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Abstract

When humans read or listen, they make im-
plicit commonsense inferences that frame their
understanding of what happened and why. As
a step toward AI systems that can build sim-
ilar mental models, we introduce GLUCOSE,
a large-scale dataset of implicit commonsense
causal knowledge, encoded as causal mini-
theories about the world, each grounded in a
narrative context. To construct GLUCOSE,
we drew on cognitive psychology to identify
ten dimensions of causal explanation, focus-
ing on events, states, motivations, and emo-
tions. Each GLUCOSE entry includes a story-
specific causal statement paired with an infer-
ence rule generalized from the statement. This
paper details two concrete contributions. First,
we present our platform for effectively crowd-
sourcing GLUCOSE data at scale, which uses
semi-structured templates to elicit causal ex-
planations. Using this platform, we collected
a total of ˜670K specific statements and gen-
eral rules that capture implicit commonsense
knowledge about everyday situations. Second,
we show that existing knowledge resources
and pretrained language models do not include
or readily predict GLUCOSE’s rich inferential
content. However, when state-of-the-art neural
models are trained on this knowledge, they can
start to make commonsense inferences on un-
seen stories that match humans’ mental mod-
els.

1 Introduction

Humans make countless implicit commonsense in-
ferences about everyday situations. For example,
consider the following short story from the ROC-
Stories corpus (Mostafazadeh et al., 2016): Gage
was riding his bike. A car turned in front of him.
Gage turned his bike sharply. He fell off of his
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bike. Gage skinned his knee. When even young
children read this story, they construct a coherent
representation of what happened and why, combin-
ing information from the text with relevant back-
ground knowledge (Kintsch and Van Dijk, 1978).
For example, they can construct the causal chain
that explains how the car’s unexpected turn ulti-
mately led to Gage falling, describe how Gage’s
emotion and location changed throughout the story,
and even hypothesize that he likely shouted for help
after falling.

Though humans build such mental models with
ease (Zwaan et al., 1995), AI systems for tasks such
as reading comprehension and dialogue remain far
from exhibiting similar commonsense reasoning
capabilities. Two major bottlenecks have been ac-
quiring commonsense knowledge and successfully
incorporating it into state-of-the-art AI systems. To
address the first bottleneck, we have built an ef-
fective platform to acquire causal commonsense
knowledge at scale. To address the second, we
show that pre-trained neural models can start to
make similar inferences when trained on such rich
curated data.

We introduce the GLUCOSE1 (GeneraLized and
COntextualized Story Explanations) dataset. Given
a short story and a sentence X in the story, GLU-
COSE captures ten dimensions of causal explana-
tion related to X . These dimensions, inspired by
human cognitive psychology, cover often-implicit
causes and effects of X , including events, location,
possession, and other attributes, the vast majority
of which are not captured by existing resources

1Human brain functions such as thinking, memory, and
learning are closely linked to the glucose levels and how ef-
ficiently the brain uses this fuel source (Mergenthaler et al.,
2013). If there is not enough glucose in the brain, neurotrans-
mitters are not produced and communication between neurons
breaks down. We are calling this resource GLUCOSE, since
we believe AI brains need this source of fuel to enable their
basic thinking and fill in their reasoning gaps!
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Dimension Semi-structured Specific Statement and Inference Rule: antecedent connective consequent

1: Event that
directly causes
or enables X

A car turned in front of him Causes/Enables Gage turned his bike
subject verb preposition object subject verb object

SomethingA turns in front of SomethingB (that is SomeoneA’s vehicle) Causes/Enables

subject verb preposition object

SomeoneA turns SomethingB away from SomethingA

subject verb object1 preposition object2

2: Emotion or
basic human
drive that
motivates X

Gage wants safety Causes/Enables Gage turned his bike
subject verb object subject verb object

SomeoneA wants safety Causes/Enables SomeoneA moves away from SomethingA (that is dangerous)
subject verb object subject verb preposition object

3: Location
state that
enables X

Gage was close to a car Enables Gage turned his bike away from the car
subject verb preposition object subject verb object1 preposition object2

SomeoneA is close to SomethingA Enables SomeoneA moves away from SomethingA

subject verb preposition object subject verb preposition object

4: Possession
state that
enables X

Gage possesses a bike Enables Gage turned his bike
subject verb object subject verb object

SomeoneA possesses SomethingA Enables SomeoneA moves SomethingA

subject verb object subject verb object

5: Other attributes enabling X: N/A (the dimension is not applicable for this example)

6: Event that X
directly causes
or enables

Gage turned his bike Causes/Enables He fell off his bike
subject verb object subject verb object

SomeoneA turns SomethingB (that is SomeoneA’s vehicle) Causes/Enables SomeoneA falls off SomethingB

subject verb object subject verb object

7: An emotion that is caused by X: N/A

8: A change in
location that X
results in

Gage turned his bike away from the car Results in Gage was further from the car
subject verb object1 preposition object2 subject verb object1 preposition object2

SomeoneA moves away from SomethingA Results in SomeoneA is further from SomethingA

subject verb preposition object subject verb preposition object

9: A change of possession that X results in: N/A

10: Other changes in property that X results in: N/A

Table 1: Entries in the GLUCOSE dataset that explain the Gage story around the sentence X= Gage turned his
bike sharply. White and gray rows show specific statements and general rules, respectively. The syntactic slots
used for constructing each semi-structured entry are shown underneath it.

and models. Importantly, GLUCOSE encodes
commonsense knowledge in the form of semi-
structured inference rules2 (mini-theories about
the world), each grounded in a specific story. As
the examples in Table 1 demonstrate, the specific
statements exemplify how the general rules can be
grounded in a particular context.

To facilitate acquisition at scale, we designed an
effective multi-stage crowdsourcing platform and
used it to acquire more than 670K GLUCOSE an-
notations in the context of children’s stories. Our
analysis shows that these explanations extend sub-
stantially beyond the scope of the existing knowl-
edge resources.

Given the breadth of commonsense knowledge

2We will use “inference rule” and “explanation” inter-
changeably: the “explanations” we are interested in are infer-
ence rules that explain a given sentence’s causes and effects.

needed for real-world inference tasks, no static
knowledge source is expected to provide sufficient
coverage. GLUCOSE’s key contribution is en-
abling models to dynamically produce general in-
ference rules to explain novel scenarios. To sys-
tematically evaluate such models, we present an
evaluation task where given a story S, a sentence
X , and dimension d, a model predicts relevant spe-
cific and general rules as captured in GLUCOSE.
We evaluate on the task using a curated test set,
based on novel stories not used for any training
purposes. We show a strong correlation between
human and automatic evaluation metrics, which
makes systematic and reliable evaluation of models
feasible. We show that pre-trained neural models
perform poorly on the task; however, when fine-
tuned on GLUCOSE data, they are able to gener-
ate commonsense explanations that rival humans’.
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This finding supports our hypothesis that a promis-
ing recipe for giving machines commonsense is to
use quality-monitored crowdsourced commonsense
knowledge for training neural models that have pre-
existing lexical and conceptual knowledge.

