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Abstract

Knowledge of a disease includes information
of various aspects of the disease, such as signs
and symptoms, diagnosis and treatment. This
disease knowledge is critical for many health-
related and biomedical tasks, including con-
sumer health question answering, medical lan-
guage inference and disease name recognition.
While pre-trained language models like BERT
have shown success in capturing syntactic, se-
mantic, and world knowledge from text, we
find they can be further complemented by spe-
cific information like knowledge of symptoms,
diagnoses, treatments, and other disease as-
pects. Hence, we integrate BERT with dis-
ease knowledge for improving these important
tasks. Specifically, we propose a new dis-
ease knowledge infusion training procedure
and evaluate it on a suite of BERT models in-
cluding BERT, BioBERT, SciBERT, Clinical-
BERT, BlueBERT, andALBERT. Experiments
over the three tasks show that these models can
be enhanced in nearly all cases, demonstrat-
ing the viability of disease knowledge infusion.
For example, accuracy of BioBERT on con-
sumer health question answering is improved
from 68.29% to 72.09%, while new SOTA re-
sults are observed in two datasets. We make
our data and code freely available.1

1 Introduction

Human disease is “a disorder of structure or function
in a human that produces specific signs or symp-
toms” (Oxford-English-Dictionary, 2020). Dis-
ease is one of the fundamental biological enti-
ties in biomedical research and consequently it is
frequently searched for in the scientific literature
(Islamaj Dogan et al., 2009) and on the internet
(Brownstein et al., 2009).

Knowledge of a disease includes information
about various aspects of the disease, like the signs

1https://github.com/heyunh2015/diseaseBERT

Table 1: Disease knowledge of COVID-19 is presented
from three aspects: symptoms, diagnosis and treatment
(based on Wikipedia).

Disease Aspect Information

COVID-19 symptoms
Fever is the most common symptom,
but highly variable in severity and
presentation, with some older...

COVID-19 diagnosis
The standard method of testing is
real-time reverse transcription poly-
merase chain reaction (rRT-PCR)...

COVID-19 treatment
People are managed with supportive
care, which may include fluid therapy,
oxygen support, and supporting...

and symptoms, diagnosis, and treatment (Saleem
et al., 2012;Urnes et al., 2008;Du Jeong et al., 2017).
As an example, Table 1 highlights several aspects
for COVID-19. Specialized disease knowledge
is critical for many health-related and biomedical
natural language processing (NLP) tasks, including:

• Consumer health question answering (Abacha
et al., 2019) - the goal is to rank candidate
passages for answering questions like “What
is the diagnosis of COVID-19?” as shown in
Figure 1a;

• Medical language inference (Romanov and
Shivade, 2018) - the goal is to predict if a
given hypothesis (description of a patient) can
be inferred from a given premise (another
description of the patient);

• Disease name recognition (Doğan et al., 2014)
- the goal is to detect disease concepts in text.

For these tasks, it is critical for NLP models
to capture disease knowledge, that is the semantic
relations between a disease-descriptive text and its
corresponding aspect and disease:

• As shown in Figure 1a, if models can seman-
tically relate “...real-time reverse transcrip-

https://github.com/heyunh2015/diseaseBERT
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tion polymerase chain reaction...” (disease-
descriptive text) to the diagnosis (aspect) of
COVID-19 (disease), it is easier for them to
pick up the most relevant answer among the
candidates.

• Likewise, as shown in Figure 1b, if models
know that the premise is the symptoms (aspect)
of Aphasia (disease) in the hypothesis, they
can easily predict that it is entailment not
contradiction.

• Another example is shown in Figure 1c, if mod-
els can semantically relate “CTG expansion’
to the cause (aspect) of Myotonic dystrophy
(disease), it is easier for them to detect this
disease.

In a nutshell, NLPmodels require the disease knowl-
edge for these disease-related tasks.

Recently, a new style of knowledge learning and
leveraging has shaken NLP field with dramatic suc-
cesses, enabled by BERT (Devlin et al., 2019) and
its variants (Yang et al., 2019; Liu et al., 2019b;
Raffel et al., 2019; Lan et al., 2020). These mod-
els capture language and world knowledge (Qiu
et al., 2020; Rogers et al., 2020) in their parame-
ters via self-supervised pre-training over large-scale
unannotated data and then leverage these knowl-
edge in further fine-tuning over downstream tasks.
Moreover, many biomedical BERT models such as
BioBERT (Lee et al., 2020) are proposed, which are
pre-trained over biomedical corpora via a masked
language model (MLM) that predicts randomly
masked tokens given their context. This MLM
strategy is designed to capture the semantic re-
lations between random masked tokens and their
context, but not the disease knowledge. Because
the corresponding disease and aspect might not be
randomly masked or might not be mentioned at all
in the disease-descriptive text, the semantic rela-
tions between them cannot be effectively captured
via MLM. Therefore, a new training strategy is
required to capture this disease knowledge.
In this paper, we propose a new disease knowl-

