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Abstract

Existing open-domain dialogue generation
models are usually trained to mimic the gold
response in the training set using cross-entropy
loss on the vocabulary. However, a good re-
sponse does not need to resemble the gold re-
sponse, since there are multiple possible re-
sponses to a given prompt. In this work, we
hypothesize that the current models are unable
to integrate information from multiple seman-
tically similar valid responses of a prompt, re-
sulting in the generation of generic and unin-
formative responses. To address this issue, we
propose an alternative to the end-to-end clas-
sification on vocabulary. We learn the pair re-
lationship between the prompts and responses
as a regression task on a latent space instead.
In our novel dialog generation model, the rep-
resentations of semantically related sentences
are close to each other on the latent space. Hu-
man evaluation showed that learning the task
on a continuous space can generate responses
that are both relevant and informative.

1 Introduction

The sequence-to-sequence framework and trans-
former based models are the most popular choices
for designing open-domain neural response gener-
ation systems (Vinyals and Le, 2015; Wolf et al.,
2018). Those models typically involve maximiz-
ing the probability of the ground truth response
given the input prompt, trained using a cross en-
tropy loss on the vocabulary. However, dialogue
response generation is an open-ended, high entropy
task, since there can be a wide variety of possi-
ble responses to a given prompt. A good response
does not have to use similar vocabulary or simi-
lar sentence structure as the gold response, thus
the end-to-end cross entropy loss is unsuitable for
this task. We hypothesize that this fundamental
deficiency is the primary reason why dialog gen-
eration models tend to generate bland and uninfor-

mative responses, such as “I don’t know” (Serban
et al., 2016), despite the presence of much more
instances of specific responses in the training data
than generic responses.

The specific issue is the following. A model
trained using maximum likelihood objective treats
each token of the vocabulary independently. The
probabilities of each individual informative word
in the vocabulary are low because the answer is
open-ended. The model is unable to capture that
most of the probability mass are on a group of se-
mantically related words. Thus the words with the
highest probabilities are often uninformative stop
words with high frequency in the training data. A
similar effect happens on the utterance level when
using beam search decoding. When searching for
the most probable utterance, the probability of each
candidate sentence is calculated independently, and
the model is unable to use the semantic related-
ness between different candidate utterances (Qiu
et al., 2019). While informative and specific re-
sponses collectively have a high probability, it is
diluted by the large number of variations and pos-
sibilities of specific responses. On the other hand,
generic responses have much less variations, thus
they become the most probable response sequences.
An alternative decoding method to beam search is
sampling (Holtzman et al., 2020; Fan et al., 2018),
which does not suffer from this problem. How-
ever, sampling does not consider the subsequent
words during decoding, and the randomness in
word choice makes it prone to generating implausi-
ble responses, responses with grammatical errors
and coherence issues.

Aiming to take into account the semantic relat-
edness of diverse specific responses, we propose
an alternative to cross-entropy training, which is
learning the pair relationship between the prompts
and responses as a regression task on a latent space.

In our novel dialog generation model, the genera-
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tion process could be separated into two steps. The
first step predicts a sentence vector of the response
on the latent space, on which the representations
of semantically related sentences are close to each
other. Since predicting a vector is a regression
problem in the latent space instead of classifica-
tion in the vocabulary as in MLE loss, our model
is able to learn that most of the probability mass
of the response is around the cluster of possible
specific responses. This is illustrated in Figure 2
showing our model’s representations of prompts
and responses on a t-SNE plot.

The second step constructs the full response sen-
tence from the predicted vector. We train an autoen-
coder. The decoder part is used for constructing the
full response sentence from the predicted sentence
vector. Since the semantics of the response and
the decoding are learned separately, we can per-
form beam search for the most probable sequence
given the semantic vector during inference without
preferring generic responses.

