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Abstract

Label smoothing has been shown to be an ef-
fective regularization strategy in classification,
that prevents overfitting and helps in label de-
noising. However, extending such methods
directly to seq2seq settings, such as Machine
Translation, is challenging: the large target
output space of such problems makes it in-
tractable to apply label smoothing over all pos-
sible outputs. Most existing approaches for
seq2seq settings either do token level smooth-
ing, or smooth over sequences generated by
randomly substituting tokens in the target se-
quence. Unlike these works, in this paper, we
propose a technique that smooths over well
formed relevant sequences that not only have
sufficient n-gram overlap with the target se-
quence, but are also semantically similar. Our
method shows a consistent and significant im-
provement over the state-of-the-art techniques
on different datasets.

1 Introduction

Label smoothing is a regularization technique com-
monly used in deep learning (Szegedy et al., 2016;
Chorowski and Jaitly, 2017; Vaswani et al., 2017;
Zoph et al., 2018; Real et al., 2018; Huang et al.,
2019), that improves calibration (Müller et al.,
2019) and helps in label de-noising (Lukasik et al.,
2020a). Here, one smooths labels by introducing a
prior in the label space (often just a uniform distri-
bution) in order to prevent overly confident predic-
tions and achieve better model calibration, both of
which lead to better generalization.

Given these benefits, it is natural to con-
sider whether label smoothing can be applied to
sequence-to-sequence (seq2seq) prediction tasks
in Natural Language Processing. Here, inducing a
label prior involves smoothing in sequence space.
However, this is a challenging task because the
output space is exponentially large for sequences,

unlike the label space in standard classification.
Previous works approached this challenge either by
smoothing over individual tokens of the target se-
quence, or by sampling a few nearby targets accord-
ing to Hamming distance or BLEU score (Norouzi
et al., 2016; Elbayad et al., 2018). These techniques
however do not guarantee that the smoothed targets
lie within the space of acceptable targets (i.e., the
sampled new target may no longer be grammati-
cally correct or even preserve semantic meaning).

In this work, we propose a label smoothing ap-
proach for seq2seq problems that overcomes this
limitation. Given a large-scale corpus of valid se-
quences, our approach selects a subset of sequences
that are not only semantically similar to the target
sequence, but also well formed. We achieve this
using a pre-trained model to find semantically simi-
lar sequences from the corpus, and then use BLEU
scores to rerank the closest targets. We empirically
show that this approach improves over competitive
baselines on multiple machine translation tasks.

2 Related Works

Token-level smoothing A popular approach
used in language tasks is so called token level
smoothing, where for each position’s classification
loss, a prior distribution over the entire vocabulary
(uniformly or with unigram probability estimates)
is used for regularization (Pereyra et al., 2017;
Edunov et al., 2017). This is similar to the classical
label smoothing (e.g. (Szegedy et al., 2016)), as
it smooths each token label independent of their
context and position in the sequence. Such an ap-
proach is thus unlikely to result in semantically
related targets.

Sequence-level smoothing Norouzi et al. (2016)
augment the loss with a term rewarding predic-
tions of sampled sequences. The sampling of se-
quences is based on their edit distance or Hamming
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distance to the target. This method thus smooths
the loss over to similar sequences (in terms of the
edit distance) with smoothing rewards. Elbayad
et al. (2018) employ a similar technique, but with a
new reward function based on BLEU (Papineni
et al., 2002) or CIDEr (Vedantam et al., 2015)
score. Specifically, Elbayad et al. (2018) generate
a smoothed version of the target sequence, wherein
one replaces a token with a random token (with
up-sampling of rare words). Such newly generated
sequences were given a partial reward based on the
cosine similarity between the two tokens in a pre-
trained word-embedding space. This differs from
our approach because this context-independent per-
turbation is limited to generating the same struc-
ture for the new sequence as that of the original
sequence.

Zheng et al. (2018), on the other hand, con-
structed grammatically correct and meaning pre-
serving sequences. However, unlike our work, their
approach relies on having multiple references (tar-
get sequences per input sequence) and might not be
able to generate sequences where common words
or synonyms do not appear in the same order, which
is a strong limitation, precluding an augmentation
like: Yesterday, he scored a 94 on his final (orig-
inal sequence), He had 94 points in the final test
yesterday (augmented sequence).

More broadly, an important shortcoming of such
approaches is that sequences deemed close can ac-
tually lack important properties such as preserving
the meaning of the original sequence. In partic-
ular, swapping even a single token in a sequence
may cause a drastic shift in its meaning (e.g., turn-
ing a factually correct text into a false one) even
though being close in the Hamming space. We
address this shortcoming by restricting augmented
target sequences to the training set, and selecting
sequences based on similarity obtained from a pre-
trained model.