edge infusion training procedure to explicitly aug-
ment BERT-like models with the disease knowl-
edge. The core idea is to train BERT to infer the
corresponding disease and aspect from a disease-
descriptive text, enabled by weakly-supervised sig-
nals from Wikipedia. Given a passage extracted
from a section (normally describes an aspect) of a
disease’sWikipedia article, BERT is trained to infer

Question: …keen to learn how to get COVID-19 diagnosed, many thanks

Answer 1: ... real-time reverse transcription polymerase chain reaction...
Answer 2: ... diagnosis of vipoma requires demonstration of diarrhea...
Answer 3: ...affected by this disorder are not able to make lipoproteins…

Label: Answer 1 is the most relevant
Disease Knowledge: Answer 1 is the diagnosis of COVID-19

(a) Consumer Health Question Answering

Premise: She was not able to speak, but appeared to comprehend well

Hypothesis: Patient had aphasia
Label: entailment
Disease Knowledge: Premise describes the symptoms of aphasia

(b) Medical Language Inference

Text: Myotonic dystrophy (DM) is caused by a CTG expansion in the 3 
untranslated region of the DM gene.

Label: Myotonic dystrophy 
Disease Knowledge: the text contains the cause of Myotonic dystrophy 

(c) Disease Name Recognition

Figure 1: Examples of tasks that can benefit from dis-
ease knowledge.

the title of the corresponding section (aspect name)
and the title of the corresponding article (disease
name). For example, in Table 1, given “...testing
is real-time reverse transcription polymerase chain
reaction (rRT-PCR)...”, BERT is trained to infer
that this passage is from the section “diagnosis" of
the article “COVID-19”. Moreover, because some
passages do not mention the disease and aspect,
we construct auxiliary sentences that contain the
disease and aspect, such as “What is the diagnosis
of COVID-19?" and insert this sentence at the be-
ginning of the corresponding passage. After that,
we mask the disease and aspect in the auxiliary
sentence and then let BERT-like models infer them
given the passage. In this way, BERT learns how to
semantically relate a disease-descriptive text with
its corresponding aspect and disease.
To evaluate the quality of disease knowledge in-

fusion, we conduct experiments on a suite of BERT
models – including BERT, BlueBERT, Clinical-
BERT, SciBERT, BioBERT, and ALBERT – over
consumer health question (CHQ) answering, med-
ical language inference, and disease name recog-
nition. We find that (1) these models can be en-
hanced in nearly all cases. For example, accuracy
of BioBERT on CHQ answering is improved from
68.29% to 72.09%; and (2) our method is supe-
rior to MLM for infusing the disease knowledge.
Moreover, new SOTA results are observed in two
datasets. These results demonstrate the potential
of disease knowledge infusion into pre-trained lan-
guage models like BERT.
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2 Related Work

Knowledge-Enriched BERT: Incorporating exter-
nal knowledge into BERT has been shown to be
effective. Such external knowledge includes world
(factual) knowledge for tasks such as entity typ-
ing and relation classification (Zhang et al., 2019;
Peters et al., 2019; Liu et al., 2019a; Xiong et al.,
2019), sentiment knowledge for sentiment analysis
(Tian et al., 2020; Yin et al., 2020), word sense
knowledge for word sense disambiguation (Levine
et al., 2019), commonsense knowledge for com-
monsense reasoning (Klein and Nabi, 2020) and
sarcasm generation (Chakrabarty et al., 2020), le-
gal knowledge for legal element extraction (Zhong
et al., 2020), numerical skills for numerical reason-
ing (Geva et al., 2020), and coding knowledge for
code generation (Xu et al., 2020).
Biomedical BERT: BERT can also be enriched
with biomedical knowledge via pre-training over
biomedical corpora like PubMed, as in BioBERT
(Lee et al., 2020), SciBERT (Beltagy et al., 2019),
ClinicalBERT (Alsentzer et al., 2019) and Blue-
BERT (Peng et al., 2019). These biomedical BERT
models report new SOTA performance on several
biomedical tasks. Disease knowledge, of course, is
a subset of biomedical knowledge. However, there
are two key differences between these biomedical
BERT models and our work: (1) Many biomedical
BERT models are pre-trained via BERT’s default
MLM that predicts 15% randomly masked tokens.
In contrast, we propose a new training task: disease
knowledge infusion, which infers the disease and
aspect from the corresponding disease-descriptive
text; (2) Biomedical BERT models capture the gen-
eral syntactic and semantic knowledge of biomed-
ical language, while our work is specifically de-
signed for capturing the semantic relations between
a disease-descriptive text and its corresponding as-
pect and disease. Experiments reported in Section 4
show that our proposed method can improve the
performance of each of these biomedical BERT
models, demonstrating the importance of disease
knowledge infusion.
Biomedical Knowledge Integration Methods
with UMLS: Previous non-BERTmethods connect
data of downstream tasks with knowledge bases
like UMLS (Sharma et al., 2019; Romanov and
Shivade, 2018). For example, they map medical
concepts and semantic relationships in the data to
UMLS. After that, these concepts and relationships
are encoded into embeddings and incorporated into