2 Related Work

Recently, there has been a renewed interest in com-
monsense reasoning (Talmor et al., 2019; Tandon
et al., 2019; Rashkin et al., 2018a; Zellers et al.,
2018), further fostered by the increasing need for
explainable AI systems (Yang et al., 2018).

One well-known type of commonsense knowl-
edge is script knowledge, defined by Schank and
Abelson (1977) as structured knowledge about
stereotypical event sequences and their partici-
pants. However, manual encoding of such knowl-
edge is notoriously unscalable and brittle. A
more recent line of work is unsupervised learn-
ing of “narrative schemas” (Chambers and Juraf-
sky, 2008, 2009; Balasubramanian et al., 2013;
Sha et al., 2016), where common event sequences
are automatically induced from large corpora.
While promising, this approach has not produced
high-quality knowledge usable for downstream
tasks at scale (Mostafazadeh et al., 2016). Fur-
thermore, since commonsense knowledge is of-
ten implicit, such corpus-based methods are un-
likely to induce implicit commonsense inferences
(Gordon and Van Durme, 2013). In contrast,
our data collection framework has enabled us
to acquire high-quality and robust commonsense
knowledge, including often unstated rules such
as “SomeoneA gives SomeoneB SomethingA Re-
sults in SomeoneB possesses SomethingA” or
“SomeoneA is at SomewhereA Enables SomeoneA
puts SomethingA at SomewhereA”.

The most fruitful efforts to date for acquiring
commonsense knowledge have been crowdsourced
knowledge resources. ConceptNet (Speer et al.,
2017), a partially-crowdsourced resource, is a rela-
tional knowledge graph that connects short natural-
language phrases via semantic edges. Most Con-
ceptNet knowledge is taxonomic, consisting of
factoids like “apple is a fruit”, however, it also
includes some causal relations, e.g., “kill is mo-
tivated by revenge.” Despite its broad coverage,
ConceptNet has been found to be noisy (Zhou et al.,
2019). Its knowledge also lacks context, hampering
accurate application at inference time, e.g., “kill
requires eat breakfast” is hard to make sense of

without more context.

A more directly relevant resource is ATOMIC
(Sap et al., 2019), which consists of 877K textual
descriptions of if-then knowledge. Each entry de-
scribes a likely cause/effect of one of 24K+ events.
ATOMIC entries are organized into nine categories
such as xIntent (PersonX’s intention) and xEffect
(effect on PersonX). For instance, “PersonX makes
PersonY’s coffee xEffect PersonX gets thanked”.
ATOMIC is a great step forward in acquiring high-
quality inferential knowledge. However, it has
two main shortcomings. First, ATOMIC is non-
contextual and conflates knowledge about an event
that may have occurred under different scenarios,
which hinders interpreting and applying the knowl-
edge in context. For example, the event “PersonX
arrives the next day” has xIntents “to go on vaca-
tion” and “to attend a reunion,” and xEffects “get
time to relax” and “meet some friends.” Although
each xIntent should be associated with only one of
the xEffects, such dependencies are not encoded in
ATOMIC. As a result, ATOMIC cannot be used
to determine which xEffect is more likely given an
xIntent. GLUCOSE addresses this by grounding
each piece of inferential knowledge to a particular
story context consistent across dimensions.

Second, events and relations in ATOMIC are
person centric; agentless events are not covered,
and each relation is either about PersonX or Per-
sonY. As a result, ATOMIC cannot describe events
involving common entity types such as places,
things, or groups of people, nor can it encode
causes and effects other than to PersonX and their
peers. In GLUCOSE, sentence X can describe any
event/state, and GLUCOSE general rules can re-
fer to indexed variables such as “SomeoneA” or
“SomewhereC .” Beyond these major shortcomings,
ATOMIC also does not cover many commonsense
knowledge types in GLUCOSE, including change
of attributes such as location, which will be further
discussed in Section 4.3.

3 The Knowledge Model of GLUCOSE

GLUCOSE has a unique take on explaining story
events. As illustrated in Table 1, each story is
explained through ten causal dimensions. The semi-
structured explanation for each dimension includes
both a specific statement and a general rule.
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3.1 Causal Dimensions of Explanation

One of our main contributions is the identification
of ten causal dimensions of explanation in the con-
text of narratives, for which we can reliably collect
high quality data from lay crowd workers. Cogni-
tive psychology research on human comprehension
of narratives (Kintsch and Van Dijk, 1978; Zwaan
and Radvansky, 1998; Grazzani et al., 2018) sug-
gests that humans primarily focus on events, their
timeline, locations of entities throughout the story,
causes and motivations of events, and emotional
trajectory of characters.

Based on this research, GLUCOSE dimensions
are designed to focus on causal reasoning around
events and states, eliciting event causal chains, char-
acter motivations, emotions, naive psychology, and
change of attributes such as location and posses-
sions to core story entities. For an event or state X
stated in a sentence, we categorize the dimensions
of causality into events and states happening before
X and those occurring after X . Each category in-
cludes five dimensions, as shown in Table 1. The
precise definition and scope of these ten dimen-
sions are the result of multiple pilot studies with
crowd workers to identify intuitive and distinguish-
able causal dimensions, so that the overlap among
dimensions is minimized and the agreement among
workers is maximized.

3.2 Semi-structured Inference Rules

To uncover what constitutes a good explanation,
we ran several pilot studies exploring how people
define, generate, and present explanations about
short stories. We concluded that in order to achieve
some consensus among explanations and to facili-
tate further processing and evaluation, the explana-
tions should not be entirely free-form. Instead, we
represent them as semi-structured inference rules
whose expressivity lies between free text and log-
ical forms. Each rule takes the form “antecedent
connective consequent,” where the antecedent and
consequent are composed by filling in syntactic
slots for subject, verb, object(s), and preposition(s).
For some dimensions, slot-filling involves choos-
ing from a predefined list, e.g., dimension 2, which
states a motivating emotion or basic human drive,
limits its verb choices to feel, want, and like. De-
tails regarding the slots can be found in Appendix
A.

