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Abstract
Despite its original goal to jointly learn to
align and translate, prior researches suggest
that Transformer captures poor word align-
ments through its attention mechanism. In
this paper, we show that attention weights DO
capture accurate word alignments and propose
two novel word alignment induction methods
SHIFT-ATT and SHIFT-AET. The main idea
is to induce alignments at the step when the
to-be-aligned target token is the decoder in-
put rather than the decoder output as in pre-
vious work. SHIFT-ATT is an interpretation
method that induces alignments from the atten-
tion weights of Transformer and does not re-
quire parameter update or architecture change.
SHIFT-AET extracts alignments from an ad-
ditional alignment module which is tightly
integrated into Transformer and trained in
isolation with supervision from symmetrized
SHIFT-ATT alignments. Experiments on three
publicly available datasets demonstrate that
both methods perform better than their cor-
responding neural baselines and SHIFT-AET
significantly outperforms GIZA++ by 1.4-4.8
AER points.1

1 Introduction

The task of word alignment is to find lexicon trans-
lation equivalents from parallel corpus (Brown
et al., 1993). It is one of the fundamental tasks
in natural language processing (NLP) and is widely
studied by the community (Dyer et al., 2013;
Brown et al., 1993; Liu and Sun, 2015). Word
alignments are useful in many scenarios, such as er-
ror analysis (Ding et al., 2017; Li et al., 2019), the
introduction of coverage and fertility models (Tu
et al., 2016), inserting external constraints in in-
teractive machine translation (Hasler et al., 2018;

∗Corresponding author. Part of the work was done when
Yun was in Huawei Noah’s Ark Lab.

1Code can be found at https://github.com/
sufe-nlp/transformer-alignment.
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Dec. input: <bos> i understand this .
Dec. output: i understand this . <eos>

Figure 1: An example to compare our method SHIFT-
ATT and the baseline NAIVE-ATT. The left is an at-
tention map from the third decoder layer of the vanilla
Transformer and the right are the induced alignments.
SHIFT-ATT induces alignments for target word yi at de-
coding step i + 1 when yi is the decoder input, while
NAIVE-ATT at step i when yi is the decoder output.

Chen et al., 2020) and providing guidance for hu-
man translators in computer-aided translation (Da-
gan et al., 1993).

Word alignment is part of the pipeline in statisti-
cal machine translation (Koehn et al., 2003, SMT),
but is not necessarily needed for neural machine
translation (Bahdanau et al., 2015, NMT). The
attention mechanism in NMT does not function-
ally play the role of word alignments between the
source and the target, at least not in the same way
as its analog in SMT. It is hard to interpret the atten-
tion activations and extract meaningful word align-
ments especially from Transformer (Garg et al.,
2019). As a result, the most widely used word
alignment tools are still external statistical mod-
els such as FAST-ALIGN (Dyer et al., 2013) and
GIZA++ (Brown et al., 1993; Och and Ney, 2003).

https://github.com/sufe-nlp/transformer-alignment
https://github.com/sufe-nlp/transformer-alignment
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Recently, there is a resurgence of interest in
the community to study word alignments for the
Transformer (Ding et al., 2019; Li et al., 2019).
One simple solution is NAIVE-ATT, which induces
word alignments from the attention weights be-
tween the encoder and decoder. The next target
word is aligned with the source word that has the
maximum attention weight, as shown in Fig. 1.
However, such schedule only captures noisy word
alignments (Ding et al., 2019; Garg et al., 2019).
One of the major problems is that it induces align-
ment before observing the to-be-aligned target to-
ken (Peter et al., 2017; Ding et al., 2019). Suppose
for the same source sentence, there are two alter-
native translations that diverge at decoding step i,
generating yi and y′i which respectively correspond
to different source words. Presumably, the source
word that is aligned to yi and y′i should change cor-
respondingly. However, this is not possible under
the above method, because the alignment scores
are computed before prediction of yi or y′i.

To alleviate this problem, some researchers mod-
ify the transformer architecture by adding align-
ment modules that predict the to-be-aligned target
token (Zenkel et al., 2019, 2020) or modify the
training loss by designing an alignment loss com-
puted with full target sentence (Garg et al., 2019;
Zenkel et al., 2020). Others argue that using only at-
tention weights is insufficient for generating clean
word alignment and propose to induce alignments
with feature importance measures, such as leave-
one-out measures (Li et al., 2019) and gradient-
based measures (Ding et al., 2019). However, all
previous work induces alignment for target word
yi at step i, when yi is the decoder output.