The main contributions of our work are 1) We
propose to learn dialogue generation as an regres-
sion task on a semantic latent space, as an alterna-
tive of end-to-end cross entropy training used in
most previous methods, to address the problem that
end-to-end cross entropy classification are unable
to integrate information from semantically similar
responses and words. 2) Our model separates the
response into information likely and unlikely to be
correlated with the prompt. 3) Evaluation by crowd-
workers showed that the latent space method sig-
nificantly outperforms baselines using end-to-end
cross entropy classification, in terms of generating
responses that are both relevant and informative.

2 Related work

Several previous models also use the idea of learn-
ing on sentence vector representations. Luo et al.
(2018) used two autoencoders to learn the semantic
representations of inputs, and learned utterance-
level dependency between those representations.
Spacefusion(Gao et al., 2019) fuses the autoen-
coder and seq2seq feature space, so that the dis-
tance and direction from a predicted response
vector roughly matches the relevance and diver-
sity. Those methods add additional autoencoder
losses to manipulate the intermediate representa-
tion space, but they still use the problematic end-
to-end cross entropy loss for generation. In our
work, we completely remove the end-to-end loss

term, so the matching of the input and response
is learned only on a shared semantic latent space.
Qiu et al. (2019) proposed a two-stage generation
process, which predicts the average of the reference
responses as an intermediate task, but it requires
multiple responses for each prompt in the training
data. On the machine translation task, Kumar and
Tsvetkov (2019) explored predicting continuous
vectors on the word level in seq2seq models in-
stead of using softmax classification. We predict
continuous vectors on the utterance level.

There are other aspects to tackle the generic re-
sponse problem, Li et al. (2016a) maximized mu-
tual information in decoding or reranking. Zhou
et al. (2017) trained multiple response mechanisms
to model diversity. Shao et al. (2017) split the gen-
eration into segments and allow attention to attend
to both the prompt and the response to improve di-
versity. Several works use explicit specificity met-
rics to manipulate the specificity of the responses.
Frequency based metrics such as IDF are used in
(Li et al., 2016b; Zhang et al., 2018a). Ko et al.
(2019) proposed using a specificity metric trained
on discourse relation pair data.

We use a modified version of deep canonical
correlation analysis (DCCA)(Andrew et al., 2013)
to learn the semantic latent space. DCCA has pre-
viously been used on various tasks including fea-
ture learning (Wang et al., 2015), caption retrieval
(Yan and Mikolajczyk, 2015), multi-label classifica-
tion (Yeh et al., 2017), image cross-reconstruction
(Chanda et al., 2016), and multilingual word simi-
larity (Rotman et al., 2018). (Mallinar and Rosset,
2018) experimented on performing DCCA on se-
quential data with a recurrent network.

3 Our Method

Given example dialogue (Prompt, Response) pairs
(Dx, Dy) from open-domain dialogue datasets, our
goal is to generate a relevant and non-generic re-
sponse when given an unseen prompt. The struc-
ture of our model is depicted in Figure 1. It consists
of three encoders; Prompt Encoder Fx, Correlated
Response Encoder Fy, and Uncorrelated Response
Encoder Fu. The final response is generated from
a semantic latent vector via a Decoder Gy. Dur-
ing training all three encoders and the decoder are
tuned. However, during testing only the Prompt
Encoder and the Decoder are utilized.
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Figure 1: Model Architecture. We learn the pair relation between prompts Dx and responses Dy as an regression
task on the shared semantic latent space of X&Y , so the model is able to aggregate information from semantically
similar sentences. We train an autoecoder to construct the response sentence from the latent space. An uncorrelated
representation Yu is allowed in the autoencoder to represent information unlikely to be related to the prompt.

3.1 Learning the correlated semantic latent
space

Our aim is to learn a latent space where representa-
tions of semantically related prompts, encoded by
Fx, are close to each other, and so are semantically
related responses encoded by Fy. Furthermore, we
want a prompt encoded by Fx to be close to its
corresponding responses encoded by Fy.

For this we employ canonical correlation anal-
ysis (CCA) (Hotelling, 1936) between the prompt
and response pairs. We maximize the correlation of
the embeddings with the other sentence in the pair.
Since semantically similar responses are likely to
correspond to a similar set of prompts, semantically
similar sentences will have similar representations
in the CCA encoded space. Generic responses
could be responses to a much larger set of prompts,
so they will have very different representations in
the latent space, thus they could be separated with
specific responses.