models (Sharma et al., 2019). The advantage is
that they can explicitly incorporate knowledge into
models. However, these methods have been out-
performed by biomedical BERT models such as
BioBERT in most cases.

Table 2: Eight aspects of knowledge of a disease that
are considered in this work.

Aspect Name Definition

Information The general information of a disease.
Causes The causes of a disease.
Symptoms The signs and symptoms of a disease.
Diagnosis How to test and diagnose a disease.
Treatment How to treat and manage a disease.
Prevention How to prevent a disease.
Pathophysiology The physiological processes of a disease.
Transmission The means by which a disease spread.

3 Proposed Method: Disease Knowledge
Infusion Training

In this section, we propose a new training task: Dis-
ease Knowledge Infusion Training. Our goal is to
integrate BERT-like pre-trained language models
with disease knowledge to achieve better perfor-
mance on a variety of medical domain tasks includ-
ing answering health questions, medical language
inference, and disease name recognition. Our ap-
proach is guided by three questions: Which diseases
and aspects should we focus on? How do we infuse
disease knowledge into BERT-like models? What
is the objective function of this training task?

3.1 Targeting Diseases and Aspects
First, we seek a disease vocabulary that provides
disease terms. Several resources include Medical
Subject Headings2 (MeSH) (Lipscomb, 2000), the
National Cancer Institute thesaurus (De Coronado
et al., 2004), SNOMED CT (Donnelly, 2006), and
Unified Medical Language System (UMLS) (Bo-
denreider, 2004). Each has a different scope and
design purpose, and it is an open question into
which is most appropriate here. As a first step,
we select MeSH, which is a comprehensive con-
trolled vocabulary proposed by the National Library
of Medicine (NLM) to index journal articles and
books in the life sciences, composed of 16 branches
like anatomy, organisms, and diseases. We collect
all unique disease terms from the Disease (MeSH
tree number C01-C26) and Mental Disorder branch
(MeSH tree number F01), resulting in 5,853 total
disease terms.

2https://meshb.nlm.nih.gov/treeView

https://meshb.nlm.nih.gov/treeView
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Passage: The WHO has published several testing protocols for the disease. The standard 
method of testing is real-time reverse transcription polymerase chain reaction (rRT-PCR)...

New Passage for MLM: What is the [MASK] of [MASK]? The WHO has published several 
testing protocols for the disease. The standard method of testing is real-time reverse 
transcription polymerase chain reaction (rRT-PCR)...

Auxiliary Sentence: What is the diagnosis of COVID-19? 5. Construct an auxiliary sentence that mentions the subject
disease and aspect.

3. Extract text from a section
as the passage.

6. Concatenate the passage
and the auxiliary Sentence.
BERT is trained to infer the
disease and aspect.

1. Obtain disease
terms fromMeSH

2. Obtain Articles of
diseases from Wikipedia

Disease: COVID-19 (title of the Wikipedia article) 4. Extract the weakly-supervised topic disease and aspect for
the passage.

Aspect: Diagnosis (title of the section)

Figure 2: Disease Knowledge Infusion Training: An example with COVID-19.

Knowledge of a disease involves information
about various aspects of the disease (Saleem et al.,
2012; Urnes et al., 2008; Du Jeong et al., 2017).
For each aspect, we focus on text alone (excluding
images or other media). Following Abacha and
Demner-Fushman (2019), we consider eight disease
aspects as shown in Table 2.