In this work, we propose to induce alignment for
target word yi at step i+1 rather than at step i as in
previous work. The motivation behind this is that
the hidden states in step i+ 1 are computed taking
word yi as the input, thus they can incorporate the
information of the to-be-aligned target token yi
easily. Following this idea, we present SHIFT-ATT

and SHIFT-AET, two simple yet effective methods
for word alignment induction. Our contributions
are threefold:

• We introduce SHIFT-ATT (see Fig. 1), a pure
interpretation method to induce alignments from
attention weights of vanilla Transformer. SHIFT-
ATT is able to reduce the Alignment Error Rate
(AER) by 7.0-10.2 points over NAIVE-ATT and
5.5-7.9 points over FAST-ALIGN on three publicly

available datasets, demonstrating that if the cor-
rect decoding step and layer are chosen, attention
weights in vanilla Transformer are sufficient for
generating accurate word alignment interpretation.
•We further propose SHIFT-AET , which extracts
alignments from an additional alignment module.
The module is tightly integrated into vanilla Trans-
former and trained with supervision from sym-
metrized SHIFT-ATT alignments. SHIFT-AET
does not affect the translation accuracy and sig-
nificantly outperforms GIZA++ by 1.4-4.8 AER
points in our experiments.
•We compare our methods with NAIVE-ATT on
dictionary-guided decoding (Alkhouli et al., 2018),
an alignment-related downstream task. Both meth-
ods consistently outperform NAIVE-ATT, demon-
strating the effectiveness of our methods in such
alignment-related NLP tasks.

2 Background

2.1 Neural Machine Translation
Let x = {x1, ..., x|x|} and y = {y1, ..., y|y|} be
source and target sentences. Neural machine trans-
lation models the target sentence given the source
sentence as p(y|x;θ):

p(y|x;θ) =
|y|+1∏
t=1

p(yt|y0:t−1,x;θ), (1)

where y0 = 〈bos〉 and y|y|+1 = 〈eos〉 represent
the beginning and end of the target sentence respec-
tively, and θ is a set of model parameters.

In this paper, we use Transformer (Vaswani et al.,
2017) to implement the NMT model. Transformer
is an encoder-decoder model that only relies on
attention. Each decoder layer attends to the en-
coder output with multi-head attention. We refer to
the original paper (Vaswani et al., 2017) for more
model details.

2.2 Alignment by Attention
The encoder output from the last encoder layer is
denoted as h = {h1, ..., h|x|}, and the hidden states
at decoder layer l as z = {zl1, ..., zl|y|+1}. For de-
coder layer l, we define the head averaged encoder-
decoder attention weights asW l ∈ R(|y|+1)×|x|, in
which the element W l

i,j measures the relevance be-
tween decoder hidden state zli and encoder output
hj . For simplicity, below we use the term “atten-
tion weights” to denote the head averaged encoder-
decoder attention weights.
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Given a trained Transformer model, word align-
ments can be extracted from the attention weights.
More specifically, we denote the alignment score
matrix as S ∈ R|y|×|x|, in which the element Si,j

is the alignment score of target word yi and source
word xj . Then we compute S with:

Si,j = W l
i,j (1 ≤ i ≤ |y|,1 ≤ j ≤ |x|) (2)

and extract word alignments A with maximum a
posterior strategy following Garg et al. (2019):

Aij =

{
1 if j = argmaxj′ Si,j′

0 otherwise
, (3)

where Aij = 1 indicates yi is aligned to xj . We call
this approach NAIVE-ATT. Garg et al. (2019) show
that attention weights from the penultimate layer,
i.e., l = L− 1, can induce the best alignments.

Although simple to implement, this method fails
to obtain satisfactory word alignments (Ding et al.,
2019; Garg et al., 2019). First of all, instead of
the relevance between yi and xj , W l

i,j measures
the relevance between decoder hidden state zli and
encoder output hj . Considering that the decoder
input is yi−1 and the output is yi at step i, zli may
better represent yi−1 instead of yi, especially for
bottom layers. Second, since W l

i,j is computed
before observing yi, it becomes difficult for it to
induce the aligned source token for the target token
yi, as discussed in Section 1.

As a result, it is necessary to develop novel meth-
ods for alignment induction. This method should
be able to (i) take into account the relationship of zli,
yi and yi−1, and (ii) adapt the alignment induction
with the to-be-aligned target token.