To eliminate the need for pronoun resolution
when applying our general rules, variables are in-

dexed, such as “SomeoneA” and “SomethingA and
SomethingB”, to refer to the same entities on both
sides of the rule. Each variable can be further
elaborated using an attribute phrase in the form
of a relative clause, e.g., “SomewhereC (that is
SomeoneA’s location).” Our studies indicate that
this format gives the explainers sufficient expres-
sivity to convey their reasoning, yet constrains the
resulting explanations enough to identify common-
alities between them. Note that the semi-structured
rules are deterministically converted to natural lan-
guage form by simply concatenating all the filled
slots. Table 1 shows examples of semi-structured
GLUCOSE explanations.

3.3 Generalized and Contextualized

Each GLUCOSE explanation is stated both as a spe-
cific statement (grounded in a given context) and a
corresponding general rule (applicable to other con-
texts). Research in cognitive psychology suggests
that humans typically choose which of an event’s
many causes to cite based on its relevance to the
context (Miller, 2019). Hence, grounding expla-
nations in context is crucial for acquiring accurate
explanations. Furthermore, it has been shown that
human explanations take situation-specific informa-
tion and link it to pre-existing knowledge about the
world; people explain by appealing to broader the-
ories that enable generalization (Lombrozo, 2006).
Also, there is evidence that explanations and gener-
alizations help scaffold cognitive development in
humans (Busch et al., 2018), which can potentially
play a role in the learning capabilities of AI sys-
tems as well. By explicitly stating general rules as
mini-theories of how the world works, GLUCOSE
seeks to enable better generalization and causal
reasoning in future AI systems.

4 The GLUCOSE Dataset

4.1 Data Acquisition Platform

To enable developing models that can build mental
models of narratives, we aimed to crowdsource a
large, quality-monitored dataset. Beyond the scala-
bility benefits, using crowd workers (as opposed to
a small set of expert annotators) ensures diversity
of thought, thus broadening coverage of a common-
sense knowledge resource.

The annotation task is complex: it requires an-
notators to understand different causal dimensions
in a variety of contexts and to come up with gen-
eralized theories beyond the story context. For
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strict quality control, we designed a three-stage
knowledge acquisition pipeline for crowdsourc-
ing the GLUCOSE dataset on the Amazon Me-
chanical Turk (Mturk) Platform. The workers first
go through a qualification test3 where they must
score at least 90% on 10 multiple-choice questions
on select GLUCOSE dimensions. Next, qualified
workers can work on the main GLUCOSE data
collection task: given a story S and a story sen-
tence X , they are asked to fill in (allowing for non-
applicable) all ten GLUCOSE dimensions, getting
step-by-step guidance from the GLUCOSE data
acquisition UI.4 To ensure data consistency, the
same workers answer all dimensions for an S,X
pair. Finally, the submissions are reviewed by an
expert who rates each worker on a scale from 0
to 3, and provides feedback on how to improve.
Our final UIs are the result of more than six rounds
of pilot studies, iteratively improving the interac-
tion elements, functionality, dimension definitions,
instructions, and examples.5 See Appendix B for
more details on our crowdsourcing pipeline.6

4.2 Dataset Composition and Statistics
Our source of stories for the GLUCOSE dataset is
ROCStories (Mostafazadeh et al., 2016). ROCSto-
ries consists of crowdsourced five-sentence every-
day stories rich in causal and temporal relations,
making them ideal for acquiring commonsense
knowledge. We focus on children’s stories due
to their simpler language and concepts. We com-
puted an estimated target age7 for each story and
sampled from the 5–8 age group. To ensure diverse
viewpoints and hypotheses, each S,X pair was as-
signed to three workers. Data collection statistics
are shown in Table 2 and Figure 1.

As Figure 1 shows, the causal dimensions (1 and
6) have the most representation (18.1% and 16.4%,
respectively). As our examples in Table 1 show,
specific statements for these dimensions sometimes

3GLUCOSE qualification UI: https://bit.ly/34Pej0N
4GLUCOSE main knowledge acquisition UI: https://bit.ly/

2R8XcTt
5Our pilot studies helped narrow our dimensions from 18

down to 10 which workers could reliably distinguish. No-
tably, we collapsed Enable and Cause on which workers had
significant disagreement.

6Additional information about the pipeline and data quality
management can be found at https://tinyurl.com/y2pn5cgl

7Target age of individual stories was judged by age-of-
acquisition and readability tests: Flesch-Kincaid Grade Level,
the Coleman-Liau Index, and the Dale-Chall formula (Kuper-
man et al., 2012). It is important to note that this method
depends on vocabulary and does not ensure that all content is
appropriate for children in this age group.

# total annotations ˜670K
# total pair of rules ˜335K
# total unique stories S 4,881
# workers participated 371
Avg # of submissions by a worker 130.7
Max # of submissions by a worker 3,757
Avg minutes of work time / submission 8.78
Avg payment / submission $1.60
Avg # of dimensions filled in / submission 4.5

Table 2: Statistics about the GLUCOSE dataset.

Figure 1: Number of rules collected for each dimen-
sion. Dimensions 1 and 6 have the most representation,
while dimensions 9 and 10 are most often marked as
not applicable.

define a causal connection over paraphrases of story
sentences8, rather than introduce novel non-story
content in either the antecedent or the consequent.
To estimate how prevalent this phenomenon is, we
manually evaluated 100 random samples of specific
rules for each of dimensions 1 and 6. We found that
for 66% and 63% of the samples, for dimensions
1 and 6 respectively, at least one of the annotators
contributed statements that contained inferences
with non-story content. The new content includes
events that are likely to follow from the story as
well as world knowledge about story entities.

4.3 Comparison to Other Resources

To assess the novelty of GLUCOSE knowledge,
we compared its coverage against that of the two
most relevant commonsense resources: Concept-
Net and ATOMIC.9 We performed a best-effort
mapping from GLUCOSE dimensions to relations
in ConceptNet and ATOMIC. For example, GLU-
COSE dimensions 1 and 6 are mapped to Concept-
Net’s Causes, HasSubevent , HasPrerequisite, and
to ATOMIC’s xEffect and oEffect . For all mappings
see Appendix A.

Since all three resources contain mostly natural-
language entries, it is not possible to automatically
quantify their precise overlap, so we adopted a

8It is important to note that, even if the antecedent and con-
sequent are both in the story, making the causal link between
them explicit is considered to have fulfilled the purpose of
providing common sense knowledge.