Unlike other approaches, (Bengio et al., 2015)
proposed a scheduled sampling technique that does
not depend on any external data source. Instead,
it utilizes the self-generated sequences from the
current model. Both our approach and the sched-
uled sampling technique bear similarity in that they
aim at improving model generalization, by either
providing semantically similar candidates (ours)
or self-generated sequences (theirs). Indeed, these
two approaches could complement each other by
providing various ways of related but not exact

targets.

Hard negative mining Our work is also related
to hard negative mining approaches that select
a subset of confusing negatives for each input
(Mikolov et al., 2013; Reddi et al., 2019; Guo et al.,
2018). Different from the above, we add a soft ob-
jective function over the sampled (relevant) target
sequences, rather than treating them as negatives
in the classification sense.

3 Method

Sequence-to-sequence (seq2seq) learning involves
learning a mapping from an input sequence x (e.g.,
a sentence in English) to an output sequence y (e.g.,
a sentence in French). Canonical applications in-
clude machine translation and question answering.

Formally, let X denote the space of input se-
quences (e.g., all possible English sentences), and
Y the space of output sequences (e.g., all pos-
sible French sentences). We represent by x =
[x1, x2, ...xN ] an input sequence consisting of N
tokens, and similarly y = [y1, y2, ...yN ′ ] an output
sequence with N ′ tokens. Our goal is to learn a
function f : X→ Y that, given an input sequence,
generates a suitable target sequence.

To achieve this goal, we have a training set
S ⊆ (X×Y)n comprising pairs of input and output
sequences. We then seek to minimise the objective

L(θ) =
∑

(x,y)∈S

− log pθ(y | x), (1)

where pθ(·|x; θ) is a parametrized distribution over
all possible output sequences. Given such a distri-
bution, we choose f(x) = argmaxy∈Y pθ(y | x).
Observe that one may implement (1) via a token-
level decomposition,

L(θ) =
∑

(x,y)∈S

N∑
i=1

− log pθ(yi | x, y1, . . . , yi−1).

This may be understood as a maximum likelihood
objective, or equivalently the cross-entropy be-
tween pθ(·|x; θ) and a one-hot distribution concen-
trated on y.
Label smoothing meets seq2seq. Intuitively, the
cross-entropy objective encourages the model to
score the observed sequence y higher than any
“competing” sequence y′ 6= y. While this is a
sensible goal, one limitation observed from classi-
fication settings is that the loss may lead to models
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that are overly confident in their predictions, which
can hamper generalisation (Guo et al., 2017).

Label smoothing (Szegedy et al., 2016; Pereyra
et al., 2017; Müller et al., 2019) is a simple means
of correcting this in classification settings. Smooth-
ing involves simply adding a small reward to all
possible incorrect labels, i.e., mixing the standard
one-hot label with a uniform distribution over all
labels. This regularizes the training and generally
leads to better predictive performance as well as
probabilistic calibration (Müller et al., 2019).

Given the success of label smoothing in classifi-
cation settings, it is natural to explore its value
in seq2seq problems. However, standard label
smoothing is clearly inadmissible: it would require
smoothing over all possible outputs y′ ∈ Y, which
is typically an intractably large set. Nonetheless,
we may follow the basic intuition of smoothing by
adding a subset of related targets to the observed
sequence y, yielding a smoothed loss

− log pθ(y | x) +
α

|R(y)|
·

∑
y′∈R(y)

− log pθ(y
′ | x). (2)

Here, R(y) is a set of related sequences that are
similar to the ground truth y, and α > 0 is a tuning
parameter that controls how much we rely on the
observed versus related sequences.

The quality of R(y) is important for our task.
Ideally, we would like an R(y) that: (i) is efficient
to compute, and (ii) comprises sequences which
meaningfully align with x (e.g., are plausible alter-
nate translations). We now assess several options
for constructing R(y) in light of the above.
Random sequences. One simple choice is to
choose a random subset of output sequences from
the training set. In the common setting where f
is learned by minibatch SGD on randomly drawn
minbatches B = {(x(i),y(i))}, one may simply
pick R(y) to be all output sequences in B.

Such random sequences contain general target
language understanding (e.g., French grammar for
an English to French translation task). However,
these sequences are unlikely to have any semantic
correlation with the true label.
Token-level smoothing. To ensure greater seman-
tic correlation between the selected sequences and
the original y, one idea is to perform token-level
smoothing. For example, Vaswani et al. (2017)
proposed to smooth uniformly over all tokens from
the vocabulary. Elbayad et al. (2018) proposed to
construct sequences y′ = [y′1, y

′
2, . . . , y

′
N ′ ] where

for a randomly selected subset of tokens j ∈ [N ′],

Algorithm 1 Sampling of related sequences.

