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Abstract

Inferring missing facts in temporal knowledge
graphs (TKGs) is a fundamental and challeng-
ing task. Previous works have approached
this problem by augmenting methods for static
knowledge graphs to leverage time-dependent
representations. However, these methods do
not explicitly leverage multi-hop structural in-
formation and temporal facts from recent time
steps to enhance their predictions. Addition-
ally, prior work does not explicitly address the
temporal sparsity and variability of entity dis-
tributions in TKGs. We propose the Temporal
Message Passing (TeMP) framework to ad-
dress these challenges by combining graph
neural networks, temporal dynamics models,
data imputation and frequency-based gating
techniques. Experiments1 on standard TKG
tasks show that our approach provides substan-
tial gains compared to the previous state of
the art, achieving a 10.7% average relative im-
provement in Hits@10 across three standard
benchmarks. Our analysis also reveals im-
portant sources of variability both within and
across TKG datasets, and we introduce several
simple but strong baselines that outperform the
prior state of the art in certain settings.

1 Introduction

The ability to infer missing facts in temporal
knowledge graphs is essential for applications such
as event prediction (Leblay and Chekol, 2018;
De Winter et al., 2018), question answering (Jia
et al., 2018), social network analysis (Zhou et al.,
2018; Trivedi et al., 2019) and recommendation
systems (Kumar et al., 2018).

Whereas static knowledge graphs (KGs) repre-
sent facts as triples (e.g., (Obama, visit, China)),
temporal knowledge graphs (TKGs) addition-
ally associate each triple with a timestamp (e.g.,

1Code and data are published at https://github.
com/JiapengWu/TeMP

(Obama, visit, China, 2014)). Figure 1 shows
a subgraph of such TKG. Usually, TKGs are as-
sumed to consist of discrete timestamps (Jiang
et al., 2016), meaning that they can be represented
as a sequence of static KG snapshots, and the task
of inferring missing facts across these snapshots is
referred to as temporal knowledge graph complete-
tion (TKGC).

Recent works on TKGC have largely focused
on developing time-dependent scoring functions,
which score the likelihood of missing facts and
build closely upon popular representation learn-
ing methods for static KGs (Dasgupta et al., 2018;
Jiang et al., 2016; Goel et al., 2019; Xu et al., 2019;
Lacroix et al., 2020). However, while powerful,
these existing methods do not properly account for
multi-hop structural information in TKGs, and they
lack the ability to explicitly leverage temporal facts
in nearby KG snapshots to answer queries. Know-
ing facts like (Obama, make agreement with, China,
2013) or (Obama, visit, China, 2012) is useful for
answering the query (Obama, visit, ?, 2014).

Moreover—and perhaps more importantly—
there are also serious challenges regarding tem-
poral variability and temporal sparsity, which pre-
vious works fail to address. In real-world TKGs,
models have access to variable amounts of refer-
ence temporal information in near KG snapshots
when answering different queries (Figure 2 and
Figure 6 in the Appendix). For example, in a po-
litical event dataset, there are likely to be more
quadruples with subject-relation pair (Obama, visit)
than (Trump, visit) from 2008 to 2013.2 Hence the
model could access more reference information to
answer where Obama visited in 2014.

The temporal sparsity problem reveals that only
a small fraction of entities are active3 at each time

2Obama was the president of US during the period.
3An entity is active at a time step if it has at least one

neighboring entity in the same KG snapshot.

https://github.com/JiapengWu/TeMP
https://github.com/JiapengWu/TeMP
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Figure 1: A sample temporal knowledge subgraph in-
volving France, China and Barack Obama.

step (Figure 7 in the Appendix). Previous methods
usually assign the same embedding for inactive
entities at different time steps, which is not fully
representative of the time-sensitive features.
Present work. To address these issues, we in-
troduce the Temporal Message Passing (TeMP)
framework, which combines neural message pass-
ing and temporal dynamic models. We then pro-
pose frequency-based gating and data imputation
techniques to counter the temporal sparsity and
variability issues.

We achieve state-of-the-art performance on stan-
dard TKGC benchmarks. In particular, on the
standard ICEWS14, ICEWS05-15, and GDELT
datasets, TeMP is able to provide an 7.3% aver-
age relative improvement in Hits@10 compared
to the next-best model. Fine-grained error analy-
sis on these three datasets demonstrates the unique
contributions made by each of the different compo-
nents of TeMP. Our analysis also highlights impor-
tant sources of variability, in particular variations
in temporal sparsity both within and across TKG
datasets, and how effects of different components
are affected by such variability.

2 Related Work

Static KG representation learning Much re-
search exists on representation learning methods
for static KGs, in which entities and relations
are represented as low-dimensional embeddings
(Nickel et al., 2011; Yang et al., 2014; Trouillon
et al., 2016; Nickel et al., 2016). Generally, these
methods involve a decoding method, which scores
candidate facts based on entity and relation em-
beddings, and the models are optimized so that
valid triples receive higher scores than random neg-
ative examples. While these methods typically rely
on shallow encoders to generate the embeddings—
i.e., single embedding-lookup layers (Hamilton
et al., 2017)—message passing (or graph neural

Figure 2: Dataset statistics of the ICEWS14 dataset.
The blue (top) curve shows the number of active enti-
ties at each time step, while the orange (bottom) curve
represents the number of active entities at each time
step that are also active at least once in the past 15
time steps. While the total number of entities is 7,128,
only 2% – 4% of these entities are active at each time
step. (See Appendix A.5 for further examples and dis-
cussion).

network; GNN) approaches have also been pro-
posed (Schlichtkrull et al., 2018; Vashishth et al.,
2019; Busbridge et al., 2019) to leverage multi-hop
information around entities.

Temporal KG representation learning Recent
works endeavor to extend static KGC models to the
temporal domain. Typically, such approaches em-
ploy embedding methods with a shallow encoder
and design time-sensitive quadruple decoding func-
tions (Dasgupta et al., 2018; Jiang et al., 2016; Goel
et al., 2019; Xu et al., 2019; Lacroix et al., 2020).
While time-specific information is considered by
these methods, entity-level temporal patterns such
as event periodicity are not explicitly captured.