3 Method

In this section, we propose two novel alignment
induction methods SHIFT-ATT and SHIFT-AET.
Both methods adapt the alignment induction with
the to-be-aligned target token by computing align-
ment scores at the step when the target token is the
decoder input.

3.1 SHIFT-ATT: Alignment from Vanilla
Transformer

Alignment Induction NAIVE-ATT (Garg et al.,
2019) induces alignment for target token yi at step
i when yi is the decoder output and defines the
alignment score matrix with Eq. 2. They find the
best layer l to extract alignments by evaluating the
AER of all layers on the test set.

We instead propose to induce alignment for tar-
get token yi at step i + 1 when yi is the decoder
input. We define the alignment score matrix S as:

Si,j = W l
i+1,j (1 ≤ i ≤ |y|,1 ≤ j ≤ |x|). (4)

This is because W l
i+1,j measures the relevance be-

tween zli+1 and hj , and we use zli+1 and hj to rep-
resent yi and xj respectively. With the alignment
score matrix S, we can extract word alignments
A using Eq. 3. We call this method SHIFT-ATT.
Fig. 1 shows an alignment induction example to
compare NAIVE-ATT and SHIFT-ATT.

SHIFT-ATT uses zli+1 to represent the to-be-
aligned target token yi while NAIVE-ATT uses zli.
We argue using zli+1 is better. First, at bottom lay-
ers, we hypothesize that zli+1 could better represent
the decoder input yi than output yi+1. Therefore we
can use zli+1 with small l to represent yi. Second,
zli+1 is computed after observing yi, indicating that
SHIFT-ATT is able to adapt the alignment induction
with the to-be-aligned target token.

Our proposed method involves inducing align-
ments from source-to-target and target-to-source
vanilla Transformer models. Following Zenkel et al.
(2019), we merge bidirectional alignments using
the grow diagonal heuristic (Koehn et al., 2005).

Layer Selection Criterion To select the best
layer lb to induce alignments, we propose a sur-
rogate layer selection criterion without manually
labelled word alignments. Experiments show that
this criterion correlates well with the AER metric.

Given parallel sentence pairs 〈x,y〉, we train a
source-to-target model θx→y and a target-to-source
model θy→x. We assume that the word alignments
extracted from these two models should agree with
each other (Cheng et al., 2016). Therefore, we
evaluate the quality of the alignments by comput-
ing the AER score on the validation set with the
source-to-target alignments as the hypothesis and
the target-to-source alignments as the reference.
For each model, we can obtain L word alignments
from L different layers. In total, we obtain L× L
AER scores. We select the one with the lowest AER
score, and its corresponding layers of the source-
to-target and target-to-source models are the layers
we will use to extract alignments at test time:

lb,x→y, lb,y→x = argmin
i,j

AER(Ai
x→y,A

j
y→x).
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Figure 2: Illustration of the alignment module at de-
coding step i. The decoder input token is yi−1, while
the output token is yi. The alignment module predicts
Si−1, the alignment scores corresponding to the input
target token yi−1. During the alignment module train-
ing process, parameters of the blue blocks are frozen,
and only parameters of the orange blocks are updated.

3.2 SHIFT-AET: Alignment from
Alignment-Enhanced Transformer

To further improve the alignment accuracy, we
propose SHIFT-AET, a word alignment induction
method that extracts alignments from Alignment-
Enhanced Transformer (AET). AET extends the
Transformer architecture with a separate alignment
module, which observes the hidden states of the
underlying Transformer at each step and predicts
the alignment scores for the current decoder input.
Note that this module is a plug and play component
and it neither makes any change to the underlying
NMT model nor influences the translation quality.

Fig. 2 illustrates the alignment module of AET
at decoding step i. We add the alignment module
only at layer lb, the best layer to extract alignments
with SHIFT-ATT. The alignment module performs
multi-head attention similar to the encoder-decoder
attention sublayer. It takes the encoder outputs
h = {h1, ..., h|x|} and the current decoder hidden
state z̃lbi inside layer lb as input and outputs Si−1,
the alignment score corresponding to target word
yi−1:

Si−1 =
1

N

∑
n

softmax(
(hGK

n )(z̃lbi G
Q
n )>√

dk
),

(5)
whereGK

n ,GQ
n ∈ Rdmodel×dk are the key and query

projection matrices for the n-th head, N is the
number of attention heads and dk = dmodel/N .
Since we only care about the attention weights,
the value-related parameters and computation are
omitted in this module.