Input: example (x,y); sequences Yref

Output: related sequences R(y)
1: Embed reference sequences, e.g., using BERT
2: N(y)← k closest sequences to y from Yref in

the embedding space.
3: Sort elements of N(y) by BLEU score to y.
4: R(y)← top k′ elements from N.

Orig: Yesterday, he scored a 94 on his final.

1st: He had 94 points in the final test yesterday.
2nd: But the child just scored 9 points on the Apgar test.

Orig: Exchange of experience and good practices.

1st: Exchange of best practices.
2nd: Exchange of information and best practices.

Orig: Nothing else I can do?

1st: Is there anything else I can do for you, sir?
2nd: Can I do something for you?

Table 1: English translations of top two augmentations
from BERT+BLEU4 on examples from EN-CS.

y′i is some related token in the minibatch; for other
tokens, y′i = yi. These related tokens are chosen so
as to maximise the BLEU score between y and y′.

While this approach increases the semantic sim-
ilarity to y, operating on a token level is limiting.
For example, one may change the meaning of a
factual sentence by changing even a few words.
Further, operating at a per-token level limits the
diversity of R(y), since, e.g., all sequences have
the same number of tokens and structure as y.
Proposal: semantic smoothing. To overcome the
limitations of token-level smoothing, we would ide-
ally like to directly smooth over related sequences.
Our basic idea is to seek sequences

R(y) = {y′ : ssem(y,y′)∧ sbleu(y,y′) > 1− ε},

where ssem is a score of semantic similarity, and
sbleu is the BLEU score. Intuitively, our relevant se-
quences comprise those that are both semantically
similar to y, and have sufficient unigram overlap.

A key challenge is efficiently identifying seman-
tically similar sequences to y. To achieve this in
a tractable manner, we propose the following pro-
cedure (see Algorithm 1). First, we assume the
existence of an embedding space for output se-
quences. For example, this could be the result of
BERT (Devlin et al., 2019), which embeds each
sequence into a fixed vector representation. Given
such an embedding space and a corpus Yref of ref-
erence sequences, we may now efficiently compute
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the neighbors of y, N(y), comprising the top-k
closest sequences in Yref for the given y (Indyk
and Motwani, 1998).1

The elements of N(y) can be expected to have
high semantic similarity with y, which is desirable.
However, such sequences may not meaningfully
align with the original input x (e.g., may not be
sufficiently close translations). To account for this,
we prune the elements from N(y) based on the
BLEU score. Intuitively, this pruning retains se-
quences that are both semantically similar and have
non-trivial token overlap with y.

We use Yref as all output sequences in the train-
ing set. In practice, one may however use any set
of sequences that are valid for the domain in ques-
tion. We find k = 100 closest sequences in this
space, and smooth over k′ = 5 pruned sequences
with the highest BLEU score to y. In Table 1 we
show example augmentations. Notice both the di-
versity of augmentations, as well as relatedness to
the original targets.

4 Experiments

Setup. We use the Transformer model for our ex-
periments, and follow the experimental setup and
hyperparameters from Vaswani et al. (2017). We
experiment on three popular machine translation
tasks: English-German (EN-DE), English-Czech
(EN-CS) and English-French (EN-FR), using the
WMT training datasets, and on the tensor2tensor
framework (Vaswani et al., 2018).2 We evaluate
on the Newstest 2015 for EN-DE and EN-CS, and
WMT 2014 for EN-FR.
Baselines. We use the seq2seq model results
by Vaswani et al. (2017) as a baseline. We compare
our approach with the following alternate smooth-
ing methods: i) smoothing is done over all possible
tokens from the vocabulary at each next token pre-
diction (Szegedy et al., 2016), ii) smoothing is con-
ducted over random targets from within batch (Guo
et al., 2018), and iii) smoothing is done over artifi-
cially generated targets that are close to the actual
target sequence according to BLEU score (Elbayad
et al., 2018). For all these methods we experiment
with values of α in {0.1, 0.001, 0.0001, 0.00001},
and report the best results in each case. For the

1Alternatively, one could consider selecting highest scor-
ing augmentations based on a pre-trained seq2seq model.
However, the resulting quadratic computational complexity
renders such an approach impractical.

2Data available at https://tensorflow.github.
io/tensor2tensor/.

