
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4809–4819,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4809

Please Mind the Root: Decoding Arborescences for Dependency Parsing

Ran Zmigrod Tim Vieira Ryan Cotterell ,

University of Cambridge Johns Hopkins University ETH Zürich
rz279@cam.ac.uk tim.f.vieira@gmail.com

ryan.cotterell@inf.ethz.ch

Abstract

The connection between dependency trees and
spanning trees is exploited by the NLP com-
munity to train and to decode graph-based de-
pendency parsers. However, the NLP literature
has missed an important difference between
the two structures: only one edge may em-
anate from the root in a dependency tree. We
analyzed the output of state-of-the-art parsers
on many languages from the Universal Depen-
dency Treebank: although these parsers are of-
ten able to learn that trees which violate the
constraint should be assigned lower probabil-
ities, their ability to do so unsurprisingly de-
grades as the size of the training set decreases.
In fact, the worst constraint-violation rate we
observe is 24%. Prior work has proposed an
inefficient algorithm to enforce the constraint,
which adds a factor of n to the decoding run-
time. We adapt an algorithm due to Gabow and
Tarjan (1984) to dependency parsing, which
satisfies the constraint without compromising
the original runtime.1

1 Introduction

Developing probabilistic models of dependency
trees requires efficient exploration over a set of pos-
sible dependency trees, which grows exponentially
with the length of the input sentence n.

Under an edge-factored model (McDonald et al.,
2005; Ma and Hovy, 2017; Dozat and Manning,
2017), finding the maximum-a-posteriori depen-
dency tree is equivalent to finding the maximum
weight spanning tree in a weighted directed graph.
More precisely, spanning trees in directed graphs
are known as arborescences. The maximum-weight
arborescence can be found in O(n2) (Tarjan, 1977;
Camerini et al., 1979).2

1Our Python library is available at https://github.
com/rycolab/spanningtrees.

2Several authors (e.g., Qi et al. (2020); McDonald et al.

However, an oversight in the relationship be-
tween dependency trees and arborescences has
gone largely unnoticed in the dependency parsing
literature. Most dependency annotation standards
enforce a root constraint: Exactly one edge may
emanate from the root node.3 For example, the
Universal Dependency Treebank (UD; Nivre et al.
(2018)), a large-scale multilingual syntactic anno-
tation effort, states in their documentation (UD
Contributors):

There should be just one node with the root de-
pendency relation in every tree.

This oversight implies that parsers may return mal-
formed dependency trees. Indeed, we examined the
output of a state-of-the-art parser (Qi et al., 2020)
for 63 UD treebanks. We saw that decoding with-
out a root constraint resulted in 1.80% (on average)
of the decoded dependency trees being malformed.
This increased to 6.21% on languages that contain
less than one thousand training instances with the
worst case of 24% on Kurmanji.

The NLP literature has proposed two solutions
to enforce the root constraint: (1) Allow invalid
dependency trees—hoping that the model can learn
to assign them low probabilities and decode singly
rooted trees, or (2) return the best of n runs of
the CLE each with a fixed edge emanating from
the root (Dozat et al., 2017).4 The first solution
is clearly problematic as it may allow parsers to
predict malformed dependency trees. This issue is
further swept under the rug with “forgiving” evalua-
tion metrics, such as attachment scores, which give

(2005)) opt for the simpler CLE algorithm (Chu and Liu, 1965;
Bock, 1971; Edmonds, 1967), which has a worst-case bound
of O(n3), but is often fast in practice.

3A notable exception is the Prague Dependency Treebank
(Bejček et al., 2013), which allows for multi-rooted trees.

4In practice, if constraint violations are infrequent, this
strategy should be used as a fallback for when the uncon-
strained solution fails. However, this will not necessarily be
the case, and is rarely the case during model training.

https://github.com/rycolab/spanningtrees
https://github.com/rycolab/spanningtrees


4810

ρ 1 2 3 4 5 6 7 8

root Someplace that is like $ 30 an entree

Figure 1: A malformed dependency tree from our ex-
periment. Shown are the incorrect (highlighted) and
correct (highlighted) dependency relations for token 8.

partial credit for malformed output.5 The second
solution, while correct, adds an unnecessary factor
of n to the runtime of root-constrained decoding.

In this paper, we identify a much more efficient
solution than (2). We do so by unearthing an
O(n2) algorithm due to Gabow and Tarjan (1984)
from the theoretical computer science literature.
This algorithm appears to have gone unnoticed
in NLP literature;6 we adapt the algorithm to
correctly and efficiently handle the root constraint
during decoding in edge-factored non-projective
dependency parsing.7

2 Approach

In this section, the marker indicates that a re-
cently introduced concept is illustrated the worked
example in Fig. 2. Let G = (ρ, V,E) be a rooted
weighted directed graph where V is a set of
nodes, E is a set of weighted edges, E ⊆ {(i w−A
j) | i, j ∈ V, w ∈ R},8 and ρ ∈ V is a designated
root node with no incoming edges. In terms of
dependency parsing, each non-ρ node corresponds
to a token in the sentence, and ρ represents the
special root token that is not a token in the sen-
tence. Edges represent possible dependency rela-
tions between tokens. The edge weights are scores
from a model (e.g., linear (McDonald et al., 2005),
or neural network (Dozat et al., 2017)). Fig. 1
shows an example. We allow G to be a multi-
graph, i.e., we allow multiple edges between pairs
of nodes. Multi-graphs are a natural encoding of
labeled dependency relations where possible labels
between words are captured by multiple edges be-

5We note exact match metrics, which consider the entire
arborescence, do penalize root constraint violations

6There is one exception: Corro et al. (2016) mention
Gabow and Tarjan (1984)’s algorithm in a footnote.