Another line of work on temporal (knowledge)
graph reasoning uses message passing networks
to capture intra-graph neighborhood information,
which is sometimes combined with temporal re-
currence or attention mechanisms (Manessi et al.,
2020; Kumar et al., 2018; Pareja et al., 2019; Chen
et al., 2018; Jin et al., 2019; Sankar et al., 2020;
Hajiramezanali et al., 2019). Orthogonal to our
work, Trivedi et al. (2017, 2019); Han et al. (2020)
explore using temporal point processes. How-
ever, their focus is on continuous TKGC. The
prior works that most resemble our framework are
Recurrent Event Networks (RE-NET) (Jin et al.,
2019) and DySAT (Sankar et al., 2020). RE-NET
uses multi-level RNNs to model entity interactions,
while DySAT uses self-attention to learn latent
node representations on dynamic graphs. How-
ever, both these works were proposed for the task
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of graph extrapolation (i.e., inferring the next time-
step in a sequence), so they are not directly com-
patible with the TKGC setting.

3 Proposed Approach

We first define our key notation and provide an
overview of our TeMP framework, before describ-
ing the individual components in detail in the fol-
lowing sections.
Notation and task definition. Our goal is to
predict missing facts in a temporal knowledge
graph (TKG) G = {G(1), G(2), ..., G(T )}, where
G(t) = (E,R,D(t)). Here, E and R stand for
the union of sets of entities and relations across
all time steps and are known in advance. D(t)

denotes the set of all observed triples (s, r, o) at
time t, with subjects s ∈ E , objects o ∈ E and
relations r ∈ R. Let D(t) denote the set of true
triples at time t such that D(t) ⊆ D

(t)
,∀t, the

temporal knowledge graph completion (TKGC)
problem is defined as ranking the subject and
object entities given object queries (s, r, ? , t) and
subject queries (? , r, o, t) where (s, r, o) ∈ D

(t)

but (s, r, o) 6∈ D(t), t ∈ {0, ..., T}.

Overview of TeMP.
Following common practice, we structure our

TeMP framework around the notion of an encoder
and decoder. The encoder maps each entity ei ∈ E
to time-dependent low-dimensional embedding zi,t
at each time-step t, while the decoder uses these
entities’ embeddings to score the likelihood of a
temporal fact.

Figure 3 depicts the architecture of our model.
A key insight in TeMP is that we use an encoder
that combines a structural entity representation
and temporal representations. The structural en-
coder (SE) based on a multi-relational message
passing network produces entity representation
xi,t = SE(ei, D(t)) while the temporal encoder
(TE) integrates the output of SE at previous time
steps to induce zi,t = TE(xi,t−τ , ...,xi,t). Here τ
stands for the number of temporal input KG snap-
shots to the model.

In addition, in Section 3.3, we propose a series
of augmentations to TeMP that are designed to
address the temporal sparsity and variability issues
of real-world TKGs. Finally, in Section 3.4, we
discuss how TeMP can leverage existing decoders
from the static KG setting in order to train a model.

RGCNRGCN

...r1 r2
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RGCN

 s

Temporal Encoder

rs
?

# times triples (s, r, *) occur up to t:  

# times triples (s, *, *) occur up to t:  

# times triples (*, r, *) occur up to t: 

M
L
P +

s

Figure 3: Architecture of TeMP Framework. TeMP
combines structural graph encoder and temporal en-
coder to induce entity representations. Given query
(s, r, ? , t) at time t, TeMP takes graphs from time step
t−τ to t as input to compute structural embedding xs,t

and temporal embedding zs,t for the centering entity
s. The final representation z̃s,t is obtained by further
applying frequency-based gating, as illustrated in the
upper rectangle. The red dotted arrow at the bottom in-
dicates the imputation process for an inactive entity at
time step t.

3.1 Structural Encoder
The first key component of TeMP is the structural
encoder, which generates entity embeddings based
on the graph G(t) within each time-step. We build
our structural encoder by adapting existing tech-
niques for message passing on static knowledge
graphs (Schlichtkrull et al., 2018).
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Here, ui denotes a one-hot embedding indicat-

ing entity ei, W0 is an entity embedding matrix,
and W (l)

r and W (l)
s are transformation matrices

specific to each layer of the model. These matri-
ces are shared across all discrete time stamps. We
use N r

i to denote the set of neighboring entities
of ei connected by relation r, whose size acts as a
normalizing constant for averaging the neighbor-
hood information. After running L layers of this
message-passing approach on a snapshot G(t), we
use xi,t = h

(L)
i,t to denote the resulting structural

embedding of entity ei, which summarizes its L-
hop neighborhood within G(t).
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While we focus on RGCN as the structural en-
coder, our framework is not tied to any specific
multi-relational message passing network. One can
swap RGCN with any multi-relational graph en-
coder, e.g. CompGCN (Vashishth et al., 2019) and
EdgeGAT (Busbridge et al., 2019).