To train the alignment module, we use the sym-
metrized SHIFT-ATT alignments extracted from

Dataset Train Validation Test
de-en 1.9M 994 508
fr-en 1.1M 1,000 447
ro-en 0.5M 999 248

Table 1: Number of sentences in each dataset.

vanilla Transformer models as labels. Specifically,
while the underlying Transformer is pretrained and
fixed (Fig. 2), we train the alignment module with
the loss function following Garg et al. (2019):

La = − 1

|y|

|y|∑
i=1

|x|∑
j=1

(
Âp

i,j � logSi,j), (6)

where S = {S1;...;S|y|} is the alignment score
matrix predicted by the alignment module, and
Âp denotes the normalized reference symmetrized
SHIFT-ATT alignments.2 In this way, we transfer
the alignment knowledge implicitly learned in two
vanilla Transformer models θx→y and θy→x into
the alignment module of a single AET model.

Once the alignment module is trained, we extract
alignment scoresS from it given a parallel sentence
pair and induce alignmentsA using Eq. 3.

4 Experiments

4.1 Settings
Dataset We follow previous work (Zenkel et al.,
2019, 2020) in data setup and conduct experiments
on publicly available datasets for German-English
(de-en)3, Romanian-English (ro-en) and French-
English (fr-en)4. Since no validation set is provided,
we follow Ding et al. (2019) to set the last 1,000
sentences of the training data before preprocessing
as validation set. We learn a joint source and target
Byte-Pair-Encoding (Sennrich et al., 2016) with
10k merge operations. Table 1 shows the detailed
data statistics.

NMT Systems We implement the Trans-
former with fairseq-py5 and use the
transformer iwslt de en model con-
figuration following Ding et al. (2019). We train
the models with a batch size of 36K tokens and
set the maximum updates as 50K and 10K for

2We simply normalize rows corresponding to target tokens
that are aligned to at least one source token of Â.

3https://www-i6.informatik.rwth-aachen.
de/goldAlignment/

4http://web.eecs.umich.edu/˜mihalcea/
wpt/index.html

5https://github.com/pytorch/fairseq

https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
http://web.eecs.umich.edu/~mihalcea/wpt/index.html
http://web.eecs.umich.edu/~mihalcea/wpt/index.html
https://github.com/pytorch/fairseq
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Method Inter. Fullc
de-en fr-en ro-en

de→en en→de bidir fr→en en→fr bidir ro→en en→ro bidir
Statistical Methods

FAST-ALIGN (Dyer et al., 2013) - Y 28.5 30.4 25.7 16.3 17.1 12.1 33.6 36.8 31.8
GIZA++ (Brown et al., 1993) - Y 18.8 19.6 17.8 7.1 7.2 6.1 27.4 28.7 26.0

Neural Methods
NAIVE-ATT (Garg et al., 2019) Y N 33.3 36.5 28.1 27.5 23.6 16.0 33.6 35.1 30.9
NAIVE-ATT-LA (Garg et al., 2019) Y N 40.9 50.8 39.8 32.4 29.8 21.2 37.5 35.5 32.7
SHIFT-ATT-LA Y N 54.7 46.2 45.5 60.5 46.9 55.1 66.1 60.4 65.3
SMOOTHGRAD (Li et al., 2016) Y N 36.4 45.8 30.3 25.5 27.0 15.6 41.3 39.9 33.7
SD-SMOOTHGRAD (Ding et al., 2019) Y N 36.4 43.0 29.0 25.9 29.7 15.3 41.2 41.4 32.7
PD (Li et al., 2019) Y N 38.1 44.8 34.4 32.4 31.1 23.1 40.2 40.8 35.6
ADDSGD (Zenkel et al., 2019) N N 26.6 30.4 21.2 20.5 23.8 10.0 32.3 34.8 27.6
MTL-FULLC (Garg et al., 2019) N Y - - 20.2 - - 7.7 - - 26.0

Statistical + Neural Methods
MTL-FULLC-GZ (Garg et al., 2019) N Y - - 16.0 - - 4.6 - - 23.1

Our Neural Methods
SHIFT-ATT Y N 20.9 25.7 17.9 17.1 16.1 6.6 27.4 26.0 23.9
SHIFT-AET N N 15.8 19.2 15.4 9.9 10.5 4.7 22.7 23.6 21.2

Table 2: AER on the test set with different alignment methods. bidir are symmetrized alignment results. The col-
umn Inter. represents whether the method is an interpretation method that can extract alignments from a pretrained
vanilla Transformer model. The column Fullc denotes whether full target sentence is used to extract alignments at
test time. The lower AER, the better. We mark best symmetrized interpretation results of vanilla Transformer with
underlines, and best symmetrized results among all with boldface.