7Much like this paper, efficient root-constrained marginal
inference is also possible without picking up an extra factor
of n, but it requires some attention to detail (Koo et al., 2007;
Zmigrod et al., 2020).

8When there is no ambiguity, we may abuse notation using
G to refer to either its node or edge set, e.g., we may write
(i−Aj) ∈ G to mean (i−Aj) ∈ E, and i ∈ G to mean i ∈ V .

tween nodes in the graph. Multi-graphs pose no
difficulty as only the highest-weight edge between
two nodes may be selected in the returned tree.

An arborescence of G is a subgraph A =
(ρ, V,E′) where E′ ⊆ E such that:

(C1) Each non-root node has exactly one incom-
ing edge (thus, |E′| = |V |−1);

(C2) A has no cycles.

A dependency tree of G is an arborescence that
additionally satisfies

(C3) |{(ρ−A ) ∈ E′}| = 1

In words, (C3) saysA contains exactly one out-edge
from ρ. Let A(G) and A†(G) denote the sets of
arborescences and dependency trees, respectively.

The weight of a graph or subgraph is defined as

w(G)
def
=

∑
(i
w−Aj)∈G

w (1)

In §2.1, we describe an efficient algorithm for find-
ing the best (highest-weight) arborescence

G∗ = argmax
A∈A(G)

w(A) (2)

and, in §2.2, the best dependency tree.9

G† = argmax
A∈A†(G)

w(A) (3)

2.1 Finding the best arborescence
A first stab at finding G∗ would be to select the
best (non-self-loop) incoming edge for each node.
Although, this satisfies (C1), it does not (necessar-
ily) satisfy (C2). We call this subgraph the greedy
graph, denoted

−A
G . Clearly, w(

−A
G ) ≥ w(G∗)

since it is subject to fewer restrictions. Further-

more, if
−A
G happens to be acyclic, it is clearly equal

to G∗. What are we to do in the event of a cycle?
That answer has two parts.

Part 1: We call any cycle C in
−A
G a critical

cycle. Naturally, (C2) implies that critical cycles
can never be part of an arborescence. However,
they help us identify optimal arborescences for
certain subproblems. Specifically, if we were to
“break” the cycle at any node j ∈ C by removing
its (unique) incoming edge, we would have an opti-

9Probabilistic models of arborescences (e.g., Koo et al.
(2007); Dozat and Manning (2017)) typically seek the
maximum a posteriori structure, argmaxA

∏
e∈A pe =

argmaxA
∑
e∈A log pe. This case can be solved as (1) by

taking the weight of e to be log pe because pe ≥ 0.



4811

ρ

1

2

3

4
90

40

10

60

30 50

70
20

(a)

ρ

1

2

3

4 c

60

70

5030

170

20

90

120

(b)

ρ

1

2

3

4 c

60

70

5030

170

20

90

120

(c)

ρ

1

2

3

4 c

60

70

5030

170

20

90

120

(d)

ρ

1

2

3

4
90

40

10

60

30 50

70
20

Figure 2: Worked example of finding the best dependency tree. Let G be the graph in the left-most figure, the

greedy graph
−A
G (highlighted) contains a critical cycle C, 2 A 4 A 3 A 2 . Step (a) shows the contraction G/C

where C is replaced by c , and edges are cast as enter, exit, external, or dead edges in G/C . We see the book-
keeping function π (as ), e.g., π(c

20−A 1) = (4
20−A 1) and π(ρ

170−−A c) = (ρ
40−A 2). Step (b) takes the greedy

(sub)graph of G/C and since it contains no cycles, it is (G/C)∗ as (highlighted). Note that if we did not require a
dependency tree, we could now use Theorem 1 to break C at 2 . Step (c) takes (G/C)∗, which has two root edges,
(ρ

90−A 1) and (ρ
170−−A c), and removes the edge with minimal consequence: removing (ρ

90−A 1) leads to w = 190,
while removing (ρ

170−−A c) leads to w = 210. We pick the latter. As deleting (ρ
170−−A c) does not lead to a critical

cycle (optimization case), we remove it from the graph (shown as ) and so we get (G/C)
† (highlighted). Step

(d) stitches (G/C)
† # C(3) yielding G† (highlighted).

mal arborescence rooted at j for the subgraph over
the nodes in C. Let C(j) be a subgraph of C rooted
at j that denotes the broken cycle at j. Let G(j)

C

be the subgraph rooted at j where GC contains all
the nodes in C and all edges between them from
G. Since C is a critical cycle, C(j) is the greedy
graph of G(j)

C . Moreover, as it is acyclic, we have
that C(j) = (G

(j)
C )∗. The key to finding the best ar-

borescence of the entire graph is, thus, determining
where to break critical cycles.

