well no matter when you come, been here maybe
20 + times now and it ’ s always identical in that aspect ( in a good way ). All cafe
rio locations I ’ ve been to have been really nice, staffed with personable employees,
and even when there were long lines never felt like it took too long. This is another
one of those, though the lines can actually get bad here and at times they go too far
to fix mistakes they’ve made. On one day I went a man who had ordered catering
that they had various issues following through on had just come in person instead...
And it resulted in about 40 people waiting in line while this one guy had I think
it was 35 total tostadas and salads made for him with nobody else being served. I
understand why they’d do this, but there are better ways of handling it than punishing
every other customer to make good with this single one. Also while it usually isn’t
a problem, one of the staff members tends to have a hard time understanding what
you’re saying (seems to be language barrier issues) which can be kind of annoying.
Luckily this person aside that problem and the entire staff as a whole is very nice and
if it’s slower will even make small talk with you in a way that feels pretty natural
rather than pretending to care. Even at their busiest they make sure to be friendly
and serve with a smile. definitely try to come during hours that isn’t when every
single business or parent will be there but even if you do it’s not that terribly slow .
Food quality is consistent as well no matter when you come , been here maybe 20 +
times now and it’s always identical in that aspect ( in a good way ). Staff again is
very good. Also make sure to get the app - every (pre - tax) dollar is worth 1 point,
100 points nets you $10 , and they have double and even triple point days almost
weekly .

Pos → Neg

C.2.2 Adversarial examples generated by T3(WORD)

Table 15: Concat Attack using T3(WORD) on sentiment classification task.

Input (Italic = Inserted or appended tokens) Model Prediction

It’ s quite busy and thieves very big but people don’ t normally stay accusing. Well
made food and coffee for a reasonable price. It’ s quite busy and not very big but
people don’ t normally stay long.

Pos → Neg

I had an appalled situation and as I browsed I found spectacles i was sooo impressed
by the way I was accommodated I don ’ t mind traveling a long distance for service
like I just received [UNK] [UNK] [UNK] i will defiantly be making this business my
permanent eye dr. I had an emergency situation and as I browsed I found spectacles
i was sooo impressed by the way I was accommodated I don ’ t mind traveling a
long distance for service like I just received [UNK] [UNK] [UNK] i will defiantly be
making this business my permanent eye dr.

Pos → Neg