3.2 Temporal Encoder

The second key component of TeMP is the tempo-
ral encoder, which seeks to integrate information
across time in the entity representations. We in-
vestigate two approaches to compute entity repre-
sentation zi,t leveraging temporal information: a
recurrent architecture (inspired by Jin et al. (2019))
and a self-attention approach (inspired by Sankar
et al. (2020)).
Temporal recurrence model (TeMP-GRU). We
propose to couple a traditional recurrence mech-
anism with weight decay, in order to account the
diminishing effect of historical facts. Let t− de-
note the last time step at which entity ei was active
before t, the down-weighted entity representation
ẑi,t− is defined as follows:

ẑi,t− = γzi,t−zi,t− (1)

γzi,t− = exp{−max(0, λz|t− t−|+bz)}, (2)

where γz denotes the decay rate with λz and bz
as learnable parameters. This design is inspired
by Che et al. (2018) and ensures that γz is mono-
tonically decreasing with respect to the temporal
difference and ranges from 0 to 1. We ensure that
ẑi,t− is only nonzero if t− ∈ {t− τ, .., t− 1}, oth-
erwise it will be assigned a zero vector. Finally,
we use a gated recurrent unit (GRU) to obtain the
entity embedding zi,t based on ẑi,t− and the static
representation xi,t:

zi,t = GRU(xi,t, ẑi,t−), (3)

where GRU denotes the standard cell defined by
Cho et al. (2014).
Temporal self attention model (TeMP-SA). An-
other way to incorporate historical information is
to selectively attend to the sequence of active tem-
poral entity representations. We use the following
equations—inspired by the transformer architec-
ture (Vaswani et al., 2017)—to perform attentive
pooling over the entity embeddings xi,t′ at each
time step t′ ∈ {t − τ, .., t}, in order to generate

time-dependent embeddings zi,t:

qij =
(xi,tWq)(xi,t−jWk)

T

√
d

(4)

eij = qij −max(0, λzj + bz) +Mij (5)

βij =
exp(eij)∑τ
k=0 exp(eik)

(6)

zi,t =
τ∑
j=0

βij(xi,t−jWv), (7)

whereWq,Wk,Wv ∈ Rd×d denote linear projec-
tion matrices, as in a transformer layer (Vaswani
et al., 2017), β ∈ R|E|×τ denotes the attention
weight matrix obtained by multiplicative attention
function and {λz, bz} denotes the learnable pa-
rameters of the down-weighting function. The
M ∈ R|E|×τ matrix is a mask defined as

Mij =

{
0, if ei is active at time t− j,
−∞, otherwise.

(8)

AsMij → −∞, the attention weights βij → 0,
which ensures that only active temporal entity rep-
resentations are assigned non-zero weights. Finally,
note that the full self-attention model can be gener-
alized to use multiple attention heads, as in Vaswani
et al. (2017).
Incorporating future information. Note that in
the TKGC setting, we assume that the model has
access to all the time steps during training. In
particular, we assume there is missing data within
each time step but that all the (incomplete) snap-
shots informationD(t) are available during training.
Thus, in both the attention and recurrence-based
approaches, it is worthwhile to integrate temporal
information from both the past and future. We do
so by employing a bi-directional GRU in the recur-
rent approach, and by attending over both past and
future time steps in the attention-based approach.

3.3 Tackling Temporal Heterogeneities
Although TeMP jointly models structural and tem-
poral information, the encoder alone is insufficient
to deal with the temporal heterogeneity in real-
world TKGs, namely sparsity and variability of
entity occurrences. We explore data imputation
and frequency-based gating techniques to address
these temporal heterogeneities. Because the de-
grees of temporal heterogeneities vary drastically
across datasets (Appendix A.5), our proposed tech-
niques are optional model variations that may im-
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prove model performance depending on the dataset
characteristics.
Imputation of inactive entities. Recall that struc-
tural encoder only encodes neighboring entities
within the same KG snapshot. For entity ei that is
inactive at time step t, the static representation xi,t

is hence not informed by any structural neighbors,
resulting in stale representations shared across mul-
tiple time steps. We propose an imputation (IM)
approach that integrates stale representations with
temporal representations for inactive entities, i.e.,
x̂i,t = IM(xi,t,xi,t−), where x̂i,t represents im-
puted structural representation.

Without loss of generality, we define the im-
putation for a uni-directional model and refer the
bidirectional case to Appendix A.2. We defined IM
to be the weighted sum function, with the similar
exponential decay mechanism used in Equation (1):

γxi,t− = exp{−max(0, λx|t− t−|+bx)}. (9)

The imputed representation is defined as follows:

x̂i,t = γxi,t−xi,t− + (1− γxi,t−)xi,t. (10)

This model-agnostic approach is applicable by re-
placing xi,t in the temporal models with x̂i,t .
Frequency-based gating. In addition to imputa-
tion, we also implement an approach to perform
frequency-based gating (FG). The encoded repre-
sentation of an entity is modulated depending on
how many recent temporal facts it participates in.
In particular, we propose to learn a gating term in
order to fuse the embeddings xi,t from output of
the structural encoder (Section 3.1) with the tem-
poral embeddings zi,t (Section 3.2) in a frequency-
dependent way. We differentiate the weights by the
query types (subject or object query) and entity po-
sition (whether ei is subject or object in the queried
fact) in order to contextualize the entities into their
role within a quadruple.

In what follows, we use the term pattern to de-
note a non-empty subset of the quadruple (s, r, o, t)
(not containing time t). The temporal frequency
of a pattern is defined as the number of facts with
such pattern in the defined time window. Consider
the quadruple (Obama, visit, China, 2014), the tem-
poral frequency of the pattern (Obama, visit) is the
number of quadruples (Obama, visit, ∗, t′) with t′

in the time window (e.g., from 2000 to 2014).
We define the following temporal pattern fre-

quencies (TPFs) associated with the quadruple

(s, r, o, t): (1) subject frequency f ts, (2) object fre-
quency f to, (3) relation frequency f tr , (4) subject-
relation frequency f ts,r, (5) relation-object fre-
quency f tr,o.

Without loss of generality, we define our gating
mechanism from the perspective of object queries
(s, r, ? , t), where the goal is to predict the missing
object in a quadruple. The definition for subject
queries is analogous and detailed in Appendix A.3.

When answering the object query (s, r, ? , t) the
model has only the access to frequencies Fs =
[f ts, f

t
r, f

t
s,r]. Thus, we use the frequency vector Fs

to define a gating term over the embeddings in the
query:

z̃s,t = αosxs,t + (1− αos)zs,t (11)

z̃o,t = αooxo,t + (1− αoo)zo,t, (12)

where αos = MLPos(Fs), αoo = MLPoo(Fs) are
weights in the range [0, 1] learned via a two-layer
dense neural network. Here the calculation for
object embedding z̃o,t covers all entities.