Part 2: Breaking cycles is done with a recur-
sive algorithm that solves the “outer problem” of
fitting the (unbroken) cycle into an optimal arbores-
cence. The algorithm treats the cycle as a single
contracted node. Formally, a cycle contraction
takes a graph G and a (not necessarily critical) cy-
cle C, and creates a new graph denoted G/C with
the same root, nodes (V rC∪{c}) where c /∈ V is
a new node that represents the cycle, and contains
the following set of edges: For any (i

w−Aj) ∈ G

• enter: if i /∈ C, j ∈ C, then (i
w′−A c) ∈ G/C

where w′ = w + w(C(j)). Akin to dynamic
programming, this choice edge weight (due to
Georgiadis (2003)) gives the best “cost-to-go”
for breaking the cycle at j.

• exit: if i∈C, j /∈C, then (c
w−Aj) ∈ G/C

• external: if i /∈C, j /∈C, then (i
w−Aj) ∈ G/C

• dead: if i ∈ C, j ∈ C, then no edge related to
(i

w−Aj) is in G/C . This is because such an edge
(c−A c) would be a self-cycle, which can never
be part of an arborescence.

Additionally, we define a bookkeeping function,
π, which maps the nodes and edges of G/C to their
counterparts in G. We overload π(G) to apply
point-wise to the constituent nodes and edges.

By (C1), we have that for any AC ∈ A(G/C),
there exists exactly one incoming edge (i−A c) to
the cycle node c. We can use π to infer where the
cycle was broken with π(i−Ac) = (i−Aj). We call
j the entrance site of AC . Consequently, we can
stitch together an arborescence as π(AC) ∪ C(j).
We use the shorthandAC # C(j) for this operation
due to its visual similarity to unraveling a cycle.
G/C may also have a critical cycle, so we have to

apply this reasoning recursively. This is captured
by Karp (1971)’s Theorem 1.10

Theorem 1. For any graph G, either G∗ =
−A
G or

G contains a critical cycle C and G∗ = (G/C)∗ #

C(j) where j is the entrance site of (G/C)∗. Fur-
thermore, w((G/C)∗) = w(G∗).

Theorem 1 suggests a recursive strategy for find-
ing G∗, which is the basis of many efficient algo-
rithms (Tarjan, 1977; Camerini et al., 1979; Geor-
giadis, 2003; Chu and Liu, 1965; Bock, 1971; Ed-
monds, 1967). We detail one such algorithm in
Alg 1. Alg 1 can be made to run in O(n2) time for
dense with the appropriate implementation choices,
such as Union-Find (Hopcroft and Ullman, 1973)
to maintain membership of nodes to contracted
nodes, as well as radix sort (Knuth, 1973) to sort in-
coming edges to contracted nodes; using a regular
sort would add a factor of log n to the runtime.

10We have lightly modified the original theorem. For com-
pleteness, App. A provides a proof in our notation.



4812

Algorithm 1
1: def opt(G) : . Find G∗ ∈ A(G) or G† ∈ A†(G)

2: if
−A
G has a cycle C : . Recursive case

3: return opt
(
G/C

)
# C(j)

4: else . Base case
5: if we require a dependency tree (§2.2) :
6: return constrain(G)
7: else
8: return

−A
G

9: def constrain(G) : . Find G† ∈ A†(G);
−A
G ∈ A(G).

10: σ ← set of ρ’s outgoing edges in
−A
G

11: if |σ| = 1 : return
−A
G . Root constraint satisfied

12: G′ ← argmax
e∈σ:G′′=G\\e

w(
−A
G′′) . Find best edge removal

13: if
−A
G′ has cycle C : . Reduction case

14: return constrain(G/C) # C(j)

15: else . Optimization case
16: return constrain(G′)

2.2 Finding the best dependency tree
Gabow and Tarjan (1984) propose an algorithm
that does additional recursion at the base case of
opt(G) (the additional if-statement at Line 5) to
recover G† instead of G∗.

Suppose that the set of edges emanating from the

root in
−A
G is given by σ and |σ| > 1. We consider

removing each edge in (ρ−Aj) ∈ σ from G. Since
G may have multiple edges from ρ to j, we write
G\\e to mean deleting all edges with the same edge
points as e. LetG′ be the graphG\\e′ where e′ ∈ σ
is chosen greedily to maximize w(

−A
G′). Consider

the two possible cases:
Optimization case. If G′ has no critical cycles,

then
−A
G′ must be the best arborescence with one

fewer edges emanating from the root than
−A
G by

our greedy choice of e′.
Reduction case. If G′ has a critical cycle C, then

all edges inC that do not point to j are in
−A
G . If e′ /∈

G†, then C is critical cycle in the context of con-
strained problem and so we can apply Theorem 1 to
recoverG†. Otherwise, e ∈ G† and we can breakC
at j to get C(j), which is comprised of edges in

−A
G .