We use two recurrent neural networks Fx, Fy as
feature extractors to map prompts and responses
into the shared featured space respectively. Using
the definition of CCA, we maximize the total cor-
relation of each dimension between X = Fx(Dx),
Y = Fy(Dy) as follows.

max

(
k∑

i=1

corr(Xi, Y i)

)
=

max

 k∑
i=1

∑
m

(Xi
m − X̄i)(Y i

m − Ȳ i)√∑
m

(Xi
m − X̄i)2

∑
m

(Y i
m − Ȳ i)2

 ,

(1)

subject to the condition

∀{i, j|i 6= j} :
∑
m

(Xi
m − X̄i)(Xj

m − X̄j) =

∑
m

(Y i
m − Ȳ i)(Y j

m − Ȳ j) = 0, (2)

i, j are the indices of the feature dimension. X̄i, Ȳ i

are the mean of the i-th feature dimension. m is
the index of the example pair in the batch. k is
the number of feature dimensions. The condition
ensures that the different dimensions in the rep-
resentation are uncorrelated, to avoid redundant
representations.

To make the two feature spaces X and Y shared,
we add the following conditions to the mean and
variance of both representations, inspired by (Yeh
et al., 2017).

∀i : X̄i = Ȳ i = 0 (3)

∀i :
∑
m

(Xi
m)2 =

∑
m

(Y i
m)2 = C (4)

, where C is an arbitrary constant, we use C=1.
When prompt X and response Y are perfectly

correlated, and these two conditions perfectly hold,
X will be equal to Y , so this makes X and Y in-
terchangeable during inference. This is desirable
because we do not have access to Y during infer-
ence.

Using the two conditions, Equations 1, 2 be-
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comes1:

max

(
k∑

i=1

corr(Xi, Y i)

)

= max

(
k∑

i=1

∑
m

Xi
mY

i
m

)

= min

(
k∑

i=1

∑
m

(Xi
m − Y i

m)2

)
, (5)

subject to,∑
m

Xi
mX

j
m =

∑
m

Y i
mY

j
m = 0 (6)

We can formulate the total CCA loss from (3) to
(6) as,

Lc =

k∑
i=1

(∑
m

(Xi
m − Y i

m)2+

λ1

(
|
∑
m

Xi
m|+ |

∑
m

Y i
m|

)
+

λ2

(
|
∑
m

(Xi
m)2 − 1|+ |

∑
m

(Y i
m)2 − 1|

))

+λ3

i 6=j∑
i,j

(
|
∑
m

Xi
mX

j
m|+ |

∑
m

Y i
mY

j
m|

)
(7)

where λ1, λ2, λ3 are tunable hyper-parameters.

3.2 Generating the response from the
semantic latent space

Since X and Y are interchangeable in the semantic
space, we directly use the features extracted from
the prompt X to approximate the response features
Y. Now we want to generate the response sentence
D′

y from the latent space representations. For this
purpose, an additional autoencoder is trained on all
the training set responses, simultaneously with the
CCA. The autoencoder consists of encoder Fy, and
decoder Gy, both of which are recurrent networks.
The parameters of the encoder are shared with the
semantic feature extractor of the responses. During
inference, features extracted from the prompt X

1In practice, the correlation is calculated for each batch sep-
arately, so it is important that the process of dividing training
data into batches is random, and the batch size is sufficiently
large.

are directly fed into the decoder to generate the
response sentence.2

D′
y = Gy(Fx(Dx)) (8)

Generating sentences from a continuous space
is known to produce ungrammatical text (Bowman
et al., 2016). To address this issue, we replace some
autoencoder input word tokens, by the unknown
word token 〈unk〉. The probability each word is
chosen to be replaced is independent and uniform.
The replacing serves three purposes. First, it makes
the decoder more robust, and able to generate gram-
matical responses when there is noise in the de-
coder input. This is important because the decoder
input during training and inference are from differ-
ent encoders. Second, it prevents the autoencoder
from overfitting too early before the CCA objec-
tive converges. Finally, masked language models
have been shown successful on learning representa-
tions of sentences suitable for a wide range of tasks
(Devlin et al., 2019). This is desirable since this
representation is also used for learning the CCA
for the semantic latent space.