9Note that (Rashkin et al., 2018a) and (Rashkin et al.,
2018b) are in essence a subset of ATOMIC, and hence, have
even lower coverage compared with GLUCOSE.

https://bit.ly/34Pej0N
https://bit.ly/2R8XcTt
https://bit.ly/2R8XcTt
https://tinyurl.com/y2pn5cgl
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Dimension 1 2 5 6 7 10

ConceptNet 1.2% 0.3% 0% 1.9% 0% 0%
ATOMIC 7.8% 1.2% 2.9% 5.3% 1.8% 4.9%

Table 3: Ceiling overlap between GLUCOSE and other
resources. Omitted dimensions had no overlap.

lenient evaluation scheme. For each GLUCOSE
general rule10 A relation B, we queried each target
resource for tuples R′(A′, B′), where R′ is the re-
source’s mapped equivalent of relation, and A′ and
B′ consist of just the main verbs inA andB. Using
fuzzy matching on A′ and B′, we retrieved a large
number of hits for the query, then filtered to those
with >50% lexical overlap with the GLUCOSE
rule.

The results, shown in Table 3, represent a ceiling
in overlap with other resources. The results indi-
cate that GLUCOSE captures extensive common-
sense knowledge unavailable in existing resources.
Note that GLUCOSE’s knowledge model is a su-
perset of ATOMIC’s. GLUCOSE is designed to
encompass all nine categories of inferential com-
monsense knowledge that ATOMIC covers, which
are captured across different GLUCOSE dimen-
sions. Note that there are definitely some individ-
ual pieces of knowledge that have been acquired in
ATOMIC which do not exist in GLUCOSE, since
some ATOMIC events may not have appeared in
the GLUCOSE stories.

5 Empirical Evaluation Task

We set up a standalone evaluation task for evaluat-
ing models that predict GLUCOSE explanations:
given a story S, a story sentence X , and a dimen-
sion d, provide an explanation in both specific and
general forms.

Test Set Curation For a test set on common-
sense reasoning to offer accurate and reliable eval-
uation, it should contain unambiguous examples
with clear gold answers. This led to a curation
process that identifies examples on which humans
have high agreement, as follows: we sampled S,X
pairs annotated by any three workers with the high-
est quality rating. A dimension d for S,X was
allowed into the test set if 1) d was annotated by all
three workers, and 2) the three specific statements
had a round-robin average sentence-level BLEU

10We evaluated GLUCOSE’s specific statements against
ConceptNet, with nearly identical results to those in Table 3.

(Lin and Och, 2004) score11 above 0.75. Finally,
two in-house annotators manually removed cases
with typographical or core content errors, resulting
in a test set of 500 story/sentence pairs, each with
1-5 dimensions answered.

Human and Automatic Evaluation Human
evaluation is crucial for any language generation
task. We crowdsourced our human evaluation on
MTurk, using a dedicated UI,12 asking three of our
top-rated crowd workers from the main GLUCOSE
crowdsourcing job to rate the predictions. We set
up the following evaluation process to ensure cali-
brated judgments: the judge first reads a story with
a highlighted sentence X , then reads a question
about X corresponding to a GLUCOSE dimension.
Next, they are shown a shuffled list of candidate
answers, each produced by a different system. Fi-
nally, the judge rates each candidate answer on a
four-point Likert scale: “completely incorrect,” “al-
most incorrect,” “almost correct,” and “completely
correct.” To compare system performance, the rat-
ings are mapped to numerical scores of 0–3, which
are then averaged.

Automatic evaluation for tasks involving lan-
guage generation has been a major bottleneck for
research (Liu et al., 2016; Hashimoto et al., 2019).
BLEU’s ease of replicability has made it a popu-
lar automated metric, but its correlation with hu-
man judgement has proven weak on various tasks
(Novikova et al., 2017; Gatt and Krahmer, 2018).
For automatic evaluation, we use SacreBLEU (Post,
2018) with equal weights up to 4-grams at corpus-
level on the three-reference test set. Using pair-
wise correlation analysis, we found strong correla-
tion between human and BLEU scores on our test
set, with correlation coefficients Spearman = 0.891,
Pearson = 0.855, and Kendall’s τ = 0.705, all with
p-value < 0.001. The high correlation is due to var-
ious design choices, including 1) semi-structured
inference rules in GLUCOSE are designed to be
evaluable, where the structure constrains the vari-
ability of the rules, and 2) we minimized the noise
in our human evaluation by designing a UI that
could collect calibrated ratings from human judges
educated about the task. The strong correlation
suggests that BLEU is a viable metric for reporting
future results on the GLUCOSE test set.

11We averaged the BLEU scores obtained, in round-robin
fashion, by taking one rule as candidate and the other two as
references. We used BLEU with equal weights up to 4-grams.

12GLUCOSE evaluation UI: https://bit.ly/2rJWFwy

https://bit.ly/2rJWFwy


4575

6 Models

We developed several models for tackling the pre-
diction task described in Section 5. The train and
development sets for each model consisted of the
initial 440K total annotations13 (in the context of
3,360 stories) in the GLUCOSE dataset, minus the
entries that share the context story with the test
instances.

Due to their superior performance in sequence
prediction, all our neural models use transformer
blocks (Vaswani et al., 2017), which use multi-
headed attention and fully connected layers to en-
code sequences. For decoding, all models use top-k
random sampling (Fan et al., 2018). Details on all
the models we experimented with can be found in
Appendix C.

6.1 Pretrained Language Model (PT-LM)

PT-LM tests what GLUCOSE-like knowledge is
captured by the pretrained 774M-parameter GPT-2
(Radford et al., 2019) language model. We elicit
commonsense explanations from GPT-2 by prompt-
ing it with the story followed by sentence X and
a dimension-specific trigger word like “because”,
and allowing the model to complete the sentence.
For best results, we implemented “constrained de-
coding” by conditioning the GPT-2 model on the
input S,X as context, then generating the next to-
ken for a dimension d as follows: if dimension d’s
template specifies a set of allowable words at the
current position—e.g., locative prepositions for di-
mensions 3 and 8—sample from the options based
on their likelihood as conditioned on the preceding
tokens. Otherwise, allow sampling freely from the
entire vocabulary. See Appendix C for a list of all
templates used.

6.2 Models Trained on GLUCOSE

6.2.1 Language Models
We finetuned separate language models for spe-
cific and general rules. Each model monolithically
covers all ten GLUCOSE dimensions: it gener-
ates rules given a dimension indicator as input.14

Rules are sampled from the learned distribution
p(s) =

∏n
i=1 p(si | s1, . . . , si−1), where s is the

concatenation of input and output sequences. For

13Table 2 shows the statistics of the final dataset, whereas
all training for the models in the paper were conducted before
the crowdsourcing of the dataset was finished.

14We experimented with training separate models for each
dimension, which yielded much worse results.

all models in this section, we finetuned the PT-LM
model described above.