Therefore, we can find (G/C)† to retrieve G†. This
notion is formalized in the following theorem.11

Theorem 2. For any graph G with G∗=
−A
G , let σ

be the set of outgoing edges from ρ in G∗. If |σ|=
1, then G† = G∗. Otherwise, let G′ = G\\e′ for

e′ ∈ σ that maximizes w(
−A
G′), then either G†=G′†

or there exists a critical cycle C in G′ such that
11For completeness, App. B provides a proof of Theorem 2.

100 101 102 103

Training set size (t; log-scale)

100

101

M
al

fo
rm

ed
ra

te
(m

;l
og

-s
ca

le
) m≈ 3.947 · t−0.408

Figure 3: Proportion of malformed trees when decod-
ing pre-trained models (Qi et al., 2020) for languages
with varying training set sizes.

G†= (G/C)† # C(j) where j is the entrance site
of (G/C)†.

Theorem 2 suggests a recursive strategy
constrain (Alg 1) for finding G† given G∗. Gabow
and Tarjan (1984, Theorem 7.1) prove that such a
strategy will execute in O(n2) and so when com-
bined with opt(G) (Alg 1) leads to a O(n2) run-
time for findingG† given a graphG. The efficiency
of the algorithm amounts to requiring a bound of
O(n) calls to constrain that will lead to the reduc-
tion case in order to obtain any number optimiza-
tion cases. Each recursive call does a linear amount
of work to search for the edge to remove and to
stitch together the results of recursion. Rather than
computing the greedy graph from scratch, imple-
mentations should exploit that each edge removal
will only change one element of the greedy graph.

Thus, we can find w(
−−−A
G\\e′) in constant time.

3 Experiment

How often do state-of-the-art parsers generate mal-
formed dependency trees? We examined 63 Univer-
sal Dependency Treebanks (Nivre et al., 2018) and
computed the rate of malformed trees when decod-
ing using edge weights generated by pre-trained
models supplied by Qi et al. (2020). On average,
we observed that 1.80% of trees are malformed.
We were surprised to see that—although the edge-
factored model used is not expressive enough to
capture the root constraint exactly—there are useful
correlates of the root constraint in the surface form
of the sentence, which the model appears to use to
workaround this limitation. This becomes further
evident when we examine the relative change12 in
UAS (0.0083%) and exact match scores (0.60%)

12The relative difference is computed with respect to the
unconstrained algorithm’s scores.



4813

Setting # Languages Malformed rate Rel. ∆ UAS Rel. ∆ Exact Match

High 20 0.63% 0.0041% 0.15%
Medium 32 1.02% 0.0012% 0.22%
Low 11 6.21% 0.0368% 2.91%

Table 1: Average malformed rate, relative UAS change, and relative exact match score change for different data
settings. The 63 languages are split by their training set size |train| into high (|train| ≥ 10, 000), medium
(1, 000 ≤ |train| < 10, 000), and low (|train| < 1, 000).

102 103 104 105

Training set size (log-scale)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e
U

A
S

ch
an

ge
(%

)

102 103 104 105

Training set size (log-scale)

0

5

10

15

20

R
el

at
iv

e
ex

ac
tm

at
ch

sc
or

e
ch

an
ge

(%
)

Figure 4: Relative change in UAS and exact match score when using the unconstrained and constrained algorithms
for languages with varying training set sizes.

when using the constrained algorithm as opposed
to the unconstrained algorithm.

Nevertheless, given less data, it is harder to
learn to exploit the surface correlates; thus, we
see an increasing average rate of violation, 6.21%,
when examining languages with training set sizes
of less than 1, 000 sentences. Similarly, the relative
change in UAS and exact match score increases
to 0.0368% and 2.91% respectively. Indeed, the
worst violation rate was 24% was seen for Kur-
manji which only contains 20 sentences in the train-
ing set. Kurmanji consequently had the largest rel-
ative changes to both UAS and exact match scores
of 0.41% and 22.22%. We break down the mal-
formed rate and accuracy changes by training size
in Tab. 1. Furthermore, the correlation between
training size and malformed tree rate can be seen in
Fig. 3 while the correlation between training size
and relative accuracy change can be seen in Fig. 4.
We provide a full table of the results in App. C.

4 Conclusion

In this paper, we have bridged the gap between
the graph-theory and dependency parsing literature.
We presented an efficient O(n2) for finding the
maximum arborescence of a graph. Furthermore,
we highlighted an important distinction between

dependency trees and arborescences, namely that
dependency trees are arborescences subject to a
root constraint. Previous work uses inefficient al-
gorithms to enforce this constraint. We provide a
solution which runs inO(n2). Our hope is that this
paper will remind future research in dependency
parsing to please mind the root.