Transformer and AET respectively. The last
checkpoint of AET is used for evaluation. All
models are trained in both translation directions
and symmetrized with grow-diag (Koehn et al.,
2005) using the script from Zenkel et al. (2019).6

Evaluation We evaluate the alignment quality of
our methods with Alignment Error Rate (Och and
Ney, 2000, AER). Since word alignments are use-
ful for many downstream tasks as discussed in Sec-
tion 1, we also evaluate our methods on dictionary-
guided decoding, a downstream task of alignment
induction, with the metric BLEU (Papineni et al.,
2002). More details are in Section 4.3.

Baselines We compare our methods with two sta-
tistical baselines FAST-ALIGN and GIZA++ and
nine other baselines:
• NAIVE-ATT (Garg et al., 2019): the approach we
discuss in Section 2.2, which induces alignments
from the attention weights of the penultimate layer
of the Transformer.
• NAIVE-ATT-LA (Garg et al., 2019): the NAIVE-
ATT method without layer selection. It induces
alignments from attention weights averaged across
all layers.
• SHIFT-ATT-LA: SHIFT-ATT method without
layer selection. It induces alignments from atten-
tion weights averaged across all layers.

6https://github.com/lilt/
alignment-scripts

• SMOOTHGRAD (Li et al., 2016): the method that
induces alignments from word saliency, which is
computed by averaging the gradient-based saliency
scores with multiple noisy sentence pairs as input.
• SD-SMOOTHGRAD (Ding et al., 2019): an im-
proved version of SMOOTHGRAD, which defines
saliency on one-hot input vector instead of word
embedding.
• PD (Li et al., 2019): the method that computes
the alignment scores from Transformer by itera-
tively masking each source token and measuring
the prediction difference.
• ADDSGD (Zenkel et al., 2019): the method that
explicitly adds an extra attention layer on top of
Transformer and directly optimizes its activations
towards predicting the to-be-aligned target token.
• MTL-FULLC (Garg et al., 2019): the method
that trains a single model in a multi-task learning
framework to both predict the target sentence and
the alignment. When predicting the alignment, the
model observes full target sentence and uses sym-
metrized NAIVE-ATT alignments as labels.
• MTL-FULLC-GZ (Garg et al., 2019): the same
method as MTL-FULLC except using symmetrized
GIZA++ alignments as labels. It is a statistical and
neural method as it relies on GIZA++ alignments.

Among these nine baselines and our proposed
methods, SMOOTHGRAD, SD-SMOOTHGRAD

and PD induce alignments using feature impor-
tance measures, while the others from some form
of attention weights. Note that the computation

https://github.com/lilt/alignment-scripts
https://github.com/lilt/alignment-scripts
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cost of methods with feature importance measures
is much higher than those with attention weights.7

4.2 Alignment Results

Comparison with Baselines Table 2 compares
our methods with all the baselines. First,
SHIFT-ATT, a pure interpretation method for
the vanilla Transformer, significantly outperforms
FAST-ALIGN and all neural baselines, and per-
forms comparable with GIZA++. For example,
it outperforms SD-SMOOTHGRAD, the state-of-
the-art method with feature importance measures
to extract alignments from vanilla Transformer,
by 8.7-11.1 AER points across different language
pairs. The success of SHIFT-ATT demonstrates that
vanilla Transformer has captured alignment infor-
mation in an implicit way, which could be revealed
from the attention weights if the correct decoding
step and layer are chosen to induce alignments.

Second, the method SHIFT-AET achieves new
state-of-the-art, significantly outperforming all
baselines. It improves over GIZA++ by 1.4-4.8
AER across different language pairs, demonstrat-
ing that it is possible to build a neural aligner better
than GIZA++ without using any alignments gen-
erated from statistical aligners to bootstrap train-
ing. We also find SHIFT-AET performs either
marginally better (de-en and ro-en) or on-par (fr-en)
when comparing with MTL-FULLC-GZ, a method
that uses GIZA++ alignments to bootstrap training.
We evaluate the model sizes: the number of param-
eters in vanilla Transformer and AET are 36.8M
and 37.3M respectively, and find that AET only in-
troduces 1.4% additional parameters to the vanilla
Transformer. In summary, by supervising the align-
ment module with symmetrized SHIFT-ATT align-
ments, SHIFT-AET improves over SHIFT-ATT and
GIZA++ with negligible parameter increase and
without influencing the translation quality.