3.2 Weakly Supervised Knowledge Infusion
from Wikipedia

Given the target set of diseases and aspects, the
next challenge is how to infuse knowledge of the
aspects of these diseases into BERT-like models.
We propose to train BERT to infer the correspond-
ing disease and aspect from a disease-descriptive
text. By minimizing the loss between the predicted
disease and aspect and the original disease and
aspect, the model should memorize the semantic
relations between the disease-descriptive text and
its corresponding disease and aspect.
A straightforward approach is to mask and pre-

dict the disease and aspect in the disease-descriptive
text. However, this strategy faces two problems:
(1) Given a passage extracted from disease-related
papers, clinical notes, or biomedical websites, the
ground-truth of its topic (i.e., disease and aspect)
is difficult to identify. Medical expert annotation
is time-consuming and expensive; while automatic
annotation can suffer from large errors. For ex-
ample, we need to recognize disease names in the
passage, which is yet another challenging and still
open problem in biomedical text mining (Doğan
et al., 2014); (2) Diseases and aspects mentioned in
a passage are not necessarily the topic words. Mul-
tiple disease names or aspect names might appear,
making it difficult to determine which is the correct
topic. For example, in Table 1, the symptoms of
COVID-19 also mentions fever3, while the correct
topic is COVID-19.

3Fever is included in the disease branch of MeSH.

Weakly-Supervised Knowledge Source: Instead
of annotating an arbitrary disease-related passage,
we exploit the structure of Wikipedia as a weakly-
supervised signal. In many cases, each disease’s
Wikipedia article consists of several sections where
each introduces an aspect of the disease (like di-
agnosis). For example, step 2 in Figure 2 shows
several aspects on the Wikipedia page for COVID-
19. By extracting the passage from each section,
the title of the section (e.g., diagnosis) is the topic
aspect of the passage and the title of the article is
the topic disease (e.g., COVID-19). Specifically,
we search Wikipedia to obtain the articles for the
5,853 target disease terms from MeSH and apply
regular expressions to extract the text of the sections
corresponding to the appropriate aspects. In total,
we collect a disease knowledge resource consisting
of 14,617 passages.4 In fact, there are other online
resources5 with the similar structure. As a first step,
we start with Wikipedia.

Auxiliary Sentences for Disease and Aspect Pre-
diction: The second problem is that the extracted
passages do not necessarily mention the correspond-
ing disease and the aspect. For example, in Table
1, the disease name “COVID-19” does not appear
in the information of its symptoms. In the disease
knowledge resource, we find that only 51.4% of
passages mention both the corresponding diseases
and aspects. Hence, we cannot simply mask-and-
predict the disease and aspect because the passage
does not mention them at all.
A remedy for this problem is an auxiliary sen-

tence that contains the corresponding disease and
aspect for each passage. We use a template of
question style: “What is the [Aspect] of [Disease]?”
to automatically generate auxiliary sentences as
shown in step 5 in Figure 2. Some examples are

4Note that each disease article does not necessarily have
all eight target aspects.

5https://medlineplus.gov/skincancer.html

https://medlineplus.gov/skincancer.html
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shown in Table 3. The advantage of this question
style template is that the cloze statement of the
auxiliary sentences for all aspects (except for the
“information” aspect) are the same (What is the
[MASK] of [MASK]?). Hence, the auxiliary sen-
tences provide no clues (i.e., bias) for predicting
the corresponding aspect.

Table 3: Examples of auxiliary sentences

Aspect Name Auxiliary Sentence

Diagnosis What is the diagnosis of COVID-19?
Treatment What is the treatment of COVID-19?
Prevention What is the prevention of COVID-19?
Transmission What is the transmission of COVID-19?
Cloze Statement What is the [MASK] of [MASK]?

After that, we replace the corresponding disease
and aspect with the special token [MASK] in the
auxiliary sentences. Then, we insert the auxil-
iary sentence at the beginning of its corresponding
passage to form a new passage with a question-and-
answer style as shown in Figure 2, where BERT is
trained to predict the original tokens of the masked
disease and aspect.

3.3 Training Objective and Details
Finally, we show the objective function of disease
infusion training. Since most disease names are out
of BERT vocabulary, the WordPiece tokenizer (Wu
et al., 2016) will split these terms into sub-word
tokens that exist in the vocabulary. For example,
“COVID-19" will be split into 4 tokens: “co", “vid",
“-" and “19". Formally, let - = (G1, ..., G) ) denote
a sequence of ) tokens that are split from a disease
name where GC is the C-th token. The original cross-
entropy loss is to get the conditional probability of
a masked token as close as possible to the 1-hot
vector of the token:

L38B40B4 = −
)∑
C=1

;>6 ?(GC |?0BB064) (1)

where ?(GC |2>=C4GC) is a conditional probability
over GC given the corresponding passage, which can
be defined as:

?(GC |?0BB064) =
4G?(IC )∑
I∈V 4G?(I) (2)

where V is the vocabulary and IC is the unnor-
malized log probability of GC . Let yC denote the
embedding of token GC from the output layer of
BERT. We can estimate IC via:

IC = w·yC+1 (3)

where the weightw and bias 1 are learnable vectors.
Note that the vocabulary size of BERT is around

30,000 which means masked language modeling
task is a 30,000 multi-class problem. The logits
(like IC ) after the normalization of softmax (Equa-
tion 2) will be pretty small (the expectation of mean
should be around 1/30,000=3.3*e-5), which might
cause some obstacles for the learning. Therefore,
we also maximize the raw logits (like IC ) before
softmax normalization which might keep more use-
ful information. Empirically, we add the reciprocal
of the logits to the cross-entropy loss:

L38B40B4 = −
)∑
C=1

;>6?(GC |?0BB064)+
V∑)

C=1 IC
(4)

where V balances the two parts of the loss. The
final objective function is combined with the loss
of the disease and aspect: L = L38B40B4+L0B?42C

where L0B?42C = −;>6 ?(0 |?0BB064) and 0 is the
token of the aspect name. By minimizing this loss
function, BERT can update its parameters to store
the disease knowledge.

4 Experiments

In this section, we examine disease knowledge
infusion into six BERT variants over three disease-
related tasks: health question answering, medical
language inference, and disease name recognition.

Reproducibility: The code and data in this paper
is released.6 A model is firstly initialized with the
pre-trained parameters from BERT or its variants
and then is further trained by disease knowledge
infusion to capture the disease knowledge. We use
a widely used Pytorch implementation7 of BERT
and Adam as the optimizer. We empirically set
learning rate as 1e-5, batch size as 16 and V as
10. Because MeSH (5,853 disease terms) is chosen
as the disease vocabulary in our experiments, as
a smaller vocabulary compared with others like
UMLS (540,000 disease terms), we obtain a rel-
atively small dataset of 14,617 passages. Hence,
the training of disease knowledge infusion is as
fast as fine-tuning BERT over downstream datasets,
which takes 2-4 epochs to enhance BERT for a
better performance on downstream tasks, which
will be discussed in Section 4.5. The training is
performed on one single NVIDIA V100 GPU and

6https://github.com/heyunh2015/diseaseBERT
7https://github.com/huggingface/

transformers

https://github.com/heyunh2015/diseaseBERT
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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it takes about 10 minutes to complete one training
epoch using BERT-base architecture. The repro-
ducibility for fine-tuning over downstream tasks
will be detailed in Section 4.2.

4.1 BERT and its Biomedical Variants
We consider six BERTmodels: two pre-trained over
general language corpora (BERT and ALBERT)
and four pre-trained over biomedical corpora (Clin-
ical BERT, BioBERT, BlueBERT and SciBERT).

BERT (Devlin et al., 2019) is a multi-layer bidirec-
tional Transformer encoder. Since the following
biomedical versions of BERT are often based on the
BERT-base architecture (12 layers and 768 hidden
embedding size with 108M parameters), we choose
BERT-base here for fair comparison.
ALBERT8 (Lan et al., 2020) compresses the ar-
chitecture of BERT by factorized embedding pa-
rameterization and cross-layer parameter sharing.
Via this compression, ALBERT can have a sub-
stantially higher capacity than BERT, with stronger
performance on many tasks. We choose the maxi-
mum version ALBERT-xxlarge (12 layers and 4096
hidden embedding size with 235M parameters).
BioBERT9 (Lee et al., 2020) is the first BERT
pre-trained on biomedical corpora. It is initialized
with BERT’s pre-trained parameters (108M) and
then further trained over PubMed abstracts (4.5B
words) and PubMed Central full-text articles (13.5B
words). We choose the best version BioBERT v1.1.
ClinicalBERT10 (Alsentzer et al., 2019) is a BERT
model initialized from BioBERT v1.0 (Lee et al.,
2020) and further pre-trained over approximately
2 million notes in the MIMIC-III v1.4 database of
patient notes (Johnson et al., 2016). We adopt the
best performing version of ClinicalBERT (108Mpa-
rameters) based on discharge summaries of clinical
notes: Bio-Discharge Summary BERT.
BlueBERT11 (Peng et al., 2019) is firstly initial-
ized from BERT (108M parameters) and further
pre-trained over a biomedical corpus of PubMed
abstracts and clinical notes (Johnson et al., 2016).
SciBERT12 (Beltagy et al., 2019) is a BERT-base
(108M parameters) model pre-trained on a random
sample of the full text of 1.14M papers from Se-
mantic Scholar (Ammar et al., 2018), with 18% of

8https://huggingface.co/albert-xxlarge-v2
9https://github.com/dmis-lab/biobert
10https://huggingface.co/emilyalsentzer
11https://github.com/ncbi-nlp/bluebert
12https://huggingface.co/allenai/scibert_

scivocab_uncased

Table 4: Summary of Tasks and Datasets.