3.3 Correlated and uncorrelated
representations

When encoding the response with Fy, the autoen-
coder and the CCA loss have conflicting objectives.
The autoencoder task requires the representation to
preserve all the information in the sentence for re-
construction. The CCA task aims to preserve only
the information likely to be related to the prompt,
and discard all other irrelevant information. For
example, a paraphrase pair are likely to be valid
responses to the same prompts, so they should have
the same representation under CCA objective, but
the autoencoder objective forces the representa-
tions to be different, to enable reconstruction of
the exact sentences. A response could also include
a topic change, which makes part of the response
completely irrelevant to the prompt, and that infor-
mation should not be in the CCA representation.

To model this issue, we separate the autoencoder
representations into the correlated part Y , which
correlates with the prompt, and the uncorrelated
part Yu. The correlated part learns both the autoen-

2We also experimented on adding domain discriminative
adversarial training (Tzeng et al., 2017) between X and Y , but
it did not improve the results. This shows that our conditions
(1),(3),(4) already make the distribution of the two encoders
sufficiently similar.
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coder task and the CCA task. The uncorrelated part
is only trained for autoencoder reconstruction.

During training, Gy learns to reconstruct from
the concatenation of the correlated and uncorre-
lated representations. The reconstruction is trained
using cross entropy loss.

D′
y = Gy([Y ;Yu]) = Gy([Fy(Dy);Fu(Dy)])

(9)

La = Cross Entropy(Dy, D
′
y) (10)

During testing, Gy generates the response from
the CCA semantic representation of the prompt and
a vector R representing the uncorrelated part of the
response.

D′
y = Gy([Fx(Dx);R]) (11)

By adding additional regularization to the uncor-
related representation Yu during training, we en-
courage a normal distribution with zero mean and
unit variance for each dimension. Hence during
inference we can sample R from this distribution
or use a fixed prior to approximate Yu.

The formulation of the regularization is the same
as variational autoencoders (Kingma and Welling,
2014). An encoder recurrent network Fu predicts
a mean µ and variance σ2 for each dimension, and
Yu is sampled from that multivariate normal distri-
bution. The predicted µ and σ2 is regularized by
the KL divergence with unit normal distribution.

Lv =
∑
i

∑
m

((µim)2 + (σim)2 − log((σim)2))

(12)
With this regularization,R can either be set to all

zeroes , or be randomly drawn from a unit normal
distribution. We found that the generated sentence
is insensitive to this choice, so the two ways gener-
ate exactly the same sentence more often than not.
Despite the insensitivity, we calculated the ratio
between the KL loss and the autoencoder recon-
struction loss, and found that the ratio consistently
increases during training, indicating that there is
no posterior collapsing (Chen et al., 2017). We
also found that adding the uncorrelated representa-
tion allows both the CCA loss and the autoencoder
reconstruction loss to converge to a significantly
lower value. Inspection on generated sentences
showed that there is obvious improvement on rele-
vance, at the cost of slightly more frequent gram-
matical errors.3

3To avoid introducing excessive noise while using R as

During training, the gradients of all loss terms
are weighted and summed and all parameters are
updated together. The total loss is:

L = λ4Lc + λ5La + λ6Lv (13)

where λ4, λ5, λ6 are hyper-parameters.