Comparison with Zenkel et al. (2020) Concur-
rent with our work, Zenkel et al. (2020) propose a
neural aligner that can outperform GIZA++. Table
3 compares the performance of SHIFT-AET and
the best method BAO-GUIDED (Birdir. Att. Opt.
+ Guided) in Zenkel et al. (2020). We observe that
SHIFT-AET performs better than BAO-GUIDED

7For each sentence pair, PD forwards once with |x| + 1
masked sentence pairs as the input, while SMOOTHGRAD
and SD-SMOOTHGRAD forward and backward once with m
(m = 30 in Ding et al. (2019)) noisy sentence pairs as the
input. In contrast, attention weights based methods forward
once with one sentence pair as the input.

Method de-en fr-en ro-en
BAO-GUIDED 16.3 5.0 23.4
SHIFT-AET 15.4 4.7 21.2

Table 3: Comparison of our method SHIFT-AET with
BAO-GUIDED (Zenkel et al., 2020). We report the
symmetrized AER on the test set.

Direction zh→en en→zh bidir
GIZA++ 19.6 23.3 18.5
NAIVE-ATT 36.9 40.3 28.9
SHIFT-ATT 28.1 27.3 20.2
SHIFT-AET 20.1 22.0 17.2

Table 4: AER on the test set of zh-en. bidir are sym-
metrized alignment results.

in terms of alignment accuracy.
SHIFT-AET is also much simpler than BAO-

GUIDED. The training of BAO-GUIDED includes
three stages: (i) train vanilla Transformer in source-
to-target and target-to-source directions; (ii) train
the alignment layer and extract alignments on the
training set with bidirectional attention optimiza-
tion. This alignment extraction process is computa-
tional costly since bidirectional attention optimiza-
tion fine-tunes the model parameters separately for
each sentence pair in the training set; (iii) re-train
the alignment layer with the extracted alignments
as the guidance. In contrast, SHIFT-AET can be
trained much faster in two stages and does not in-
volve bidirectional attention optimization.

Similar with MTL-FULLC (Garg et al., 2019),
BAO-GUIDED adapts the alignment induction with
the to-be-aligned target token by requiring full
target sentence as the input. Therefore, BAO-
GUIDED is not applicable in cases where align-
ments are incrementally computed during the de-
coding process, e.g., dictionary-guided decod-
ing (Alkhouli et al., 2018). In contrast, SHIFT-AET
performs quite well on such cases (Section 4.3).
Therefore, considering the alignment performance,
computation cost and applicable scope, we be-
lieve SHIFT-AET is more appropriate than BAO-
GUIDED for the task of alignment induction.

Performance on Distant Language Pair To fur-
ther demonstrate the superiority of our methods on
distant language pairs, we also evaluate our meth-
ods on Chinese-English (zh-en). We use NIST
corpora8 as the training set and v1-tstset released
by TsinghuaAligner (Liu and Sun, 2015) as the test

8The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, LDC2004T07, LDC2004T08 and
LDC2005T06



572

Task NAIVE-ATT SHIFT-ATT SHIFT-AET
de→en 33.7 34.3∗ 34.8∗
en→de 26.5 26.8 28.0∗

Table 5: Comparison of dictionary-guided decoding
with different alignment methods. We report BLEU
scores on the test set. Without dictionary-guided de-
coding, we obtain 32.3 and 24.2 BLEU on de→en
and en→de translations respectively. “*” indicates the
result is significantly better than that of NAIVE-ATT
(p<0.05). All significance tests are measured by paired
bootstrap resampling (Koehn, 2004)

set. The test set includes 450 parallel sentence pairs
with manually labelled word alignments.9 We use
jieba10 for Chinese text segmentation and follow
the settings in Section 4.1 for data pre-processing
and model training. The results are shown in Ta-
ble 4. It presents that both SHIFT-ATT and SHIFT-
AET outperform NAIVE-ATT to a large margin.
When comparing the symmetrized alignment per-
formance with GIZA++, SHIFT-AET performs
better, while SHIFT-ATT is worse. The experimen-
tal results are roughly consistent with the observa-
tions on other language pairs, demonstrating the
effectiveness of our methods even for distant lan-
guage pairs.