Acknowledgments

We would like to thank all reviewers for their valu-
able feedback and suggestions. The first author is
supported by the University of Cambridge School
of Technology Vice-Chancellor’s Scholarship as
well as by the University of Cambridge Department
of Computer Science and Technology’s EPSRC.

References
Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlı́na

Jı́nová, Václava Kettnerová, Veronika Kolářová,
Marie Mikulová, Jiřı́ Mı́rovský, Anna Nedoluzhko,
Jarmila Panevová, Lucie Poláková, Magda
Ševčı́ková, Jan Štěpánek, and Šárka Zikánová.
2013. Prague dependency treebank 3.0.

F. C. Bock. 1971. An algorithm to construct a mini-
mum directed spanning tree in a directed network.
Developments in Operations Research.

http://ufal.mff.cuni.cz/pdt3.0


4814

Paolo M. Camerini, Luigi Fratta, and Francesco Maf-
fioli. 1979. A note on finding optimum branchings.
Networks, 9(4).

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph. Science
Sinica, 14.

Caio Corro, Joseph Le Roux, Mathieu Lacroix, An-
toine Rozenknop, and Roberto Wolfler Calvo. 2016.
Dependency parsing with bounded block degree
and well-nestedness via Lagrangian relaxation and
branch-and-bound. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 355–
366, Berlin, Germany. Association for Computa-
tional Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the International Conference
on Learning Representations.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
Vancouver, Canada. Association for Computational
Linguistics.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards,
Section B: Mathematics and Mathematical Physics,
71(4).

Harold N. Gabow and Robert Endre Tarjan. 1984. Effi-
cient algorithms for a family of matroid intersection
problems. Journal of Algorithms, 5(1).

Leonidas Georgiadis. 2003. Arborescence optimiza-
tion problems solvable by Edmonds’ algorithm.
Theoretical Computer Science, 301(1-3).

John E. Hopcroft and Jeffrey D. Ullman. 1973. Set
merging algorithms. SIAM J. Comput., 2(4).

Richard M. Karp. 1971. A simple derivation of Ed-
monds’ algorithm for optimum branchings. Net-
works, 1(3).

Donald E. Knuth. 1973. The Art of Computer Program-
ming, Volume III: Sorting and Searching. Addison-
Wesley.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction mod-
els via the matrix-tree theorem. In Proceedings of
the Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL).

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective MST parsing. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:

Long Papers), Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, John
Bauer, Sandra Bellato, Kepa Bengoetxea, Yev-
geni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad
Bhat, Erica Biagetti, Eckhard Bick, Rogier Blok-
land, Victoria Bobicev, Carl Börstell, Cristina
Bosco, Gosse Bouma, Sam Bowman, Adriane
Boyd, Aljoscha Burchardt, Marie Candito, Bernard
Caron, Gauthier Caron, Gülşen Cebiroğlu Eryiğit,
Flavio Massimiliano Cecchini, Giuseppe G. A.
Celano, Slavomı́r Čéplö, Savas Cetin, Fabricio
Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun,
Silvie Cinková, Aurélie Collomb, Çağrı Çöltekin,
Miriam Connor, Marine Courtin, Elizabeth David-
son, Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Carly Dickerson, Pe-
ter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Marhaba Eli, Ali
Elkahky, Binyam Ephrem, Tomaž Erjavec, Aline
Etienne, Richárd Farkas, Hector Fernandez Al-
calde, Jennifer Foster, Cláudia Freitas, Katarı́na
Gajdošová, Daniel Galbraith, Marcos Garcia, Moa
Gärdenfors, Sebastian Garza, Kim Gerdes, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökırmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
munds Grūzı̄tis, Bruno Guillaume, Céline Guillot-
Barbance, Nizar Habash, Jan Hajič, Jan Hajič jr.,
Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag Haug,
Barbora Hladká, Jaroslava Hlaváčová, Florinel
Hociung, Petter Hohle, Jena Hwang, Radu Ion,
Elena Irimia, O. lájı́dé Ishola, Tomáš Jelı́nek, An-
ders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara,
Sylvain Kahane, Hiroshi Kanayama, Jenna Kan-
erva, Boris Katz, Tolga Kayadelen, Jessica Ken-
ney, Václava Kettnerová, Jesse Kirchner, Kamil
Kopacewicz, Natalia Kotsyba, Simon Krek, Sooky-
oung Kwak, Veronika Laippala, Lorenzo Lam-
bertino, Lucia Lam, Tatiana Lando, Septina Dian
Larasati, Alexei Lavrentiev, John Lee, Phuong
Lê H`ông, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying
Li, KyungTae Lim, Nikola Ljubešić, Olga Logi-
nova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina
Mărănduc, David Mareček, Katrin Marheinecke,
Héctor Martı́nez Alonso, André Martins, Jan

https://doi.org/10.18653/v1/P16-1034
https://doi.org/10.18653/v1/P16-1034
https://doi.org/10.18653/v1/P16-1034
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/S0304-3975(02)00888-5
https://doi.org/10.1016/S0304-3975(02)00888-5
https://doi.org/10.1137/0202024
https://doi.org/10.1137/0202024
https://doi.org/10.1002/net.3230010305
https://doi.org/10.1002/net.3230010305
https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066