3.4 Decoder and Training
Let φ(.) denote the score for a tuple and let DEC
denote any proper decoding function for static KGs,
e.g., the TransE decoder (Bordes et al., 2013). The
score for the quadruple is defined as follows:

φ(s, r, o, t) = DEC(z̃s,t, zr, z̃o,t). (13)

Here, z̃s,t and z̃o,t are the subject and object em-
beddings (as defined in Sections 3.1-3.3) while
zr is a learned embedding of the relation r. To
train a model using this score function, the model
parameters are learned using gradient-based op-
timization in mini-batches. For each triple η =
(s, r, o) ∈ D(t), we sample a negative set of en-
tities D−η = {o′|(s, r, o′) 6∈ D(t)} and define the
cross-entropy loss as follows:

L = −
T∑
t=1

∑
η∈D(t)

exp(φ(s, r, o, t))∑
o′∈D−η exp(φ(s, r, o′, t))

.

Note that without loss of generality, we defined the
above loss over object queries (as in Section 3.3),
with an analogous loss and negative sampling used
for subject queries defined in Appendix A.3.

4 Experiments

We evaluate the performances of TeMP models on
three standard TKGC benchmark datasets and ana-
lyze the strengths and shortcomings when answer-
ing queries with different characteristics. Code to
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Table 1: Temporal KG completion evaluation results on ICEWS, ICEWS05-15 and GDELT. The Hit@1, Hit@3,
and Hit@10 metrics are multiplied by 100. Best results are in bold.

Model
ICEWS14 ICEWS05-15 GDELT

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.326 15.4 43.0 64.4 0.330 15.2 44.0 66.0 0.155 6.0 17.8 33.5
DistMult 0.441 32.5 49.8 66.8 0.457 33.8 51.5 69.1 0.210 13.3 22.4 36.5
ComplEx 0.442 40.0 43.0 66.4 0.464 34.7 52.4 69.6 0.213 13.3 22.5 36.6
SimplE 0.458 34.1 51.6 68.7 0.478 35.9 53.9 70.8 0.206 12.4 22.0 36.6
TTransE 0.255 7.4 - 60.1 0.271 8.4 - 61.6 0.115 0.0 16.0 31.8

HyTE 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1 0.118 0.0 16.5 32.6
TA-DistMult 0.477 36.3 - 68.6 0.474 34.6 - 72.8 0.206 12.4 21.9 36.5
DE-TransE 0.326 12.4 46.7 68.6 0.314 10.8 45.3 68.5 0.126 0.0 18.1 35.0

DE-DistMult 0.501 39.2 56.9 70.8 0.484 36.6 54.6 71.8 0.213 13.0 22.8 37.6
DE-SimplE 0.526 41.8 59.2 72.5 0.513 39.2 57.8 74.8 0.230 14.1 24.8 40.3

AtiSEE 0.569 46.3 63.9 76.3 0.520 39.7 59.5 77.3 - - - -
AtiSER 0.571 46.5 64.3 75.5 0.484 35.0 55.8 74.9 - - - -

TNTComplEx 0.620 52.0 66.0 76.0 0.670 59.0 71.0 81.0 - - - -
TED 0.441 35.3 49.1 60.8 0.503 40.8 56.1 68.4 0.237 14.9 26.3 40.7

SRGCN 0.604 48.3 68.0 83.0 0.662 53.5 74.7 89.9 0.239 15.7 25.6 39.8
TeMP-GRU 0.601 47.8 68.1 82.8 0.691 56.6 78.2 91.7 0.275 19.1 29.7 43.7
TeMP-SA 0.607 48.4 68.4 84.0 0.680 55.3 76.9 91.3 0.232 15.2 24.5 37.7

reproduce all our experiments is included in the
submission and will be made publicly available.

4.1 Datasets

We evaluate our model on Global Database of
Events, Language and Tone (GDELT) (Leetaru and
Schrodt, 2013) and Integrated Crisis Early Warning
System (ICEWS) (Boschee et al., 2015) datasets.
For ICEWS, we use the two subsets generated by
Garcı́a-Durán et al. (2018): ICEWS14, correspond-
ing to the facts in 2014 and ICEWS 05-15, con-
taining all facts from 2005 to 2015. For GDELT,
we use the subset provided by Trivedi et al. (2017)
corresponding to facts from April 1, 2015 to March
31, 2016. We utilize the same partitioning of train,
validation and test set as specified by Goel et al.
(2019). More dataset statistics are summarized in
Appendix A.5.

4.2 Evaluation Metrics

For each quadruple (s, r, o, t) in the test set, we
evaluate two queries (s, r, ? , t) and (? , r, o, t).
For the first query we calculate scores for
(s′, r, o, t),∀s′ ∈ E using Equation (13). Similar
procedure applies to the second query. We then cal-
culate the metrics based on the rank of (s, r, o, t) in
each query. Evaluation is performed under filtered
settings defined by Bordes et al. (2013). We report

the Hits@1,@3, @10 scores and MRR (mean recip-
rocal rank). Please see Appendix A.6 for detailed
definitions.

4.3 Baseline Methods

We compare TeMP against a broad spectrum of
existing approaches, including a novel rule-based
baseline, static embedding methods, and existing
state-of-the-art approaches for TKGC.
TED model. We propose a rule-based baseline by
directly copying facts from quadruples in the recent
past and future, denoted as temporal exponential de-
cay (TED) model. The basic idea in this approach
is that we predict missing facts by simply copying
facts from nearby time steps. The probability of
copying each fact is dependent on (1) number of
elements overlapping with the queried quadruple
and (2) temporal distance to the current time step.
For a detailed description of this baseline, please
refer to Appendix A.4.
Static KGC methods. We include TransE
(Nguyen et al., 2016), DistMult (Yang et al., 2014),
ComplEx (Trouillon et al., 2016) and SimplE
(Kazemi and Poole, 2018) in the realm of static
KG embedding methods. We also include a Static
RGCN baseline (denoted as SRGCN), which imple-
ments the RGCN message-passing approach pro-
posed by Schlichtkrull et al. (2018). Note that all
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these static baseline methods are employed without
considering the time information in the input.
Temporal KGC methods. We also compare with
state-of-the arts models designed for TKGC includ-
ing TTransE (Leblay and Chekol, 2018), TADist-
Mult (Garcı́a-Durán et al., 2018), HyTe (Dasgupta
et al., 2018), Diachronic Embedding (DE) (Goel
et al., 2019), AtisEE, AtisER (Xu et al., 2019) and
TNTComplEx (Lacroix et al., 2020). We don’t
compare with RE-NET, GHN (Han et al., 2020),
DartNet (Garg et al., 2020) and Know-Evolve since
these work focus on graph extrapolation task.