4.3 Downstream Task Results

In addition to AER, we compare the performance
of NAIVE-ATT, SHIFT-ATT and SHIFT-AET on
dictionary-guided machine translation (Song et al.,
2020), which is an alignment-based downstream
task. Given source and target constraint pairs
from dictionary, the NMT model is encouraged to
translate with provided constraints via word align-
ments (Alkhouli et al., 2018; Hasler et al., 2018;
Hokamp and Liu, 2017; Song et al., 2020). More
specifically, at each decoding step, the last token
of the candidate translation will be revised with tar-
get constraint if it is aligned to the corresponding
source constraint according to the alignment induc-
tion method. To simulate the process of looking
up dictionary, we follow Hasler et al. (2018) and
extract the pre-specified constraints from the test
set and its reference according to the golden word
alignments. We exclude stop words, and sample up
to 3 dictionary constraints per sentence. Each dic-

9TsinghuaAligner labels the word alignments based on
segmented Chinese sentences and does not provide the seg-
mentation model. Therefore, we convert the manually labelled
word alignments to our segmented Chinese sentences for eval-
uation.

10https://github.com/fxsjy/jieba

(a) Validation AER for Layer Selection

en→de
de→en 1 2 3 4 5 6

1 42.2 35.4 35.7 67.5 89.2 88.8
2 45.1 39.5 39.1 67.1 87.8 88.2
3 42.5 34.6 34.2 65.2 87.4 87.6
4 74.4 73.0 72.3 80.6 89.5 89.7
5 84.8 86.7 86.1 87.3 88.7 88.9
6 87.1 88.2 87.6 88.1 88.7 88.6

(b) Test AER for Verification

layer 1 2 3 4 5 6
de→en 31.5 22.7 20.9 55.7 80.5 81.5
en→de 27.4 31.3 25.7 68.5 83.4 85.1

Table 6: Layer selection criterion verification with
SHIFT-ATT on de-en alignment. (a) For each cell,
we induce hypothesis alignment from de→en transla-
tion and reference alignment from en→de translation.
lb = 3 for both translation directions in this table. (b)
Test AER when inducing alignments from different lay-
ers. Layer 3 induces the best alignment for both trans-
lation directions, which verifies lb selected in (a).

tionary constraint includes up to 3 source tokens.
Table 5 presents the performance with differ-

ent alignment methods. Both SHIFT-ATT and
SHIFT-AET outperform NAIVE-ATT. SHIFT-AET
obtains the best translation quality, improving
over NAIVE-ATT by 1.1 and 1.5 BLEU scores on
de→en and en→de translations, respectively. The
results suggest the effectiveness of our methods in
application to alignment-related NLP tasks.

4.4 Analysis

Layer Selection Criterion To test whether the
layer selection criterion can select the right layer
to extract alignments, we first determine the best
layer lb,x→y and lb,y→x based on the layer selec-
tion criterion. Then we evaluate the AER scores of
alignments induced from different layers on the test
set, and check whether the layers with the lowest
AER score are consistent with lb,x→y and lb,y→x.
The experiment results shown in Table 6 verify that
the layer selection criterion is able to select the
best layer to induce alignments. We also find that
the best layer is always layer 3 under our setting,
consistent across different language pairs.

Relevance Measure Verification To investigate
the relationship between zli and yi−1/yi, we design
an experiment to probe whether zli contain the iden-
tity information of yi−1 and yi, following Brunner
et al. (2019). Formally, for decoder hidden state zli,
the input token is identifiable if there exists a func-

https://github.com/fxsjy/jieba
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Figure 3: Identifiability rate of the input and output to-
kens for decoder hidden states at different layers.

tion g such that yi−1 = g(zli). We cannot prove the
existence of g analytically. Instead, for each layer l
we learn a projection function ĝl to project from the
hidden state space to the input token embedding
space ŷli = ĝl(z

l
i) and then search for the nearest

neighbour yk within the same sentence. We say
that zli can identify yi−1 if k = i − 1. Similarly,
we follow the same process to identify the output
token yi. We report the identifiability rate defined
as the percentage of correctly identified tokens.