3.4 Attention
The described model does not have an attention
mechanism, so it cannot dynamically focus on dif-
ferent parts of the prompt during generation. We
also experiment with a variant of our model with
attention (Luong et al., 2015). Similar to previous
works, the key and value is from the RNN hidden
state of the prompt encoder Fx, and the query is
the hidden state of the response decoder Gy. To
prevent nullifying the main purpose of our model
design: removing end-to-end MLE training, we cre-
ate a bottleneck to limit the end-to-end information
flow before concatenating the attention output vec-
tor with the hidden state. The bottleneck is a fully
connected layer that reduces the attention output
vector into a low dimension.4

4 Experiments

4.1 Methodology
We conduct experiments on two datasets: Per-
sonaChat (Zhang et al., 2018b) and DailyDialog
(Li et al., 2017). PersonaChat is a chit-chat dataset
collected by crowdsourcing. We do not use the
personas in the dataset since they are not related to
our work. We use 122 499 prompt-response pairs
for training, 3 000 pairs for validation and 4 801
pairs for testing. DailyDialog is a collection of
conversations in daily life for English learners. We
remove those prompt-response pairs in the valida-
tion and test set that also appears in the training set,
which resulted in about 30% of pairs removed in
the test set. The final dataset has 76 052 pairs for
training, 5 334 pairs for validation, and 4 738 pairs
for testing.

We compare our models with the vanilla Seq2seq
model with attention (Luong et al., 2015) trained us-
ing cross entropy loss, decoded using beam search
and nucleus sampling (Holtzman et al., 2020). We
also compare with previous works MMI-anti (Li

an approximation, we use only 10 dimensions for the uncor-
related part. Higher number of dimensions resulted in worse
performance in our experiments.

4We use dimension 10. Without the bottleneck, the model
will only rely on attention and completely ignore Fx and Fy ,
effectively degenerating into a Seq2Seq model.
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Automatic metrics Human evaluation

Dataset Model Bleu-1 Bleu-2 Sim Dist-1 Dist-2 Rel. Info. UI

PersonaChat

MLE+beam search 0.146 0.0640 0.854 0.0128 0.040 1.09 0.98 1.43
MLE+sampling 0.148 0.0605 0.851 0.0313 0.131 1.05 1.39 1.65
MMI 0.124 0.0551 0.838 0.0517 0.217 1.18 1.08 1.54
SpaceFusion 0.176 0.0715 0.855 0.0233 0.077 1.05 1.66 1.84
Ours 0.191 0.0746 0.871 0.0363 0.179 1.29 1.35 1.97
Ours+Attention 0.182 0.0712 0.868 0.0360 0.171 1.32 1.22 1.76
Ours w/o Uncorrelated 0.179 0.0729 0.866 0.0305 0.127 0.96 1.40 1.46
Ours w/o Denoising 0.167 0.0556 0.868 0.0332 0.252 - - -

DailyDialog

MLE+beam search 0.100 0.0394 0.763 0.0440 0.152 1.25 0.73 0.84
MLE+sampling 0.142 0.0413 0.790 0.0620 0.389 0.81 1.56 1.18
MMI 0.094 0.0369 0.764 0.0697 0.270 1.29 0.89 1.09
SpaceFusion 0.146 0.0595 0.792 0.0531 0.216 1.21 1.08 1.24
Ours 0.170 0.0575 0.807 0.0457 0.191 1.18 1.45 1.71
Ours+Attention 0.171 0.0558 0.805 0.0530 0.213 1.24 1.51 1.74

Table 1: Result comparison of all models on PersonaChat and DailyDialog datasets using different automatic and
human evaluation metrics. Our model generates responses that are both informative and relevant.

et al., 2016a) and SpaceFusion (Gao et al., 2019).
MMI-anti also addresses the generic response issue.
It is based on mutual information, and improves the
Seq2seq model by penalizing frequent responses
with an anti-language model. SpaceFusion is a re-
cent method which learns a fused common space
representation of the Seq2seq dialogue generation
task and the autoencoder task, it falls on the same
line of work that tries to manipulate the latent space
representations. We use the authors’ code. For
these two baselines and our models, we report the
result of the decoding method (beam search or sam-
pling) that performed better. The goal of our exper-
iments is to compare learning on the latent space
with end-to-end cross entropy training.