4.4 Implementation and Hyperparameters

All the models except TED are implemented in Py-
Torch, making use of the PyTorch lightning module
and the Deep Graph Library (Wang et al., 2019).
We set the negative sampling ratio to 500, i.e. 500
negative samples per positive triple. Because we
corrupt subjects and objects separately, there are in
total 1000 negative samples collected to estimate
the probability of a factual triple. For full details
on all the model hyperparameters for TeMP and
the baselines, refer to Appendix A.7.

4.5 Results and Analysis

4.5.1 Comparative Study
We compare the baseline models with two instanti-
ations of the TeMP framework: TeMP-GRU, TeMP-
SA, corresponding to the GRU and self-attention
variants discussed in Section 3.2. Incorporating
imputation or frequency-based gating is treated op-
tional and we explore different model variants in
Section 4.5.2. Results on each dataset are given by
the model variant that achieves the best validation
set performance. The core experimental results are
summarized in Table 1.
TeMP achieves a new state of the art. We find
that TeMP-SA and TeMP-GRU achieve state-of-
the-art results on all three datasets in terms of
Hits@10. Compared to the most recent work
(Lacroix et al., 2020)—which achieves the best
performance to-date on the ICEWS datasets—our
results are 8.0% and 10.7% higher on the Hits@10
evaluation, though they are slightly worse on
Hits@1. Additionally, our model achieves a 3.7%
improvement on GDELT compared with DE, the
prior state-of-the-art on that dataset. The results
of the AtiSEE and TNTComplEx methods on the
GDELT dataset are not available.
Strong baseline performance. Interestingly, we

find that two of our proposed baseline models also
achieve surprisingly strong performance, even out-
performing the prior state of the art in some settings.
For example, our rule-based TED baseline achieves
relatively strong performance on all three datasets,
in particular on GDELT, where it is better than all
existing neural models by all measures. This high-
lights the power of simply copying temporal facts
with the same patterns as the queried quadruples.
Similarly, our static RGCN baseline (SRGCN) also
achieves very strong performance, with the next-
best Hits@10 results behind the TeMP framework.
We hypothesize that the message-passing proce-
dure in SRGCN allows the model to leverage multi-
hop structural information that is specific to each
time-step, enabling strong performance.

4.5.2 Exploration of Model Variations

We study the effect of the imputation and
frequency-based gating approaches proposed in
Section 3.3 by running model variants on three
datasets. We highlight the performance comparison
as well as the implication of dataset characteristics
on the performance variations.

Our results are reported on the corresponding
validation sets of these benchmarks. The results
regarding the incorporation of imputation (IM) and
frequency-based gating (FG) are shown in Table 2.
We use a X to indicate a certain component being
used in the experiment, and blank for the absence
of the corresponding component. 4

ICEWS14. On the ICEWS14 dataset, we find that
combining both TeMP-GRU and TeMP-SA mod-
els with both imputation and gating achieves the
best results on validation set (3.3% improvement).
Additionally, each individual component helps im-
prove the overall model performance by about 1%.
ICEWS05-15. On ICEWS05-15, models with gat-
ing improved the performance by more than 1%
compared to those without gating. However, the ad-
ditional incorporation of imputation does not result
in improvement in the results.
GDELT. As for GDELT dataset, we find neither
imputation nor gating is significant for model per-
formance. However, it is evident from dataset char-
acteristics that GDELT does not exhibit the same
temporal variability and sparsity as the ICEWS
datasets. Discussion in Appendix A.5 shows that
all entities are active at every time step in GDELT

4Imputation is an intrinsic part of TeMP-SA thus it is used
in all experiments. See Appendix A.2 for details.
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Table 2: MRR results for different model variations on
ICEWS14, ICEWS05-15 and GDELT

Model IM FG ICEWS14 ICEWS05-15 GDELT
TeMP-GRU X X 0.610 0.680 0.269
TeMP-GRU X 0.599 0.689 0.270
TeMP-GRU X 0.593 0.670 0.275
TeMP-GRU 0.577 0.673 0.274
TeMP-SA X X 0.623 0.676 0.233
TeMP-SA X 0.619 0.670 0.235

(unlike the ICEWS datasets). Additionally, on av-
erage each active entity has roughly 150 reference
temporal facts in the last 15 time steps, suggest-
ing that each entity involved in TKGC queries are
sufficiently informed by the nearby KG snapshots.
Data imputation and gating methods are thus un-
necessary complexities in GDELT.

4.5.3 Fine-grained Error Analysis
To assess how models perform on TKGC queries
with different temporal pattern frequencies (TPFs;
see Section 3.3), we group queried quadruples
based on different TPFs and calculate the Hits@10
metrics in each group.

We plot the temporal subject-relation frequency
f ts,r (defined in Section 3.3) versus the model per-
formances on subject and object queries to study
the replication and reference effects of temporal
facts, respectively. Here, we use the term replica-
tion effect to denote the situation where the model
can make predictions by copying the exact correct
answer to a query from temporal facts. For exam-
ple, copying China from (Biden, visit, China, 2013)
to answer the query (Obama, visit, ?, 2014). We
use the term reference effect to denote the effect of
having facts that are related (but do not not contain
answer entity) to the query fact in the temporal
context. For example, selecting China from a set
countries where Obama visited in the year 2013.