4815

Mašek, Yuji Matsumoto, Ryan McDonald, Gus-
tavo Mendonça, Niko Miekka, Margarita Misir-
pashayeva, Anna Missilä, Cătălin Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Keiko Sophie Mori, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Yugo Murawaki, Kaili Müürisep,
Pinkey Nainwani, Juan Ignacio Navarro Horñiacek,
Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lu-
ong Nguy˜ên Thi., Huy`ên Nguy˜ên Thi. Minh, Vitaly
Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina
Ojala, Adédayo. Olúòkun, Mai Omura, Petya Osen-
ova, Robert Östling, Lilja Øvrelid, Niko Partanen,
Elena Pascual, Marco Passarotti, Agnieszka Pate-
juk, Guilherme Paulino-Passos, Siyao Peng, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitu-
lainen, Emily Pitler, Barbara Plank, Thierry Poibeau,
Martin Popel, Lauma Pretkalniņa, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Ti-
ina Puolakainen, Sampo Pyysalo, Andriela Rääbis,
Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit Ravishankar,
Livy Real, Siva Reddy, Georg Rehm, Michael
Rießler, Larissa Rinaldi, Laura Rituma, Luisa
Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide
Rovati, Valentin Ros, ca, Olga Rudina, Jack Rueter,
Shoval Sadde, Benoı̂t Sagot, Shadi Saleh, Tanja
Samardžić, Stephanie Samson, Manuela Sanguinetti,
Baiba Saulı̄te, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolf-
gang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shi-
mada, Muh Shohibussirri, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Kiril Simov, Aaron Smith,
Isabela Soares-Bastos, Carolyn Spadine, Antonio
Stella, Milan Straka, Jana Strnadová, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Yuta
Takahashi, Takaaki Tanaka, Isabelle Tellier, Trond
Trosterud, Anna Trukhina, Reut Tsarfaty, Francis
Tyers, Sumire Uematsu, Zdeňka Urešová, Larraitz
Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van
Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars
Wallin, Jing Xian Wang, Jonathan North Washing-
ton, Seyi Williams, Mats Wirén, Tsegay Wolde-
mariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
Zeldes, Daniel Zeman, Manying Zhang, and Hanzhi
Zhu. 2018. Universal dependencies 2.3. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the Association
for Computational Linguistics: System Demonstra-
tions.

Robert Endre Tarjan. 1977. Finding optimum branch-
ings. Networks, 7(1).

UD Contributors. Root relation in universal dependen-

cies. https://universaldependencies.org/
u/dep/root.html. Accessed: 2020-05-30.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2020.
Efficient computation of expectations under span-
ning tree distributions. Transactions of the Associ-
ation for Computational Linguistics.

http://hdl.handle.net/11234/1-2895
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://doi.org/10.1002/net.3230070103
https://doi.org/10.1002/net.3230070103
https://universaldependencies.org/u/dep/root.html
https://universaldependencies.org/u/dep/root.html
https://arxiv.org/abs/2008.12988
https://arxiv.org/abs/2008.12988


4816

A Proof of Theorem 1

To prove Theorem 1, we note a correspondence between graphs and contracted graphs.

Proposition 1. Given a rooted graph G and a (not necessarily critical) cycle C in G. For any A ∈ A(G)
that has a single edge e = (i

w−A j) ∈ A such that i /∈ C and j ∈ C, there exists AC ∈ A(G/C) and

A′ ∈ A(G
(j)
C ) such that A = AC # A′. Furthermore,

w(A) = w(AC)− w(C(j)) + w(A′) (4)

Proof. Since e is the only edge in A from a non-cycle node to a cycle node (enter), every edge e′ ∈ G/C
such that π(e′) ∈ A forms an arborescence AC ∈ A(G/C). Note that the set of edges in A for which
there is no corresponding edge in G/C are dead edges. In fact, as A satisfies (C1), these edges form an

arborescence A′ ∈ A(G
(j)
C ). Therefore, A = AC # A′.

Furthermore, consider the weight of A:

w(A) =
∑

(i′
w′−Aj′)∈π(AC)

w′ + w(A′) (5)

=
∑

(i′
w′−Aj′)∈π(ACr{e})

w′ + w + w(A′) (6)

=
∑

(i′
w′−Aj′)∈ACr{e}

w′ + w + w(A′) (7)

=
∑

(i′
w′−Aj′)∈AC

w′ − w(C(j)) + w(A′) (8)

= w(AC)− w(C(j)) + w(A′) (9)

Note that (7) follows because e is the only edge in A from a non-cycle node to a cycle node, and (8)
follows by the construction of enter edges in G/C .

As a corollary, we also have that every arborescence in the contracted graph G/C can be expanded into
an arborescence in G.

Corollary 1 (Expansion lemma). Given a rooted graph G with a cycle C, every arborescence AC ∈
A(G/C) is related to an arborescence A ∈ A(G) by A = AC # C(j) where j is the entrance site of AC .
Furthermore w(A) = w(AC).