Datasets Train Dev Test

MEDIQA-2019 208 (1, 701)1 25 (234) 150 (1,107)
TRECQA-2017 254 (1,969) 25 (234) 104 (839)

MEDNLI 11, 2322 1,395 1,422

BC5CDR-disease 4, 1823 4,244 4,424
NCBI 5,145 787 960

1, Questions with associated answers; 2, Pairs of premise
and hypothesis; 3, Disease name mentions

papers from the computer science domain and 82%
from the biomedical domain.

4.2 Tasks
We test disease knowledge infusion over three
biomedical NLP tasks. The dataset statistics are in
Table 4. For fine-tuning of BERT and its variants,
the batch size is selected from [16, 32] and learning
rate is selected from [1e-5, 2e-5, 3e-5, 4e-5, 5e-5].

Task 1: Consumer Health Question Answering.
The objective of this task is to rank candidate
answers for consumer health questions.
Datasets. We consider two datasets: MEDIQA-
2019 (Ben Abacha et al., 2019) and TRECQA-2017
(Abacha et al., 2017).13 MEDIQA-2019 is based
on questions submitted to the consumer health
QA system CHiQA14. TRECQA-2017 is based
on questions submitted to the National Library of
Medicine. Medical experts manually re-ranked the
original retrieved answers and provide Reference
Score (1 to 11) and Reference Rank (4: Excellent, 3:
Correct but Incomplete, 2: Related, 1: Incorrect).
Fine-tuning. MEDIQA-2019 and TRECQA-2017
are used as the fine-tuning dataset for each other.
MEDIQA-2019 also contains a validation set for
tuning hyper-parameters for both datasets. Fol-
lowing Xu et al. (2019), the task is cast as a
regression problem where the target score is:
B2>A4 = Reference Score−Reference Rank−1

<
where

< is the number of candidate answers. Each
question-answer pair is packed as a single sequence
as the input for BERT. A single linear layer is on top
of the output embedding of the special token [CLS]
to generate the predicted score. MSE is adopted
as the loss and we use Adam as the optimizer. All
hyper-parameters are tuned on the validation set in
terms of accuracy, where we set the batch size as
16 and learning rate as 1e-5.

13https://sites.google.com/view/mediqa2019
14https://chiqa.nlm.nih.gov/

https://huggingface.co/albert-xxlarge-v2
https://github.com/dmis-lab/biobert
https://huggingface.co/emilyalsentzer
https://github.com/ncbi-nlp/bluebert
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://sites.google.com/view/mediqa2019
https://chiqa.nlm.nih.gov/
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Table 5: Experimental Results

Tasks Consumer Health Question Answering NLI NER

Datasets MEDIQA-2019 TRCEQA-2017 MEDNLI BC5CDR NCBI

Metrics(%) Accuracy MRR Precision Accuracy MRR Precision Accuracy F1 F1

BERT 64.95 82.72 66.49 74.61 56.17 52.55 75.95 83.09 85.14
BERT + disease* 66.40↑ 83.33↑ 68.94↑ 75.33↑ 56.41↑ 54.01↑ 77.29↑ 83.47↑ 86.81↑
BlueBERT 65.13 81.50 67.35 74.26 48.40 52.55 82.21 85.73 87.78
BlueBERT + disease 68.47↑ 81.17 71.57↑ 77.59↑ 50.96↑ 57.62↑ 83.90↑ 86.30↑ 87.79↑
ClinicalBERT 67.30 84.78 70.59 77.00 52.56 56.62 81.50 84.90 87.25
ClinicalBERT + disease 69.02↑ 88.94↑ 69.84 78.90↑ 54.97↑ 60.40↑ 81.65↑ 85.63↑ 87.22

SciBERT 68.47 84.47 68.07 77.23 54.57 57.54 80.94 86.16 87.24
SciBERT + disease 73.35↑ 85.44↑ 76.28↑ 79.02↑ 56.57↑ 59.57↑ 82.14↑ 86.34↑ 88.30↑
BioBERT 68.29 83.61 72.78 77.12 49.84 57.25 81.86 85.99 87.70
BioBERT + disease 72.09↑ 87.78↑ 74.40↑ 78.43↑ 54.76↑ 58.45↑ 82.21↑ 86.52↑ 87.14