We compare the performances of static models
(DE and SRGCN) and temporal models (TeMP-
GRU models) on different TPFs. TeMP-GRU-
Vanilla represents the vanilla version of the model
and TeMP-GRU-Gating refers to TeMP-GRU
model combined with gating technique. Detailed
analysis regarding TKGC performance versus other
TPFs are discussed in Appendix A.8.

Replication effect analysis Here, we examine
how the subject-relation TPF correlates with model
performance on subject queries. Figure 4 illustrates
that temporal models exhibit positive correlation
between subject-relation TPF and subject query

performance, while static models show relatively
negative correlation between the two quantities.
This suggests that the replication effect is stronger
in TeMP, indicating that the TeMP model is better
at utilizing temporal information for TKGC queries.
Additionally, gating helps improve over the vanilla
version by a slight margin on all subject-relation
frequency values. On the other hand, SRGCN
achieves better performance on low-TPF queries
than temporal models. However, coupling the
TeMP model with gating helps close the gap, some-
times surpassing SRGCN on such queries.
Reference effect analysis. Here, we examine how
the occurrence of related facts (not containing the
answer) in the temporal context impacts perfor-
mance. We find that the temporal models exhibit
non-linear correlations between object query per-
formance and subject-relation TPF (Figure 5). In
particular, on the ICEWS datasets the performance
increases as the log-frequencies grows from−∞ to
2 and drops at higher frequency values. We hypoth-
esize that it is harder for temporal model to select
the answer from a very large set of object candi-
dates, e.g,. choosing China from more than 100
countries that Obama visited from 2008 to 2013.
In terms of model comparisons, we find that gat-
ing helps TeMP-GRU to surpass its vanilla version
and SRGCN on most TPF values. The margin of
improvement is especially significant on queries of
high TPF in ICEWS05-15.

The null effect of frequency-based gating on
GDELT can be attributed to the same reason as
discussed in Section 4.5.2.

5 Conclusion

In this work, we present a novel framework named
TeMP for temporal knowledge graph completion
(TKGC). TeMP computes entity representation by
jointly modelling multi-hop structural information
and temporal facts from nearby time-steps.

Additionally, we introduce novel frequency-
based gating and data imputation techniques to
address the temporal variability and sparsity prob-
lems in TKGC. We show that our model is able
to achieve superior performance (10.7% relative
improvement) over the state-of-the-arts on three
benchmark datasets. Our work is potentially bene-
ficial to other tasks such as temporal information
extraction and temporal question answering, by
providing beliefs about the likelihood of facts at
particular points in time.
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ICEWS14 ICEWS05-15 GDELT

Figure 4: Subject query hit@10 performance comparison of TeMP with different variations and baseline methods.

ICEWS14 ICEWS05-15 GDELT

Figure 5: Object query hit@10 performance comparison of TeMP with different variations and baseline methods.

Future work involves exploring the generaliza-
tion of TeMP to continuous TKGC and better im-
putation techniques to induce representations for
infrequent and inactive entities.
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A Appendix

A.1 Architecture Details
Temporal Edge Dropout.

The replication effect illustrated in Figure 4 and
8 shows that TeMP is increasingly better capable
at copying from temporal facts when TPFs also
increase. We refer to this as ”overfitting” to the
temporal facts. In order to alleviate such problem,
we propose temporal edge dropout: randomly drop-
ping facts occurred in the defined time window
used to induce the entity representation.

Rong et al. (2019) propose dropping a proportion
in the local graph context to combat over-fitting
and over-smoothing. We extend this technique to
TKG by either (1) randomly dropping a certain
percentage of quadruples in each temporal snapshot
and (2) drop quadruples with different probabilities
based on certain quadruple characteristics. Details
of the second method is omitted since we find the
two methods working equally well. We use 0.2 as
temporal edge dropout rate in all experiments.
Positional Embedding. We capture the time-
sensitive information in the TKG by combining
the entity representation with positional embed-
ding. The positional embedding is denoted as
{p1,p2, ...,pT }, which embeds absolute positional
information of each time step. The set of repre-
sentations for entity ei at all time steps is {p1 +
zi,1,p2+zi,2, ...,pT +zi,T }, which are used as in-
put entity representation to the decoding function.

A.2 Extended Imputation Formulation
For bidirectional temporal recurrent model, we de-
fined the imputed representation analogous to Equa-
tion (9) and 10. We use t+ to denote the very next
time step at which entity ei is active after t. The
decay rate for imputing from future representations
as follows:

γxi,t+ = exp{−max(0, λx|t− t+|+bx)}.

To calculate the imputed representation of the ei at
time t, we divide both exponential decay rates by
two and renormalize:

γxi,t = 1−
γxi,t−

2
−
γxi,t+

2

x̂i,t =
γxi,t−

2
xi,t− +

γxi,t+

2
xi,t+ + γxi,txi,t .

Intrinsic imputation for TeMP-SA. We use Equa-
tion (4) - (7) to derive entity representations for
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both active and inactive entities and view it as an
intrinsic way of imputation. Hence imputation is
tagged with all TeMP-SA results in Table 2.

A.3 Analogous Definition of Frequency
Based Gating and Training Loss

We define the process for deriving entity represen-
tation for subject queries (? , r, o, t) analogous to
Equation (11) and (12). The model is only allowed
the access to frequencies Fo = [f to, f

t
r, f

t
o,r], we

use it to define a similar gating over static and tem-
poral entity representations:

zs,t := αssxs,t + (1− αss)zs,t
zo,t := αsoxo,t + (1− αso)zo,t,

where αss = MLPss(Fo), αso = MLPss(Fo),
αss, αso ∈ [0, 1]. With the negative subject en-
tity set being D−η,s = {s′|(s′, r, o) 6∈ D(t)}, the
training loss for subject queries is defined as fol-
lows:

Lsub = −
T∑
t=1

∑
η∈D(t)

exp(φ(s, r, o, t))∑
s′∈D−η,s exp(φ(s

′, r, o, t))
.