One-sided Generation (1S-LM) One side of a
GLUCOSE rule—the antecedent or the consequent,
depending on the dimension—is always a para-
phrase and/or a generalization of sentence X . In
the one-sided model, we use X as is for this side
of the specific statement; the model generates only
the target side. Each training example is a text
sequence S#X#d#answer#EOS, where d is the di-
mension number and answer is the target side. At
test time, the model generates answer characters
until it produces an EOS token.

Full Rule Generation (Full-LM) Full-LM
learns to produce the complete rule, including the
connective and the paraphrase of X . Instead of just
the target side of the rule, the training examples
have the full rule as the answer portion of the se-
quence. This allows the model to produce more
human-like rules, including paraphrasing and/or
generalizing X appropriately.

6.2.2 Encoder-Decoder Model (Enc-Dec)
Our most complex model is an encoder-decoder
transformer model that jointly predicts the spe-
cific and general rules. It maximizes p(y | x) =∏n

i=1 p(yi | x; y1, . . . , yi−1), where x is the input
and y is the answer. We obtained the best results
by formulating the input as #d: S∗[X], where d
is the dimension and S∗[X] is the story S with
sentence X surrounded by asterisks. We chose to
finetune the state-of-the-art T5 model (with 770M-
parameters, to be comparable to the size of the
LM model), using the same hyperparameters as in
(Raffel et al., 2020).

7 Results and Discussion

Table 4 shows the results from the models described
in Section 6, evaluated as per Section 5. It shows
that Enc-Dec uniformly outperforms all other mod-
els, confirming that full visibility into context15

helps an architecture better learn the intricacies of
GLUCOSE rules.

In fact, Enc-Dec performs competitively with
humans in many dimensions. The strength of this
model’s performance in predicting both specific

15A clear drawback of language models is that the model’s
representation of the ith item depends only on items preceding
i, and not the full input context. We show that better predic-
tions can be made given full visibility into the entire input
sequence.
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Human evaluation scores for dimension... BLEU scores for dimension...

Model 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

PT-LM 0.7 1.0 1.2 1.0 0.6 0.6 0.6 0.9 0.7 1.1 40.7 36.5 31.3 31.4 30.2 32.1 23.1 37.0 40.9 53.1

1S-LM 2.1 2.3 2.2 2.5 2.1 2.1 2.4 2.5 2.1 1.8 55.1 59.6 50.7 65.2 53.1 57.4 55.4 71.7 56.8 67.2

Full-LM 1.8 2.0 2.0 2.2 1.7 2.0 2.1 2.2 1.6 2.1 54.7 55.3 51.0 64.4 50.5 58.8 66.2 73.4 32.7 67.0
1.6 1.6 1.8 2.1 1.8 1.9 1.9 2.1 1.1 1.5 56.4 55.8 57.5 62.7 59.6 59.0 65.8 67.7 53.7 56.2

Enc-Dec 2.7 2.7 2.6 2.7 2.5* 2.6 2.7 2.8 2.2 2.5* 72.5 73.9 73.8 79.3 70.5 80.2 81.1 86.6 71.7 66.9
2.3 2.3 2.4 2.5 2.3 2.4 2.5 2.7 1.9 1.7* 66.4 67.6 68.5 73.0 69.8 77.6 76.8 86.8 68.6 57.5

Human 2.8 2.7* 2.8 2.9 2.5* 2.8 2.8 2.8 2.9* 3.0 N/A
2.5 2.6 2.4 2.6 2.4 2.6 2.6 2.6 2.6* 2.7 N/A

Table 4: Evaluation results for GLUCOSE models. Human evaluation scores are out of 3; BLEU scores are out of
100. Gray and regular rows show results on general and specific rules, respectively. Human model’s performance
was computed by showing judges a randomly selected answer from the three gold references. We performed
paired sample t-tests on the human evaluation scores for each dimension for Full-LM against Enc-Dec, and then
again for Enc-Dec against Human. The vast majority of differences are statistically significant at p < 0.05, with
the exceptions noted in asterisk. Note that the dimensions where performance differences are not statistically
significant strongly correlate with those with the least amount of data, as shown in Figure 1.

Model Dim 3: A location state that Enables X Dim 6: An event that X Causes/Enables

Full-
LM

Karen is at home Enables Karen made a pan
of lasagna and brought it to the party

Karen made lasagna Causes/Enables Karen ate lasagna

SomeoneA is in SomewhereA Enables
SomeoneA makes SomethingA (that is edi-
ble)

SomeoneA cooks SomethingA (that is food) Causes/Enables
Some PeopleA to be turned away because of SomethingA (that is
food)

Enc-
Dec

Karen is in the kitchen Enables Karen
makes a pan of lasagna

Karen makes a pan of lasagna Causes/Enables Karen eats it for a
week

SomeoneA is in a kitchen Enables
SomeoneA cooks SomethingA

SomeoneA makes SomethingA (that is food) Causes/Enables
SomeoneA eats SomethingA

Human

Karen is in the kitchen Enables Karen made
a pan of lasagna

Karen made a pan of lasagna Causes/Enables She brought it to a
party

SomeoneA is in a kitchen Enables Some-
oneA prepares SomethingA (that is a dish)

SomeoneA prepares SomethingA (that is a dish) Causes/Enables
SomeoneA takes SomethingA to SomethingB (that is an event)

Table 5: Example model generations for the input story: Karen made a pan of lasagna. She brought it to the party.
Nobody wanted to eat lasagna. Karen ate it for a week. She became tired of lasagna. (Sentence X is underlined.)
Note that all test stories are unseen in the train or validation set.

and general rules is a testament to the high quality
of the GLUCOSE training data. Its worst perfor-
mance is on general rules for dimensions 5 and 10,
which have the lowest number of training points
and are the most diverse in content.

Other models perform as expected. PT-LM’s
poor performance shows that finetuning on our
dataset significantly improves the commonsense
inference capabilities of LMs. 1S-LM, which only
predicts half of an inference rule, outperforms Full-
LM in predicting specific statements, but lacks the
ability to generalize them. We also tested vari-
ous other baselines, including an ATOMIC-trained
transformer model (Bosselut et al., 2019), retrieval
of K-nearest-neighbors, and non-contextual vari-
ants of the presented models, all of which signifi-
cantly underperformed the results in Table 4, and

are presented in Appendix C.
Our results also show that our best models per-

form noticeably better on specific statements than
on general rules. This is because generating a
specific statement involves paraphrasing a story
sentence and predicting an antecedent/consequent,
while a general rule requires further generalizing
the paraphrase and the antecedent/consequent ap-
propriately such that the rule remains a generally
valid statement about the world.