We use 1 layer GRU for all encoders and de-
coders. The correlated representation size is 512,
the uncorrelated representation size is 10. We
implement Fy and Fu as different output dimen-
sions of the same GRU. For compared methods
we use hidden layer size 522. The word embed-
ding dimension is 128. We use Adam optimizer
with learning rate 0.001, β1 = 0.9, β2 = 0.999.
Batch size is 64. {λ1, λ2, λ3, λ4, λ5, λ6} is set to
{3.9,6.25,0.05,2,2,0.1}, they are tuned to make the
conditions (2), (3), (4) enforced properly. For our
model with attention, the attention bottleneck has
dimension 10. Our models were trained on one
Tesla M40 GPU, and the run time was less than 2
hours.

4.2 Human evaluation

Human evaluation is the only reliable way to eval-
uate this task. Following the standards of (Shao

et al., 2017; Liu et al., 2018; Zhang et al., 2018a;
Qiu et al., 2019), for each model, we randomly
sample 500 pairs from our test set, and each pair
is rated by 3 distinct crowdsourcing workers.5 Our
evaluation involved a pool of around 400 distinct
workers in total. We ask them to rate 1) informa-
tiveness and specificity of each response and 2) if
the response is on topic (relevance), on a Likert
scale from 0 to 3. We report the average of all an-
notations for both metrics. We also design a new
metric, the useful information (UI) score, which
is multiplying informativeness with relevance for
each sentence, and then take the average over all
sentences. The intuition of this score is that a re-
sponse has to be both informative and on topic to be
good. If one response is very informative, but not
on topic, then all of the information it provides is
useless. On the other hand, if a response is answer-
ing the prompt, but uninformative, it is a generic
response which is undesirable. Thus the UI score
could be used to approximate the quality of the
responses.

We mix some quality control sentences with the
model responses in the task for workers. Those
workers who failed to rate these quality control
sentences reasonably were excluded. We mix the
responses from different models in the tasks given
to each worker, so the bias of individual workers
would not affect the relative performance between
different models. The interannotator pearson corre-
lation is 0.55.

The results are shown in Table 1. Note that there
is a trade-off between informativeness and rele-

5We use this crowdsourcing platform: https://appen.com/
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PersonaChat

Prompt wow i love to see traditional dance .

MLE+beam search do you have a favorite color ?
MMI yes , i love the color blue .
Spacefusion i am not sure . i am a college student .
Ours its fun . i’ve always wanted to go for a dance class .

Prompt do you go to school at all

MLE+beam search i do not have a job but i want to be a doctor
MMI sometimes , but i do like photography .
Spacefusion i do not . i am a college student .
Ours i don’t . i’m studying to go to college .

Prompt i live in nebraska . i don’t think i have ever been to ohio before .

MLE+beam search oh wow . what do you do for a living ?
MMI oh do you do volunteer work
Spacefusion oh wow . i love to go to the beach .
Ours wow , i have been there . do you have a favorite place ?

DailyDialog

Prompt Can you operate computers skillfully ?

MLE+beam search Yes , I am .
MMI Yes , I have a special job .
Spacefusion Yes , I can . I have any other Word 2003 , and I can live in other areas .
Ours+Attention No , I am not familiar with both Java and C Programming Languages .

Prompt Exporters must ensure that their product satisfies customers ’ needs , wants and likes .

MLE+beam search Do you have any other questions ?
MMI We have to buy a new set .
Spacefusion I am calling to see you . But I’ve got a new customer here . But I don’t want to be

aware of their house .
Ours+Attention That means that we have a commission about selling electronics . The prices are

perfect for you to promote the commission and the prices are cheaper .

Prompt It closes at 7:00 on Sundays .

MLE+beam search You’re welcome , I can help you .
MMI How do you get that ?
Spacefusion Nice to see you . The alarm isn’t a fool .
Ours+Attention Hold on , I have some other classes available .

Table 2: Example model responses

vance, since a generic response can reply to a wide
range of prompts, it will be easier for them to be
will, and informative responses are more special-
ized, thus it would be more difficult for them to be
relevant. Example model responses are shown in
Table 2.