The final training loss is the sum of losses for
two types of queries: L = Lsub + Lobj .

A.4 Detailed TED Formulation and Analysis
TED Model Definition. We hypothesize that cer-
tain quadruples with more frequent occurrence in
more recent time steps are informative for the
current-step KGC. For each query, we construct
a set of reference entities from training data. Simi-
lar to the down-weighting mechanism of temporal
encoder (Section 3.2), we score each entity based
on exponential decaying mechanism with respect to
the temporal distance to the current time step. We
then rank the entities in the reference set according
to such scores.

For each queried quadruple (s, r, o, t), we col-
lect reference entity sets consisting of tuples
{(e, t′), t′ 6= t} where e is the subject or object
entity and t′ is the corresponding time of occur-
rence. The tuples are extracted from the temporal
facts sharing at least one element with (s, r, o, t).
We divide them into subject and object reference
sets two types of queries. The subject reference set
consists of:

(1) subjects with shared relation-object pair, i.e.,
{(s′, t′)|∃t′ 6= t, (s′, r, o) ∈ D(t′)

train},

(2) subjects with shared object, i.e.,
{(s′, t′)|∃t′ 6= t ∧ r′ ∈ R, (s′, r′, o) ∈
D

(t′)
train},

(3) subjects with shared relation, i.e.,
{(s′, t′)|∃t′ 6= t ∧ o′ ∈ E, (s′, r, o′) ∈
D

(t′)
train}.

Symmetrically, object reference set consists of:

(1) objects with shared subject-relation pair, i.e.,
{(o′, t′)|∃t′ 6= t, (s, r, o′) ∈ D(t′)

train},

(2) objects with shared subject, i.e.,
{(o′, t′)|∃t′ 6= t ∧ r′ ∈ R, (s, r′, o′) ∈
D

(t′)
train},

(3) objects with shared relation, i.e.,
{(o′, t′)|∃t′ 6= t ∧ s′ ∈ E, (s′, r, o′) ∈
D

(t′)
train}.

We don’t collect triples in the current time step t
as we assume D(t)

train ∩D
(t)
test = ∅, ∀t.

Note that (1) is a subset of (2) and (3), also (2)
and (3) contain overlapping tuples. We define the
priority to be (1) > (2) > (3), such that if some
tuple is present in (1), then it will be removed from
both (2) and (3). This is based on the assumption
that objects with the same subject-relation pair as
the current triple are the most ideal candidates. For
example, because of the characteristics of police,
the fact (police, arrest, citizen) occurred multiple
times across in the dataset. Objects with same
shared subject and different relation comes second,
e.g. (Obama, visit, China, 2013), (Obama, visit,
Russia, 2014) are important information for pre-
dicting (Obama, make announcement to, ?, 2015).

Let S be some set of tuple defined above. The
score for e is the sum over all tuples containing e,∑

t′,(e,t′)∈S

exp(−σ|t− t′|), σ > 0. (14)

TED Results and Analysis. Table 3 shows the
sensitivity analysis for parameter σ on validation
set. We notice that the performances are low when
σ is either extremely large or small, while peaks
when σ = 0.1 on ICEWS datasets and σ = 1 on
GDELT dataset. This suggests an existing trade-off
between recency and frequency heuristics.

TED model results also expose the bias of recur-
ring events in political event datasets, particularly
in GDELT. However, TED should be considered by
future work as an important baseline to gauge the
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relative model performance. Additionally, the re-
sults suggests the potential for pointer-style TKGC
– deciding between coping an entity from historical
facts and selecting an entity in the current snapshot
to answer a query.

A.5 Dataset Statistics and Characteristics
The dataset statistics are summarized in Table 4.
The numbers of entities are 7,128, 10,488 and 500
respectively in three datasets, indicating that tempo-
ral sparsity issue is severe on ICEWS datasets but
trivial on GDELT dataset. The temporal variability
of three datasets is demonstrated in Figure 7. The
average number of associated temporal facts for
each entity is much lower in ICEWS datasets com-
pared to GDELT. The difference can be attributed
to the fact that GDELT dataset is constructed by
extracting facts among the most frequent 500 en-
tities in the entire dataset. This intrinsically elimi-
nates the sparsity and variability bias in the original
datasets.

A.6 Definitions for Evaluation Metrics
We use MRR, Hits@1, Hits@3 and Hits@10 to
evaluate the model performance. MRR is defined
as:

1

2 ∗ |Dtest|

T∑
t=1

∑
η=(s,r,o)∈D(t)

test

(

1

rank(o|s, r, t)
+

1

rank(s|r, o, t)
) (15)

The Hit@1, Hit@3, Hit@10 are the percentages of
test facts for which the k highest ranked predictions
contain the correct prediction, k = 1, 3, 10. That
is,

1

2 ∗ |Dtest|

T∑
t=1

∑
η=(s,r,o)∈D(t)

test

(I(rank(o|s, r, t) ≤ k)+I(rank(s|r, o, t) ≤ k))
(16)

where k = 1, 3, 10, I is the indicator function.

A.7 Detailed Implementation and
Hyperparameters

We use the Adam optimizer and set the learning rate
to 0.001. The batch size is set to 8 for ICEWS14
and ICEWS05-15, i.e. each batch contains facts in
8 snapshots. We additionally sample 3,000 quadru-
ples in each snapshot to avoid out-of-memory issue.

Embedding size and hidden sizes for both recurrent
and self-attentive models are both set to 128. We
use 8 attention heads in TeMP-SA to model the
multi-faced evolution of TKG. As required by re-
producibility checklist, the complete hyperparam-
eter setting and run-time information for TeMP-
GRU model on all benchmark datasets are summa-
rized in Table 5.