Although rule generalization can sometimes be
as simple as replacing a named entity (e.g., Gage)
with a typed variable (SomeoneA), more often more
complex transformations are needed, such as gener-
alizing the action and producing type constraints on
variables in the form of attribute phrases. For exam-
ple, take into account the Enc-Dec results in Table
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5. For dimension 3, the generalization of the story
sentence, Karen makes a pan of lasagna, included
generalizing Karen to SomeoneA and makes a pan
of lasagna to cooks SomethingA. Note that sen-
tence generalizations are dimension-specific: For
dimension 6, the generalization of same sentence
retains the verb make but adds a type constraint to
the object, SomethingA (that is a food), which is
required for making the rule generally valid. Table
1 shows another complex transformation example
where turning his bike is generalized into moves
away from Something (that is dangerous), that takes
into account story context.

Overall, our evaluation results show that the
state-of-the-art pre-trained models finetuned on the
GLUCOSE dataset are well capable of dynami-
cally producing GLUCOSE-like inference rules on
the fly, which is the ultimate usecase of the GLU-
COSE dataset. It is important to note that there
is still a consistent performance gap between the
best-performing model and human’s on generat-
ing specific statements and general rules, which
indicates that there is still a large headroom for
improvement on designing better models for gener-
alizable commonsense reasoning.

Note that in our current evaluation setup, we
have made the simplifying assumption of evaluat-
ing each dimension for each sentence individually,
without consideration for consistency across dimen-
sions or across sentences. Joint prediction of all
the dimensions and sentences across the story is a
considerably more challenging task that can poten-
tially yield more accurate predictions for a down-
stream task. We encourage the future work to focus
on building models that perform joint predictions,
which can be readily evaluated using our test-set.
It is important to note that static test sets are inher-
ently narrow and prone to hidden curation biases
(Sharma et al., 2018; Belinkov et al., 2019). We
believe that the ultimate evaluation for models that
show GLUCOSE-like commonsense reasoning ca-
pabilities should be on naturally-occurring arbitrary
stories and through our presented human evaluation
process. As future work, we are planning to show
the value of incorporating GLUCOSE-trained mod-
els in other downstream NLP tasks such as reading
comprehension and dialog.

8 Conclusions

We introduced GLUCOSE, a large-scale dataset of
implicit commonsense knowledge, encoded as ex-

planatory mini-theories grounded in a narrative con-
text. The theories are categorized into ten causal
dimensions, inspired by cognitive psychology.

We presented our multi-stage pipeline for acquir-
ing semi-structured causal explanations at scale
from lay workers, resulting in ˜670K annotations
in the context of everyday children’s stories. We
demonstrated the utility of GLUCOSE data in two
ways. First, our analysis showed that GLUCOSE
rules capture knowledge not available in existing
resources or pre-trained models. Second, in order
to evaluate how well AI models can predict GLU-
COSE knowledge on novel inputs, the ultimate
value of such a dataset, we defined a standalone
evaluation task for predicting specific and general
inference rules given a story/sentence pair and a
dimension. We curated a doubly-vetted test set, de-
veloped a platform to facilitate human judgment of
system outputs, and validated BLEU as a strong au-
tomated evaluation metric. We show that training
on GLUCOSE data improves model performances
significantly on unseen stories.

Our results validate our hypothesis that a promis-
ing approach for imbuing machines with common-
sense is to use carefully-crafted data, as in GLU-
COSE, to train neural architectures that have a
wide range of lexical and conceptual knowledge
encoded, as in models pretrained on large corpora.
Together with this paper, we release our dataset16

and models17, which we hope will enable the AI re-
search community to explore effective approaches
to incorporate commonsense reasoning capabilities
into various downstream tasks.

Acknowledgments

We would like to thank the hundreds of amazing
crowdworkers whose dedication made this work
possible. We thank David Ferrucci for his valuable
insights and support throughout the GLUCOSE
project. We thank Andy Beck for the discussions
around the GLUCOSE knowledge model and Jesse
Dunietz for his discussions on the paper. We are
grateful for the invaluable comments of the anony-
mous reviewers, Niranjan Balasubramanian, and
Owen Rambow on this paper.

16The GLUCOSE dataset is available for download at https:
//tinyurl.com/yyeo92pt.

17The trained models and the details on the GLU-
COSE data files can be found through https://github.com/
ElementalCognition/glucose/.

https://tinyurl.com/yyeo92pt
https://tinyurl.com/yyeo92pt
https://github.com/ElementalCognition/glucose/
https://github.com/ElementalCognition/glucose/


4578

References
Niranjan Balasubramanian, Stephen Soderland,

Mausam, and Oren Etzioni. 2013. Generating co-
herent event schemas at scale. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1721–1731, Seattle,
Washington, USA. Association for Computational
Linguistics.

Yonatan Belinkov, Adam Poliak, Stuart Shieber, Ben-
jamin Van Durme, and Alexander Rush. 2019. On
adversarial removal of hypothesis-only bias in natu-
ral language inference. In Proceedings of the Eighth
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2019), pages 256–262, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779,
Florence, Italy. Association for Computational Lin-
guistics.

Justin TA Busch, Aiyana K Willard, and Cristine H
Legare. 2018. Explanation scaffolds causal learn-
ing and problem solving in childhood. In Active
Learning from Infancy to Childhood, pages 113–127.
Springer.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789–797, Columbus,
Ohio. Association for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 602–610, Suntec,
Singapore. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Int. Res.,
61(1):65–170.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 Workshop on Automated Knowledge
Base Construction, AKBC ’13, pages 25–30, New
York, NY, USA. ACM.

Ilaria Grazzani, Veronica Ornaghi, Elisabetta Conte,
Alessandro Pepe, and Claudia Caprin. 2018. The
relation between emotion understanding and theory
of mind in children aged 3 to 8: The key role of lan-
guage. Frontiers in Psychology, 9:724.

Tatsunori Hashimoto, Hugh Zhang, and Percy Liang.
2019. Unifying human and statistical evaluation for
natural language generation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 1689–1701, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Walter Kintsch and Teun A Van Dijk. 1978. Toward a
model of text comprehension and production. Psy-
chological review, 85(5):363.

Victor Kuperman, Hans Stadthagen-Gonzalez, and
Marc Brysbaert. 2012. Age-of-acquisition ratings
for 30,000 english words. Behavior Research Meth-
ods, 44(4):978–990.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL-04), pages 605–612, Barcelona, Spain.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2122–2132, Austin,
Texas. Association for Computational Linguistics.

Tania Lombrozo. 2006. The structure and function
of explanations. Trends in Cognitive Sciences,
10(10):464–470.