Proof. Let j be the entrance site of AC into C. As AC ∈ A(G/C) and C(j) ∈ A(G
(j)
C ), Proposition 1

constructs A ∈ Aρ(G) as desired. Furthermore, w(A) = w(AC)− w(C(j)) + w(C(j)) = w(AC).

Note that Proposition 1 does not account for all arborescences in A(G). We next show that such
arborescences which cannot be constructed using Proposition 1 will never be G∗.

Lemma 1. Given a rooted graph G with a critical cycle C. We have that for all j ∈ C
G

(j)
C

∗
= C(j) (10)

Proof. Since G(j)
C is a subgraph of G it must be that

−−A
G

(j)
C is also a subgraph of

−A
G . Since C is a critical

cycle, C(j) does not have cycles and equals
−−A
G

(j)
C . Therefore C(j) = G

(j)
C

∗
.

Lemma 2. Given a rooted graph G with a critical cycle C and A ∈ A(G). If e = (i−A j) ∈ A and
e′ = (i′−A j′) such that i, i′ /∈ C and j, j′ ∈ C, then there exists a A′ ∈ A(G) with e ∈ A′ and e′ /∈ A′
such that w(A) ≤ w(A′).



4817

Proof. Construct A′ such that for every edge e′′ = (i′′ −A j′′) ∈ G/C , if j′′ 6= c and π(e′′) ∈ A, then
π(e′′) ∈ A′. Additionally, let e be in A′ as well as the edges in C(j). Then A′ has no cycles and each
non-root node contains a single incoming edge, so A′ ∈ A(G). Since A and A′ contain identical edges
except for those pointing to nodes in C r {j}, by Lemma 1, w(A) ≤ w(A′).

Theorem 1. For any graph G, either G∗ =
−A
G or G contains a critical cycle C and G∗ = (G/C)∗ # C(j)

where j is the entrance site of (G/C)∗. Furthermore, w(G/C
∗) = w(G∗).

Proof. There are two cases to consider.

Case 1: G does not contain a critical cycle. Trivially, G∗ =
−A
G .

Case 2: G contains a critical cycleC. By Corollary 1, we can construct an arborescenceA = (G/C)∗ #

C(j) ∈ A(G), we now prove that no other A′ ∈ A(G) can have a higher weight. Firstly, by Lemma 2,
we only need to consider A′ that satisfy Proposition 1. Therefore, A′ must be decomposable into an
arborescence AC ∈ A(G/C) and an arborescence in A(G

(j′)
C ) where j′ is the entrance site of AC . Then

since (G/C)∗ is optimal, we have that AC = (G/C)∗ and j′ = j. As C(j) is optimal (by Lemma 1), A
must also be optimal and so G∗ = (G/C)∗ # C(j).



4818

B Proof of Theorem 2

We prove Theorem 2 by showing that both the optimization and reduction cases described in the main text
lead to progress towards finding G†.

Lemma 3. For any graph G with G∗ =
−A
G , let σ be the set of outgoing edges from ρ in

−A
G . If

|σ|> 1, let G′ =G\\e′ for e′ ∈ σ that maximizes w(
−A
G′). If there exists a critical cycle C in G′, then

G†=(G/C)† # C(j) where j is the entrance site of (G/C)†.

Proof. Let e′ = (ρ−A i) and e ∈ G/C such that π(e) = e′. We know that e always exists as e′ emanates
from the root. By Corollary 1, we know that A = (G/C)† # C(j) ∈ A(G) where j is the entrance site of
(G/C)†. Furthermore, As C has no edges emanating from the root, A ∈ A†(G). There are two cases to
consider:

Case 1 (e ∈ (G/C)†): As C(j) is a subgraph of
−A
G , A must have the highest weight in A†(G), so

G† = A.
Case 2 (e /∈ (G/C)†): Then e′ cannot be in G†, and the edge pointing to i in C is the next best possible

edge incoming to j. Therefore, whichever way we break C in A, we will get a set of edges with maximal
weight and so G† = A.

Lemma 4. For any graph G with G∗ =
−A
G , let σ be the set of outgoing edges from ρ in

−A
G . If |σ|>1, let

G′=G\\e′ for e′ ∈ σ that maximizes w(
−A
G′). Either G†=G′† or there exists a critical cycle C in G′ such

that G†=(G/C)† # C(j) where j is the entrance site of (G/C)†.

Proof. Let j be the entrance site of (G/C)†. Proof by induction on r = |σ|.
Base case (r = 2): If G′ does not contain a critical cycle, then clearly G′† = G′∗. Since we choose

e′ to maximize
−A
G′ and G′ is a subgraph of G, G† = G′†. Otherwise, G′ has a critical cycle C. Then by

Lemma 3, G† = (G/C)† # C(j) .

Inductive case (r > 2): Let σ′ be the set of outgoing edge from ρ in
−A
G′. Then clearly |σ′| = r−1 > 1.