On the PersonaChat dataset, SpaceFusion and
MLE+sampling could generate very informative
responses, but the relevance score is low, indi-
cating the responses are often not on topic. Our
model outperforms MLE+beam search and MMI
on both relevance and informativeness. On the Dai-
lyDailog dataset, MLE+sampling scores highest
on informativeness, but the responses are not on
topic. Both MMI and MLE+beam search are rel-
evant but prone to generic responses. Our models
are the only ones that could be both informative
and coherent. Adding attention to our model im-

proves both relevance and informativeness on the
DailyDialog dataset, but harms informativeness on
the PersonaChat dataset. Our models performs best
on the UI score for both datasets. We performed
bootstrapping significance test, and found that our
improvements are statistically significant.

4.3 Automatic evaluation

Almost all existing automatic metrics for dialog
generation compares the generated response and
the gold response in some way. However, a good
response could be open-ended and doesn’t have
to resemble the gold response. Liu et al. (2016)
showed that automatic metrics have low correla-
tion with human judgements. Furthermore, be-
cause our model is not trained to mimic the gold
response, these metrics are especially unsuitable
for evaluating our model. Take perplexity for ex-
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ample, when training a vanilla Seq2seq model on
PersonaChat, the test perplexity could achieve ∼
38 (Zhang et al., 2018b). For our model, the test
perplexity is very high (103 ∼ 104), because unlike
previous methods, our model does not optimize for
low cross-entropy loss on the vocabulary. Nonethe-
less, human evaluation obviously prefer our model
over Seq2seq, verifying that low perplexity is not
necessary for a good model. Despite the deficien-
cies of those automatic metrics, they are still widely
used because there are no good alternatives. For
reference only, we include the results of the follow-
ing automatic metrics for reference in Table 1: (1)
BLEU-1 and BLEU-2 (Papineni et al., 2002) (2)
Embedding Average cosine similarity (Foltz et al.,
1998) between the sentence vectors of the gener-
ated and gold response. The sentence embedding
is computed by averaging the GloVe embedding of
each word in the sentence. This metric measures
the coherence of the response. (3) dist-1 and dist-2
(Li et al., 2016a), which evaluates the diversity of
the generated responses. They respectively calcu-
late the count of distinct unigrams and bigrams, di-
vided by the total number of words in all responses.
Those metrics are also used in (Zhang et al., 2018a;
Xu et al., 2018; Gu et al., 2019; Qiu et al., 2019).

For the BLEU scores, we can see that even
though we do not train to mimic the gold responses,
Our model still gets higher BLEU than most of the
baselines, showing the effectiveness of our latent
space method over MLE training. For the embed-
ding similarity score, our model consistently out-
perform other compared methods. The calculation
of Dist scores involves the sentence length in the
denominator. As shown in Table 2, the responses
generated by MMI is often short, and our responses
for Daily dialog are long, thus influencing the Dist
scores. Ungrammatical bigrams could cause Dist-2
to be high, as in MLE+sampling in DailyDialog.

4.4 Ablation study

We compare our full model with two variants and
test the contribution of different parts in our model.
We use the PersonaChat dataset for this experiment.
The w/o Uncorrelated part model does not have
the representation Yu, the autoencoder reconstruc-
tion is solely based on Y , which also learns the
CCA task. In the w/o Denoising model, we do not
replace random words with 〈unk〉 in the autoen-
coder input.

As shown in Table 1, without the uncorrelated

part, there is an obvious decrease in relevance,
showing that allowing uncorrelated information is
important for the learning the correlation between
the prompt-response pairs. Without denoising, the
generated sentences contain many grammatical er-
rors. Since the sentences are obviously unaccept-
able by humans, we did not perform human evalua-
tion. All automatic metrics also decreased, except
Dist-2 is high because there are ungrammatical bi-
grams. This shows that denoising is critical for our
model to generate grammatical responses.

4.5 Visualizing the semantic space
In order to verify that the shared latent space suc-
cessfully encodes semantic information, we visual-
ize the representations of some sentences in Figure
2. The dimension reduction is performed using
t-SNE (van der Maaten, 2009) trained on 1 000
prompt representations and 1 000 response repre-
sentations in the test set.