(Elbayad et al., 2018) baseline, we follow the re-
ported best performing variant, randomly swapping
tokens with others from the target sequence.

Main results. In Table 2 we report results from
our method (BERT+BLEU) and the different state-
of-the-art methods mentioned above. Our most
direct comparison is against (Elbayad et al., 2018),
as both the methods smooth over sequences that
have high BLEU score. However, instead of gen-
erating sequences by randomly replacing tokens,
we retrieve them from a corpus of well formed
text sequences. In particular, we use BERT-base
multilingual model to embed all the training target
sequences into 768 dim fixed vector representa-
tion (corresponding to CLS token) and then iden-
tify top-100 nearest neighbors for each of the tar-
get sequence. Consequently, our method outper-
forms (Elbayad et al., 2018) by a large margin on
all three benchmarks. This demonstrates the impor-
tance of smoothing over sequences that not only
have significant n-gram overlap with the ground
truth target sequence but are also well formed and
are semantically similar to the ground truth. In Ta-
ble 3 we report the comparison between our model
and the strongest baseline on EN-CS across multi-
ple metrics, confirming the improvement we report
in Table 2 for BLEU score.

Ablating BLEU pruning. Table 4 reveals it is
useful to use a sufficiently restrictive criterion in
BLEU pruning; however, excess pruning (BLEU5)
is harmful. Thus, we seek to retrieve semantically
related targets which do not necessarily have high-
est scoring n-gram overlap to the original target.
This is intuitive: enforcing too high n-gram overlap
may cause all augmented targets to be too lexically
similar, limiting the benefit of seeing new targets in
training. We also experimented with not reranking
neighbors using BLEU pruning, which resulted in
no improvement over the baseline. In other words,
it was essential to use this kind of postprocessing
for obtaining improvements.

Ablating the number of neighbors. We experi-
mented with how the number of neighbors influ-
ences the results. For EN-CS, we obtained the
following BLEU4 scores correspondingly for 10,
5 and 3 neighbors: 21.86, 22.82, 22.23. Overall,
we find that too few or too many neighbors harm
the performance compared to the 5 neighbors we
used in other experiments. At the same time, the
time complexity increases linearly as number of
neighbors increases.

https://tensorflow.github.io/tensor2tensor/
https://tensorflow.github.io/tensor2tensor/
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Method α EN-DE EN-CS EN-FR
Base setup (Vaswani et al., 2017) — 28.03 21.19 39.66
Token LS (Vaswani et al., 2017; Szegedy et al., 2016) 0.1 28.72 21.47 39.87
Within batch sequence LS (Guo et al., 2018) 0.001 28.81 21.26 39.21
Sampled augmentations BLEU4 (Elbayad et al., 2018) 0.01 29.19 20.94 40.19

BERT+BLEU4 0.1 29.99 22.82 39.84
BERT+BLEU4 0.01 29.51 22.30 40.82

Table 2: BLEU4 evaluation scores on translation tasks from different label smoothing methods. We ran a bootstrap
test (Koehn, 2004) for estimating the significance of improvement over the strongest baseline and found that on all
three datasets the improvement is statistically significant, p < 0.05.

BLEU3 BLEU4 BLEU5 METEOR ROUGE CIDER

(Elbayad et al., 2018) 27.9 20.94 15.93 24.92 50.98 211.49
BERT+BLEU4 29.8 22.82 17.73 26.03 52.29 228.26

Table 3: Comparison of our model against the strongest baseline (Elbayad et al., 2018) as reported in Table 2 on
EN-CS across multiple metrics.

BLEU3 BLEU4 BLEU5

BERT+BLEU3 29.12 22.03 16.89
BERT+BLEU4 29.80 22.82 17.73
BERT+BLEU5 29.41 22.38 17.26

Table 4: Results on EN-CS from targets smoothing
with varying n-gram overlap enforced for the final se-
lection of top 5 augmented targets. Enforcing higher
overlap to the original target worsens the performance.

5 Conclusion

We propose a novel label smoothing approach for
sequence to sequence problems that selects a subset
of sequences that are not only semantically similar
to the target sequences, but are also well formed.
We achieve this by using a pre-trained model to find
semantically similar sequences from the training
corpus, and then we use BLEU score to rerank the
closest targets. Our method shows a consistent
and significant improvement over state-of-the-art
techniques across different datasets.

In future work, we plan to apply our seman-
tic label smoothing technique to various sequence
to sequence problems, including Text Summariza-
tion (Zhang et al., 2019) and Text Segmentation
(Lukasik et al., 2020b). We also plan to study the
relation between pretraining and data augmentation
techniques.
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