If G′ does not contain a critical cycle, then G′∗ =
−A
G′ and we satisfy the induction hypothesis. Otherwise,

G′ has a critical cycle C. Then by Lemma 3, G† = (G/C)† # C(j).

Theorem 2. For any graph G with G∗=
−A
G , let σ be the set of outgoing edges from ρ in G∗. If |σ|=1,

then G†=G∗, otherwise if G′=G\\e′ for e′ ∈ σ that maximizes w(
−A
G′), then either G†=G′† or there

exists a critical cycle C in G′ such that G†=(G/C)† # C(j) where j is the entrance site of (G/C)†.

Proof. There are two cases to consider.
Case 1 (|σ| = 1): Then G∗ has one edge emanating from the root so clearly G† = G∗.
Case 2 (|σ| > 1). This is immediate from Lemma 4.



4819

C Decoding UD Treebanks

Language |Train| |Test| Malformed Rate Rel. ∆ UAS Rel. ∆ Exact Match

Czech 68495 10148 0.45% 0.000% 0.052%
Russian 48814 6491 0.49% 0.000% 0.027%
Estonian 24633 3214 0.93% 0.000% 0.448%
Korean 23010 2287 0.96% 0.008% 0.366%
Latin 16809 2101 0.52% 0.018% 0.151%
Norwegian 15696 1939 0.52% -0.014% 0.000%
Ancient Greek 15014 1047 0.57% 0.026% 0.186%
French 14450 416 1.68% -0.021% 0.546%
Spanish 14305 1721 0.17% 0.002% 0.000%
Old French 13909 1927 0.52% 0.031% 0.145%
German 13814 977 1.54% 0.040% 0.495%
Polish 13774 1727 0.00% 0.000% 0.000%
Hindi 13304 1684 0.18% -0.009% 0.000%
Catalan 13123 1846 0.54% 0.002% 0.000%
Italian 13121 482 0.21% -0.010% 0.000%
English 12543 2077 0.48% 0.004% 0.217%
Dutch 12264 596 0.67% 0.039% 0.000%
Finnish 12217 1555 0.39% -0.010% 0.000%
Classical Chinese 11004 2073 0.96% -0.010% 0.304%
Latvian 10156 1823 0.88% -0.012% 0.000%
Bulgarian 8907 1116 0.27% 0.000% 0.000%
Slovak 8483 1061 0.38% 0.008% 0.000%
Portuguese 8328 477 0.42% 0.000% 0.000%
Romanian 8043 729 0.41% 0.000% 0.000%
Japanese 7125 550 0.00% 0.000% 0.000%
Croatian 6914 1136 0.88% 0.027% 0.000%
Slovenian 6478 788 0.38% -0.022% 0.000%
Arabic 6075 680 0.29% 0.004% 0.000%
Ukrainian 5496 892 0.90% 0.032% 0.000%
Basque 5396 1799 0.67% 0.018% 0.000%
Hebrew 5241 491 1.02% 0.009% 0.556%
Persian 4798 600 0.67% -0.007% 0.000%
Indonesian 4477 557 1.26% -0.029% 0.000%
Danish 4383 565 0.53% -0.011% 0.000%
Swedish 4303 1219 1.23% 0.021% 0.988%
Old Church Slavonic 4124 1141 1.05% 0.000% 0.128%
Urdu 4043 535 1.12% -0.029% 0.000%
Chinese 3997 500 1.80% -0.020% 0.000%
Turkish 3664 983 2.54% 0.080% 0.513%
Gothic 3387 1029 0.78% 0.011% 0.000%
Serbian 3328 520 0.19% 0.009% 0.446%
Galician 2272 861 1.16% 0.011% 1.282%
North Sami 2257 865 1.27% 0.000% 0.230%
Armenian 1975 278 0.00% 0.000% 0.000%
Greek 1662 456 0.44% 0.020% 0.565%
Uyghur 1656 900 0.56% 0.024% 0.309%
Vietnamese 1400 800 3.38% -0.076% 0.000%
Afrikaans 1315 425 6.35% 0.011% 1.460%
Wolof 1188 470 1.49% -0.021% 0.625%
Maltese 1123 518 0.58% -0.010% 0.000%
Telugu 1051 146 0.00% 0.000% 0.000%
Scottish Gaelic 1015 536 0.75% -0.024% 0.000%
Hungarian 910 449 4.23% 0.022% 0.000%
Irish 858 454 2.42% 0.000% 0.000%
Tamil 400 120 0.00% 0.000% 0.000%
Marathi 373 47 2.13% 0.000% 0.000%
Belarusian 319 253 0.79% 0.024% 0.000%
Lithuanian 153 55 7.27% -0.317% 0.000%
Kazakh 31 1047 2.58% -0.016% 3.226%
Upper Sorbian 23 623 6.42% 0.178% 2.439%
Kurmanji 20 734 23.57% 0.405% 22.222%
Buryat 19 908 6.61% 0.107% 4.082%
Livvi 19 106 12.26% 0.000% 0.000%

Table 2: Accompanying table for §3