P. Mergenthaler, U. Lindauer, G. A. Dienel, and
A. Meisel. 2013. Sugar for the brain: the role of
glucose in physiological and pathological brain func-
tion. Trends in neurosciences.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelli-
gence, 267:1–38.

https://www.aclweb.org/anthology/D13-1178
https://www.aclweb.org/anthology/D13-1178
https://doi.org/10.18653/v1/S19-1028
https://doi.org/10.18653/v1/S19-1028
https://doi.org/10.18653/v1/S19-1028
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://www.aclweb.org/anthology/P08-1090
https://www.aclweb.org/anthology/P08-1090
https://www.aclweb.org/anthology/P09-1068
https://www.aclweb.org/anthology/P09-1068
https://www.aclweb.org/anthology/P09-1068
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
http://dl.acm.org/citation.cfm?id=3241691.3241693
http://dl.acm.org/citation.cfm?id=3241691.3241693
http://dl.acm.org/citation.cfm?id=3241691.3241693
https://doi.org/10.1145/2509558.2509563
https://doi.org/10.1145/2509558.2509563
https://doi.org/10.3389/fpsyg.2018.00724
https://doi.org/10.3389/fpsyg.2018.00724
https://doi.org/10.3389/fpsyg.2018.00724
https://doi.org/10.3389/fpsyg.2018.00724
https://doi.org/10.18653/v1/N19-1169
https://doi.org/10.18653/v1/N19-1169
https://doi.org/10.3758/s13428-012-0210-4
https://doi.org/10.3758/s13428-012-0210-4
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.1016/j.tics.2006.08.004
https://doi.org/10.1016/j.tics.2006.08.004
https://arxiv.org/abs/1706.07269
https://arxiv.org/abs/1706.07269


4579

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
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Appendix A: The Knowledge Model for
Collecting GLUCOSE data

Semi-structured Inference Rules

The knowledge represented in GLUCOSE is cap-
tured in the form of semi-structured inference rules
that are accompanied by a specific statement that
grounds the rule in the context of a specific story.
Each specific statement and its corresponding gen-
eral rule use the common template of antecedent
connective consequent. The antecedent and conse-
quent are each composed by filling in a few syn-
tactic slots, namely, subject, verb, object(s), and
preposition(s). In order to further shape the seman-
tics of the acquired knowledge, some of these slots
have a pre-defined list of options to choose from.

Table 6 lists the pre-defined options for filling
in the syntactic slots per GLUCOSE dimension18.
Some of the slots allow adding a custom entry to
the list of options, hence soft constraints, and some
do not, hence hard constraints. Note that beyond
the options listed in this table, the general rule slots
across all the dimensions have pre-defined options
for subject and object slots such as SomeoneA or
Some PeopleC .

Comparison to Other Resources

To assess the value of the GLUCOSE dataset, we
compared its coverage against the two most rele-
vant commonsense knowledge resources: Concept-
Net and ATOMIC. Table 7 shows our best-effort
mapping among knowledge dimensions of GLU-
COSE and relations in ConceptNet and ATOMIC.

Appendix B: Data Collection Pipeline

To ensure obtaining our desired quality, we de-
signed a three-stage knowledge acquisition pipeline
for crowdsourcing the GLUCOSE dataset on the
Amazon Mechanical Turk (Mturk): The qualifi-
cation test, the main task, and the expert review.
In this Section we provide more detail about each
stage and its designated UI design.

Qualification Test The qualification test con-
tained questions testing workers’ understanding
in three areas: Identifying correct use of the UI
slots for composing their answers (Figure 2), rec-
ognizing the right level of generalization (Fig-
ure 3), and identifying causes and effects with

18A sample of the semi-structured rules in GLUCOSE can
be found through https://bit.ly/2LFuwOt.

proper temporal understanding of the stories (Fig-
ure 4). Understanding generalization is the most
difficult, and the most important, aspect of our
task. Assessing the prospective workers’ under-
standing of generalization was done through curat-
ing questions demonstrating under-generalization
or over-generalization. The full Qualification UI,
along with all the detailed instructions that were
visible to the workers, is accessible here https:
//bit.ly/34Pej0N.

Main Task The qualified workers were able to
access large batches of data with no limit. The
main task starts with a page like the one shown in
the Figure 5. The user loops through each of the
10 dimensions of GLUCOSE data collection, in
order, presented as questions. Note that the user
could answer the question by simply marking the
dimension as not applicable and skipping it. If
they choose to answer, as shown in Figure 6, they
will be presented with the structured rule slots to
input their answers. The full Main GLUCOSE UI,
along with all the detailed instructions that were
visible to the workers, is accessible here https://bit.
ly/2R8XcTt.

Expert Review For work contributed through
the main UI, data quality was controlled through
daily monitoring of a percentage of incoming sub-
missions and statistics on average dimensions filled
out. For managing this process, we built a special-
ized UI for reviewing the incoming structured data.
The percentage of answers reviewed by an in-house
expert were used to update worker ratings. Workers
enter the task with a score of “1”, then advance to
“2” as they become more proficient, getting a bonus
increase. The top rating is “3”. Select workers
with a “3” rating were also moved into “top rated”
batches that paid more per HIT and included higher
bonuses and incentives. If work quality dropped,
workers’ ratings were adjusted accordingly. If their
work was at a risk of degrading the quality of the
dataset, they were disqualified from the task.19

Appendix C: Details on the Models

ATOMIC-trained Model
This model is a transformer language model, specif-
ically GPT-1 architecture, fine-tuned on ATOMIC
resource. The language model is fine-tuned to gen-
erate triplet sequences such as ‘PersonX goes to

19Additional information on the data and data quality man-
agement can be found at https://tinyurl.com/y2pn5cgl.

https://bit.ly/2LFuwOt
https://bit.ly/34Pej0N
https://bit.ly/34Pej0N
https://bit.ly/2R8XcTt
https://bit.ly/2R8XcTt
https://tinyurl.com/y2pn5cgl
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Figure 2: Example qualification question about the correct use of the slots.

Figure 3: Example qualification question about the correct level of generalization.
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Figure 4: Example qualification question about understanding causal relations between events.

Figure 5: The preview page of the Main UI for GLUCOSE data collection, which can be accessed via https:
//bit.ly/2R8XcTt.

https://bit.ly/2R8XcTt
https://bit.ly/2R8XcTt
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Figure 6: The answer-entry part of the main UI. When “Yes” is selected for “Your Answer” on the main UI for
GLUCOSE data collection, the workers can input answers to the dimension in question.

the mall <xIntent >to buy clothes’. We use the
same exact model trained for (Bosselut et al., 2019).
This model is only applicable to General Rule pre-
diction. The results from this model were signifi-
cantly worse than the PT-LM model, which is the
worst-performing model presented in the main pa-
per. This was expected, given the little overlap that
exists between the ATOMIC dataset and the GLU-
COSE knowledge, as presented in the main paper
under ”Comparison to Other Resources” Section.