Suggested by ablation study in (Jin et al., 2019)
we set the number of relational convolution layers
to 2 to encode two-hop neighbors. We apply tempo-
ral edge dropout technique to TKG, in each training
epoch we randomly drop 50% of the quadruples in
current KG and 20% triples in each temporal refer-
ence KG to combat over-fitting and over-smoothing.
We experimented with TransE, DistMult and Com-
plEx on validation set and found that ComplEx
(Trouillon et al., 2016) yields the best performance
overall. Hence ComplEx is used as decoding func-
tion to score head or tail entities given queries.
During inference on D(t)

valid and D(t)
test, our models

take D(t−τ)
train , ..., D

(t)
train as input and compute the

scores to compute the entity representations.
The parameter τ stands for the number of KG

snapshots available for answering query. This is
applied to temporal models as a budget. Single-
direction models take temporal entity embedding
from the past τ graphs while bidirectional models
focus on τ

2 historical and future snapshots.
We use early stopping with patience 10 with

respect to the average MRR on the validation set.
All ablation studies are conducted on the validation
set. For the best model variants, we use the model
checkpoint that achieves the best MRR score on
validation set to perform final evaluation on test
set.

A.8 Detailed Analysis of Performances
versus TPFs

We studied the correlation between subject-relation
TPF and query answering performances in Section
4.5.3. Here, we first define a complete set of TPFs
that covers all possible subsets of a quadruple. In
Section 3.3 we defined (1) subject frequency f ts , (2)
object frequency f to, (3) relation frequency f tr , (4)
subject-relation frequency f ts,r, (5) relation-object
frequency f tr,o related to quadruple (s, r, o, t). We
additionally define (6) subject-object frequency
f ts,o and (7) triple frequency f ts,r,o. We use the
following combinations of TPFs and query types to
study replication and reference effects respectively.



5743

σ
ICEWS14 ICEWS05-15 GDELT

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

10−5 0.434 36.2 48.9 60.5 0.466 36.2 52.4 66.6 0.179 10.1 18.7 33.1
10−2 0.445 35.5 49.9 61.2 0.498 39.7 55.9 68.8 0.192 11.0 20.3 35.6
10−1 0.455 36.7 50.7 61.6 0.505 40.8 56.3 68.7 0.226 13.7 24.7 40.4
1 0.449 35.9 50.3 61.4 0.500 40.1 55.9 68.5 0.238 15.0 26.3 40.8
101 0.449 35.9 50.3 61.5 0.496 39.8 55.4 68.1 0.237 14.9 26.2 40.7
102 0.446 35.5 50.0 61.2 0.482 38.3 53.9 66.8 0.232 14.4 25.8 40.2
105 0.359 24.9 41.7 57.2 0.362 23.8 42.8 60.6 0.091 3.0 8.0 20.2

Table 3: TKGC evaluation results(filtered setting) using TED model under various σ values. The Hit@1, Hit@3,
and Hit@10 metrics are multiplied by 100.

Dataset # entities # relations # time steps N˙train N˙valid N˙test N˙total
ICEWS14 7,128 230 365 72,826 8,941 8,963 90,730

ICEWS05-15 10,488 251 4017 386,962 46,275 46,092 479,329
GDELT 500 20 366 2,735,685 341,961 341,961 3,419,607

Table 4: Statistics of ICEWS14, ICEWS05-15 and GDELT datasets.

Figure 6: Dataset statistics of ICEWS05-15 (left) and GDELT (right) as a supplement of Figure 2.

Table 5: Hyperparameters setting for TeMP-GRU model on three benchmark datasets

Dataset batch size # temporal snapshots GPU type # GPU Time limit runtime per epoch # parameters
ICEWS14 8 15 GeForce GTX TiTan 1 24h 8m 885K

ICEWS05-15 8 10 Nvidia V100 1 60h 70m 2856K
GDELT 4 15 Nvidia V100 2 60h 13m 878K

For replication effect, we compare subject query
results against (1), then compare object query re-
sults against (2) and (5). Values of (6) and (7)
are compared with the results of both subject and
object queries. For reference effect, we compare
object query results against (1), and subject query
results against (2) and (5). Results are summarized
in Figure 8 and Figure 9 respectively.

The general observation is similar to the discus-
sion in Section 4.5.3. In the replication analysis ,
TeMP-GRU models show significantly more posi-
tive trends than the static models (SRGCN and DE).
However, we witness drops in performances when

TPFs become large in the reference effect analy-
sis. Performance of TeMP-GRU-Vanilla model im-
proves with the help of gating on ICEWS datasets
on TPFs. The benefit is less obvious on GDELT
dataset due to the observation that GDELT is less
affected by temporal sparsity and variability prob-
lem (Appendix A.5).

We conclude that TeMP models are significant
more advantageous in utilizing temporal facts for
TKGC task. In addition, frequency-based gating
improves the overall performance with respect to
all different TFPs.
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(a) (b) (c)

Figure 7: At each time step, for every active entity we calculate how many times each active entity occurred in that
last 15 time steps and take average. We show the distirbution of such quantities on (a)ICEWS14, (b) ICEWS05-15
and (c) GDELT
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ICEWS14 ICEWS05-15 GDELT

(a) Subject query Hits@10 performances versus temporal subject frequencies

ICEWS14 ICEWS05-15 GDELT

(b) Object query Hits@10 performances versus temporal object-relation frequencies

ICEWS14 ICEWS05-15 GDELT

(c) Object query Hits@10 performances versus temporal object frequencies

ICEWS14 ICEWS05-15 GDELT

(d) All query Hits@10 performances versus temporal entity pair frequencies
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ICEWS14 ICEWS05-15 GDELT

(e) All query Hits@10 performances versus temporal triple frequencies

Figure 8: Plots of replication effect group

ICEWS14 ICEWS05-15 GDELT

(a) Object query Hits@10 performances versus temporal subject frequencies

ICEWS14 ICEWS05-15 GDELT

(b) Subject query Hits@10 performances versus temporal relation-object frequencies

ICEWS14 ICEWS05-15 GDELT

(c) Subject query Hits@10 performances versus temporal object frequencies

Figure 9: Plots of reference effect group