ALBERT 76.54 88.46 81.41 75.09 58.57 53.03 85.48 84.28 87.56
ALBERT + disease 79.49↑ 90.00↑ 84.02↑ 80.10↑ 57.21 62.40↑ 86.15↑ 84.71↑ 87.69↑
SOTA* 78.00 93.67 81.91 77.23 54.57 57.54 84.00 87.15 89.71

* SOTA, state-of-the-art as of May 2020, to the best of our knowledge.
* “ + disease" means that we train BERT via disease knowledge infusion training before fine-tuning.

SOTA. The state-of-the-art (SOTA) performance
on MEDIQA-2019 is achieved by Xu et al. (2019),
which is an ensemble method. Because TRECQA-
2017 is fine-tuned on MEDIQA-2019, which is
different from the original settings (Abacha et al.,
2017) (BERT had not been proposed at that time),
we use the best result of SciBERT among the BERT
models as SOTA for TRECQA-2017.
Task 2: Medical Language Inference. The goal
of this task is to predict whether a given hypothesis
can be inferred from a given premise.
Datasets. MEDNLI (Romanov and Shivade, 2018)
is a natural language inference dataset for the clini-
cal domain.15 For each premise (a description of a
patient) selected from clinical notes (MIMIC-III),
clinicians generate three hypotheses: entailment
(alternate true description of the patient), contradic-
tion (false description of the patient), and neutral
(alternate description that might be true).
Fine-tuning. Following Peng et al. (2019), we pack
the premise and hypothesis together into a single
sentence. A linear layer is on top of the output
embedding of [CLS] to generate logits. Cross-
entropy loss function is adopted, and we use Adam
as the optimizer. All hyper-parameters are tuned on
the validation set in terms of accuracy, where we
set the batch size as 32 and learning rate as 1e-5.
SOTA. To the best of our knowledge, the state-
of-the-art on MEDNLI is achieved by BlueBERT,

15https://physionet.org/content/mednli/1.0.
0/

reported in Peng et al. (2019).

Task 3: Disease Name Recognition. This task is
to detect disease names from free text.
Datasets. BC5CDR16 (Wei et al., 2016) and
NCBI17 (Doğan et al., 2014) are collections of
PubMed titles and abstracts. Medical experts an-
notate diseases mentioned in the collection. Since
BC5CDR includes both chemicals and diseases, we
focus on diseases in this dataset.
Fine-tuning. Following Peng et al. (2019), we cast
this task as a token-level tagging (classification)
problem, where each token is classified into three
classes: B (beginning of a disease), I (inside of a
disease) or O (out of a disease). Cross-entropy is
adopted as the loss function and we use Adam as
the optimizer. All hyper-parameters are tuned on
the validation set in terms of F1, where we set the
batch size as 32 and learning rate as 5e-5.
SOTA. The best performance is achieved by
BioBERT v1.1, reported in Lee et al. (2020)18.

4.3 Results

The experimental results are presented in Table
5. We show each original model and its disease

16https://github.com/ncbi-nlp/BLUE_Benchmark
17https://www.ncbi.nlm.nih.gov/CBBresearch/

Dogan/
18Although SciBERT reports a better result in NCBI, it uses

a conditional random field on top of BERT, which is more
complicated than the linear layer normally used in fine-tuning
for BERT models including BioBERT.

https://physionet.org/content/mednli/1.0.0/
https://physionet.org/content/mednli/1.0.0/
https://github.com/ncbi-nlp/BLUE_Benchmark
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/
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knowledge infused variant (e.g,. BERT and BERT
+ disease). We have two main findings:

Effectiveness of Disease Infusion. First, by infus-
ing disease knowledge via our new training regimen,
we see a significant improvement in nearly all cases.
For example, ALBERT + disease achieves 80.10%
in terms of accuracy which is superior to 75.09% by
ALBERTalone onTRECQA-2017. Standing on the
shoulders of ALBERT, disease knowledge infusion
leads to state-of-the-art results on MEDIQA-2019
and MEDNLI, to the best of our knowledge. Al-
though BERT and ALBERT are pre-trained on all
of Wikipedia, including the articles of diseases,
they might not pay enough attention to the disease
part since Wikipedia is so large. Hence, disease
knowledge infusion that leverages the Wikipedia
structure to capture the disease knowledge is a com-
plement for BERT and ALBERT. Moreover, it is
encouraging to see the improvements of disease
knowledge infusion in biomedical BERT models,
even though these variants are already pre-trained
over large-scale biomedical corpora like PubMed
with access to comprehensive disease information.
This improvement demonstrates that the disease
knowledge captured by our method – that is, the
semantic relations between a disease-descriptive
text and its corresponding aspect and disease – is
different from the general linguistic knowledge in
the biomedical domain captured by the randomly
masked tokens prediction strategy of these biomedi-
cal BERT models. To sum up, the results show that
the proposed disease knowledge infusion method
can effectively complement BERT and its biomed-
ical variants and hence improve the performance
on health question answering, medical language
inference, and disease name recognition.