K-Nearest Neighbor (KNN)

For a given test pair S,X , the KNN baseline re-
trieves the K most similar training instances and
returns one as the prediction. It uses BERT (De-
vlin et al., 2019) sentence embeddings to compute
cosine similarity between a candidate and each
retrieved training instance. We tuned three param-
eters on the development set: K, min sim, and
max sim. If a candidate has a similarity score
above max sim, it is emitted as the prediction.
Otherwise, candidates scoring below min sim are
dropped, and the centroid among the remaining
pool is emitted. We evaluate KNN only for general
rules, since it is not meaningful to retrieve specific

statements from the training set. The results from
this model were significantly worse than the PT-
LM model, which is the worst-performing model
presented in the main paper. The performance of
the KNN model highlights the importance of gen-
eralizing beyond the training data.

Pretrained Language Model (PT-LM)

We experimented with prompting the pretrained
language models, specifically GPT-2, as is, for pre-
dicting GLUCOSE dimensions. Table 8 shows the
list of particular templates used for decoding. We
used 774M-parameter GPT-2 model, with top-K
random sampling for decoding, with K = 15. The
decoding for this model was done on CPU.

1S-LM and Full-LM

This model uses the exact model as with PT-LM.
These models were finetuned on 8 NVIDIA Tesla
V100 GPUs for 10K steps.

Enc-Dec Model

We finetuned the 770M-parameter pre-trained T5
model using the exact same hyperparameters as in
(Raffel et al., 2020). We have used top-K random
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Dimension Connective Slot Constraints
Dim 1: An event that directly causes or en-
ables X

Causes/Enables None

Dim 2: An emotion or basic human drive that
motivates X

Motivates Verb slot hard constraints: feels, wants, likes; Object slot
soft constraints: curiosity, independence, competition, honor,
approval, power, status, romance, success, friendship, be-
longing, health, safety, livelihood, happy, stressed, angered,
disgusted, sad, surprised, fearful, trusting, love, obedient,
amazed, disappointment, regret, worthless, aggression, opti-
mistic.

Dim 3: A location state that enables X Enables Verb slot hard constraints: am, is, are; Preposition slot hard
constraints: above, across from, at, below, far from, in, in
front of, inside of,near, next to, on top of, outside of.

Dim 4: A possession state that enables X Enables Verb slot hard constraints: possess(es).

Dim 5: Other attribute that enables X Enables Verb slot hard constraints: am, is, are, has, have, want, wants,
need, needs.

Dim 6: An event that is directly caused or
enabled by X

Causes/Enables None

Dim 7: An emotion that is caused by X Causes Verb slot hard constraints: feels, wants, likes; Object slot
soft constraints: curiosity, independence, competition, honor,
approval, power, status, romance, success, friendship, be-
longing, health, safety, livelihood, happy, stressed, angered,
disgusted, sad, surprised, fearful, trusting, love, obedient,
amazed, disappointment, regret, worthless, aggression, opti-
mistic.

Dim 8: A change of location that X results in Results in Verb slot hard constraints: am, is, are; Preposition slot hard
constraints: above, across from, at, below, far from, in, in
front of, inside of,near, next to, on top of, outside of.

Dim 9: A change of possession that X results
in

Results in Verb slot hard constraints: possess(es)

Dim 10: Other change in attribute that X re-
sults in

Results in Verb slot hard constraints: am, is, are, has, have, want, wants,
need, needs.

Table 6: The list of pre-defined options for filling in the syntactic slots per GLUCOSE dimension.

Glucose ConceptNet Rel ATOMIC Rel
Dims 1 HasSubevent xEffect/oEffect
& 6 HasFirstSubevent

HasLastSubevent
HasPrerequisite

Dim 2 Desires xAttr (“feels”)
CausesDesire xIntent (otherwise)
MotivatedByGoal

Dim 7 Same as dim2 xReact/oReact (“feels”)
Dims 5 Desires xAttr/xWant
& 10 CausesDesire oWant

Table 7: Mappings between GLUCOSE dimen-
sions and ConceptNet/ATOMIC relations. Concept-
Net “Causes” applies to all GLUCOSE dimensions.
Omitted GLUCOSE dimensions have no mapping in
ATOMIC.

sampling for decoding, with K = 15. We did the
training and decoding for this model on Google
TPU v3-8. We trained this model for 500k steps
after pre-training, which took about 72 hours.

We also experimented with non-contextual ver-
sion of all the models presented in the main paper.
For non-contextual models, the story S is simply re-

moved from the input. The non-contextual models
all underperformed their contextual counterparts.
This further validates the importance of using con-
text in making commonsense inferences.
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Dimension Connective Natural Language Template
Dim 1 Causes/Enables [because, since]
An event that directly causes or enables
X
Dim 2 Motivates [because, since]+ [he, she, they, I, you, we]+
An emotion or basic human drive that
motivates X

[feels, wants, likes]

Dim 3 Enables [because, since]+ [he, she, they, I, you, we]+
A location state that enables X [is, was, were]+ [above, across from,

between, at, below, far from, in, in front of,
inside of,near, next to, on top of, outside of]

Dim 4 Enables [because, since]+[he, she, they, it, I, you, we]+
A possession state that enables X [has, have]
Dim 5 Enables [because, since]+[he, she, they, it, I, you, we]+
Other attribute that enables X [am, is, are, has, have, want, wants, need, needs]
Dim 6 Causes/Enables [causes, caused, results in , . This causes, . As a result]
An event that is directly caused or en-
abled by X
Dim 7 Causes [. As a result]+ [he, she, they,I, you, we]+[feels]
An emotion that is caused by X
Dim 8 Results in [. As a result]+ [he, she, they, it, I, you, we]+
A change of location that X results in between, [is, was, were]+ [above, across from,

at, below, far from, in, in front of,
inside of,near, next to, on top of, outside of]

Dim 9 Results in [. As a result] + [he, she, they, it, I, you, we]+
A change of possession that X results in [has, have]
Dim 10 Results in [. As a result] + [he, she, they, it, I, you, we]+
Other change in attribute that X results
in

[am, is, are, has, have, want, wants, need, needs]

Table 8: Templates used for turning the ten dimensions for GLUCOSE data into natural language statements for
decoding proper sequences from the pre-trained language models.