The light red point is the latent representation
of the sentence “what instruments do you play ?”
encoded by the prompt encoder Fx. The seven dark
red points are possible responses encoded by the
response encoder Fy, such as “i practice the piano
every day .”, “i am learning the guitar .” Similarly,
the light and dark blue, green, and yellow points
show possible responses to three other questions.

We can see that semantically related responses
to the same question are clustered, showing that
the latent space is indeed able to capture seman-
tic information. The questions’ representation
is close to the cluster of their corresponding re-
sponses, demonstrating that our model has success-
fully learned from the collection of semantically
similar possible responses.

We also visualize “i don’t know .” in black, and
the most frequent generic response of the Seq2Seq
model trained on PersonaChat, “what do you do for
a living ?” in brown, using the response encoder
Fy. Those generic responses are much farther away
from the question than specific responses, thus they
are unlikely to be generated. Note that the prompts
and responses are encoded by separate encoders
but plotted on the same space, so there are two
points for “what do you do for a living ?”, one as a
prompt and the other as a response.

4.6 Grammaticality and comprehensibility
Since generating text from a continuous space was
previously found to produce grammatical errors
(Bowman et al., 2016), we show 500 PersonaChat
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(a)
Prompt Dx (Light red) Prompt Dx (Light green)

what instruments do you play ? what do you do for a living ? (Encoded by prompt encoder)

Response Dy (Dark red) Response Dy (Dark green)

i practice the piano every day . i work as an elementary teacher .
i can play anything on my electric violin . i am an olympic gymnast
i am learning the guitar . aside from nursing , i work at a bar to pay for school .
i like the drums a lot i’m a janitor , but i also play music at night . you ?
i used to play clarinet . since i was fired i found a job in insurance .
i play trombone , alto sax , baritone , and trumpet . you ? i work part time as a bartender , but i don’t drink any alcohol
my parents taught me flute mechanical engineering is my day job .

Prompt Dx (Light blue) Prompt Dx (Light yellow)

what is your favorite color ? ya , are you a female ?

Response Dy (Dark blue) Response Dy (Dark yellow)

my favorite color is green and whats yours yes i am a woman .
i like red too , with a bit of yellow . like a superhero ! not much to tell , i’m an average male . tell me about you .
blue color makes me happy female
mine is orange ! i am just a boy with a heart outside my body
i like rainbow colors , you ? i am a 12 year old female
red , blue , green , and yellow . i am thinking purple too
strangely my favorite is grey !

Response Dy (Brown) Response Dy (Black)

what do you do for a living ? (Encoded by response encoder) I don’t know .

(b)

Figure 2: t-SNE Visualization of the semantic latent space. The representations of the sentences in (a) are plotted
in (b). Prompts Dx and responses Dy are encoded by separate encoders Fx and Fy . Multiple semantically related
responses are close to each other and close to the corresponding prompt, while generic responses are far away.

responses, each to 3 crowdworkers to evaluate
the grammaticality and comprehensibility of our
model. We asked them to choose between the fol-
lowing options: About 11% of sentences contain
major grammatical errors that makes understanding
the sentence difficult. 18% contain minor errors
that do not affect the understanding of the sentence.
71% of the sentences are grammatically correct.
This shows that most of the responses of our model
are acceptable by humans, and comprehensibility is
not a major problem for our latent space method.6

6MLE+beam search almost never makes grammatical er-
rors as most responses are generic. While responses gets more
informative and complicated, the issue of grammaticality be-
comes more probable.

5 Conclusion

In this work, we pointed out that end-to-end cross
entropy classification used in most previous meth-
ods is not able to integrate information from dif-
ferent semantically similar words responses, and
designed a substitute method that is able to do so.
Our method learns the pair relationship between
prompts and responses as a regression task on a
latent space, which is more suitable for the open-
ended nature of this task. We performed ablation
study to validate the components of our model. Hu-
man evaluation results concretely demonstrate that
our latent space method significantly outperforms
baselines using end-to-end cross entropy training,
in terms of relevance and informativeness.
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