Effectiveness of Biomedical BERT Models. We
also observe that BERT models pre-trained on
biomedical corpora outperform the same BERT
architecture that is pre-trained on general language
corpora. For example, BioBERT achieves 68.29%
in terms of accuracy on MEDIQA-2019 while
BERT only obtains 64.95%. This demonstrates
that with the same model architecture, pre-training
on biomedical corpora can capture more biomed-
ical language knowledge that improves BERT for
downstream biomedical tasks.19

19Note that our results for the biomedical BERT models in
Table 5 are slightly different from the results reported in the
original papers that normally only provide a search range for
hyper-parameters and not the specific optimal ones.

Table 6: Ablation Study on MEDIQA-2019

Variants Accuracy MRR Precision

Default 79.49 90.00 84.02
- Auxiliary Sentence 78.23 90.89 78.10
- Aspect Prediction 78.41 89.06 80.00
- Disease Prediction 72.90 85.72 79.44
15% Randomly Masked Tokens 77.06 87.33 85.18

In addition, we find that a high-capacity model
like ALBERT can achieve similar performance
as biomedical BERT models on TRECQA-2017,
BC5CDR and NCBI, and even better performance
on MEDIQA-2019 and MEDNLI. This observation
might motivate new biomedical pre-trained models
based on larger models like ALBERT-xxlarge.

4.4 Ablation Study

We present the results of an ablation study on
MEDIQA-2019 in Table 6. Similar results are ob-
served on other datasets but omitted here due to the
space limitation. We first remove “Auxiliary Sen-
tence”. That is, we remove the auxiliary question:
“What is the [Aspect] of [Disease]?” and let BERT
to predict the corresponding disease and aspect in
the original passage if they appear. We observe
worse results in terms of accuracy and precision,
which shows that the auxiliary sentence is an effec-
tive remedy for the problem that some passages do
not mention their disease and aspects. We also re-
move aspect prediction or disease prediction in the
auxiliary sentence; both lead to worse results but
removing disease prediction leads to a much lower
performance. This shows that it is more important
for BERT to infer the disease than the aspect from
the passage. We also pre-train BERT on the same
corpus (the disease-related passages) as our method.
Following Devlin et al. (2019), we randomly mask
15% tokens in each sentence and let BERT to pre-
dict them. As shown in “15% Randomly Masked
Tokens", we observe that our proposed disease infu-
sion training task outperforms the default masked
language model in BERT. This shows that our ap-
proach that leverages the structure of Wikipedia
article to enhance the disease knowledge infusion
works better than simply adding more data to the
training process. Specifically, via leveraging the
Wikipedia structure, we could effectively mask key
words like aspect names and disease names that
are related to disease knowledge and hence more
effective than randomly masking strategy over the
simply added data.
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Figure 3: Learning curve of disease infusion knowl-
edge. The y-axis is the accuracy of BERT models over
MEDIQA-2019.

4.5 Learning Curve
In this section, we present the learning curve of
our proposed disease infusion training task. The
x-axis denotes the training epochs and the y-axis
denotes the performance of BERT models that are
augmented with disease infusion training at that
epoch. We take BioBERT and MEDIQA-2019 as
examples; similar results are obtained in other mod-
els over other tasks. The results in terms of accuracy
are presented in Figure 3, where we observe that (1)
disease knowledge infusion takes only three epochs
to achieve the optimal performance on BioBERT
over the CHQ answering task. (2) cross-entropy
loss used by disease knowledge infusion can be
enhanced by adding the term of maximizing the
raw logits (Equation 4).

5 Conclusions

In this paper, we propose a new disease infu-
sion training procedure to augment BERT-like
pre-trained language models with disease knowl-
edge. We conduct this training procedure on a suite
of BERT models and evaluate them over disease-
related tasks. Experimental results show that these
models can be enhanced by this disease infusion
method in nearly all cases.
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