Fig. 3 presents the results on the validation set
of de→en translation. We try three projection func-
tions: a naive baseline ĝnaive

l (zli) = zli, a linear
perceptron ĝlin

l and a non-linear multi-layer per-
ceptron ĝ

mlp
l . We observe the following points: (i)

With trainable projection functions ĝlin
l and ĝ

mlp
l ,

all layers can identify the input tokens, although
more hidden states cannot be mapped back to their
input tokens anymore in higher layers. (ii) Over-
all it is easier to identify the input token than the
output token. For example, when projecting with
mlp, all layers can identify more than 98% of the
input tokens. However, for the output tokens, we
can only identify 83.5% even from the best layer.
Since zli even may not be able to identify yi, this
observation partially verifies that it is better to rep-
resent yi using zli+1 than zli. (iii) At bottom layers,
the input tokens remain identifiable and the output
tokens are hard to identify, regardless of the projec-
tion function we use. This confirms our hypothesis
that for small l, zli is more relevant to yi−1 than yi.

AER v.s. BLEU During training, vanilla Trans-
former gradually learns to align and translate. To
analyze how the alignment behavior changes at dif-
ferent layers with checkpoints of different transla-
tion quality, we plot AER on the test set v.s. BLEU
on the validation set for de→en translation. We

compare NAIVE-ATT and SHIFT-ATT, which align
the decoder output token (align output) and de-
coder input token (align input) to the source tokens
based on current decoder hidden state, respectively.

The experiment results are shown in Fig. 4. We
observe that at the beginning of training, layers 3
and 4 learn to align the input token, while layers
5 and 6 the output token. However, with the in-
creasing of BLEU score, layer 4 tends to change
from aligning input token to aligning output token,
and layer 1 and 2 begin to align input token. This
suggests that vanilla Transformer gradually learns
to align the input token from middle layers to bot-
tom layers. We also see that at the end of training,
layer 6’s ability to align output token decreases.
We hypothesize that layer 5 already has the ability
to attend to the source tokens which are aligned
to the output token, therefore attention weights in
layer 6 may capture other information needed for
translation. Finally, for checkpoints with the high-
est BLEU score, layer 5 aligns the output token
best and layer 3 aligns the input token best.

Alignment Example In Fig. 5, we present a sym-
metrized alignment example from de-en test set.
Manual inspection of this example as well as oth-
ers finds that our methods SHIFT-ATT and SHIFT-
AET tend to extract more alignment pairs than
GIZA++, and extract better alignments especially
for sentence beginning compared to NAIVE-ATT.

5 Related Work

Alignment induction from RNNSearch (Bahdanau
et al., 2015) has been explored by a number of
works. Bahdanau et al. (2015) are the first to
show word alignment example using attention in
RNNSearch. Ghader and Monz (2017) further
demonstrate that the RNN-based NMT system
achieves comparable alignment performance to that
of GIZA++. Alignment has also been used to
improve NMT performance, especially in low re-
source settings, by supervising the attention mech-
anisms of RNNSearch (Chen et al., 2016; Liu et al.,
2016; Alkhouli and Ney, 2017).

There is also a number of other studies that in-
duce word alignment from Transformer. Li et al.
(2019); Ding et al. (2019) claim that attention may
not capture word alignment in Transformer, and
propose to induce word alignment with prediction
difference (Li et al., 2019) or gradient-based mea-
sures (Ding et al., 2019). Zenkel et al. (2019) mod-
ify the Transformer architecture for better align-
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Figure 4: AER on the test set v.s. BLEU on the validation set on the de→en translation, evaluated with different
checkpoints.

Figure 5: One example from the de-en alignment test set. Golden alignments are shown in (1), blue squares and
light blue squares represent sure and possible alignments separately.

ment induction by adding an extra alignment mod-
ule that is restricted to attend solely on the encoder
information to predict the next word. Garg et al.
(2019) propose a multi-task learning framework to
improve word alignment induction without decreas-
ing translation quality, by supervising one attention
head at the penultimate layer with GIZA++ align-
ments. Although these methods are reported to
improve over head average baseline, they ignore
that better alignments can be induced by comput-
ing alignment scores at the decoding step when the
to-be-aligned target token is the decoder input.

6 Conclusion

In this paper, we have presented two novel meth-
ods SHIFT-ATT and SHIFT-AET for word align-
ment induction. Both methods induce alignments
at the step when the to-be-aligned target token is
the decoder input rather than the decoder output
as in previous work. Experiments on three public
alignment datasets and a downstream task prove
the effectiveness of these two methods. SHIFT-
AET further extends Transformer with an addi-

tional alignment module, which consistently out-
performs prior neural aligners and GIZA++, with-
out influencing the translation quality. To the best
of our knowledge, it reaches the new state-of-the-
art performance among all neural alignment induc-
tion methods. We leave it for future work to extend
our study to more downstream tasks and systems.
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