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Abstract
Semantic role labeling (SRL) is the task of
identifying predicates and labeling argument
spans with semantic roles. Even though most
semantic-role formalisms are built upon con-
stituent syntax, and only syntactic constituents
can be labeled as arguments (e.g., FrameNet
and PropBank), all the recent work on syntax-
aware SRL relies on dependency represen-
tations of syntax. In contrast, we show
how graph convolutional networks (GCNs)
can be used to encode constituent structures
and inform an SRL system. Nodes in our
SpanGCN correspond to constituents. The
computation is done in 3 stages. First, ini-
tial node representations are produced by
‘composing’ word representations of the first
and last words in the constituent. Second,
graph convolutions relying on the constituent
tree are performed, yielding syntactically-
informed constituent representations. Finally,
the constituent representations are ‘decom-
posed’ back into word representations, which
are used as input to the SRL classifier. We eval-
uate SpanGCN against alternatives, including
a model using GCNs over dependency trees,
and show its effectiveness on standard En-
glish SRL benchmarks CoNLL-2005, CoNLL-
2012, and FrameNet.

1 Introduction

The task of semantic role labeling (SRL) involves
predicting the predicate-argument structure of a
sentence. More formally, for every predicate, the
SRL model must identify all argument spans and
label them with their semantic roles (see Figure
1). The most popular resources for estimating
SRL models are PropBank (Palmer et al., 2005)
and FrameNet (Baker et al., 1998). In both cases,
annotations are made on top of syntactic con-
stituent structures. Earlier work on SRL hinged
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Figure 1: An example with semantic-role annotation
and its reduction to the sequence labeling problem
(BIO labels): the argument structure for predicates ap-
peal and limit are shown in blue and red, respectively.

on constituent syntactic structure, using the trees
to derive features and constraints on role assign-
ments (Gildea and Jurafsky, 2002; Pradhan et al.,
2005; Punyakanok et al., 2008). In contrast, mod-
ern SRL systems largely ignore treebank syntax
(He et al., 2018a, 2017; Marcheggiani et al., 2017;
Zhou and Xu, 2015) and instead use powerful fea-
ture extractors, for example, LSTM sentence en-
coders.

There have been recent successful attempts to im-
prove neural SRL models using syntax (Marcheg-
giani and Titov, 2017; Strubell et al., 2018; He et al.,
2018b). Nevertheless, they have relied on syntactic
dependency representations rather than constituent
trees. In these methods, information from depen-
dency trees is injected into word representations
using graph convolutional networks (GCN) (Kipf
and Welling, 2017) or self-attention mechanisms
(Vaswani et al., 2017). Since SRL annotations are
done on top of syntactic constituents,1 we argue
that exploiting constituency syntax, rather than de-
pendency one, is more natural and may yield more
predictive features for semantic roles. For exam-
ple, even though constituent boundaries could be
derived from dependency structures, this would

1There exists another formulation of SRL, where the focus
is on predicting semantic dependency graphs (Surdeanu et al.,
2008). For English, however, these dependency annotations
are automatically derived from span-based PropBank.
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require an unbounded number of hops over the de-
pendency structure in GCNs or self-attention. This
would be impractical: both Strubell et al. (2018)
and Marcheggiani and Titov (2017) use only one
hop in their best systems.

Neural models typically treat SRL as a sequence
labeling problem, and hence predictions are made
for individual words. Though injecting depen-
dency syntax into word representations is relatively
straightforward, it is less clear how to incorpo-
rate constituency syntax.2 This work shows how
GCNs can be directly applied to span-based struc-
tures. We propose a multi-stage architecture based
on GCNs to inject constituency syntax into word
representations. Nodes in our SpanGCN corre-
spond to constituents. The computation is done
in 3 stages. First, initial span representations are
produced by ‘composing’ word representations of
the first and last words in the constituent. Sec-
ond, graph convolutions relying on the constituent
tree are performed, yielding syntactically-informed
constituent representations. Finally, the constituent
representations are ‘decomposed’ back into word
representations, which are used as input to the SRL
classifier. This approach directly injects informa-
tion about boundaries and syntactic labels of con-
stituents into word representations and also pro-
vides information about the word’s neighbourhood
in the constituent structure.

We show the effectiveness of our approach on
three English datasets: CoNLL-2005 (Carreras and
Màrquez, 2005) and CoNLL-2012 (Pradhan et al.,
2012) with PropBank-style (Palmer et al., 2005) an-
notation and on FrameNet 1.5 (Baker et al., 1998) 3.
By empirically comparing SpanGCN to GCNs over
dependency structures, we confirm our intuition
that constituents yield more informative features
for the SRL task. 4

SpanGCN may be beneficial in other NLP tasks,
where neural sentence encoders are already effec-
tive and syntactic structure can provide an addi-
tional inductive bias, e.g., logical semantic pars-
ing (Dong and Lapata, 2016) or sentence simplifi-
cation (Chopra et al., 2016). Moreover, in principle,
SpanGCN can be applied to other forms of span-

2Recently, Wang et al. (2019) proposed different ways
of encoding dependency and constituency syntax based on
the linearization approaches of Gómez-Rodrı́guez and Vilares
(2018).

3Although we tested the model on English datasets,
SpanGCN can be applied to constituent trees in any language.

4Code available at https://github.com/diegma/
span-gcn.
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Figure 2: SpanGCN encoder. First, for each con-
stituent, an initial representation is produced by com-
posing the start and end tokens’ BiLSTM states (cyan
and black dashed arrows, respectively). This is fol-
lowed by a constituent GCN: red and black arrows rep-
resent parent-to-children and children-to-parent mes-
sages, respectively. Finally, the constituent is decom-
posed back: each constituent sends messages to its start
and end tokens.

based linguistic representations (e.g., co-reference,
entity+relations graphs, semantic and discourse
structures). However, we leave this for future work.

2 Constituency Tree Encoding

The architecture for encoding constituency trees
uses two building blocks, a bidirectional LSTM
for encoding sequences and a graph convolutional
network for encoding graph structures.

2.1 BiLSTM encoder

A bidirectional LSTM (BiLSTM) (Graves, 2013)
consists of two LSTMs (Hochreiter and Schmidhu-
ber, 1997), one that encodes the left context of a
word and one that encodes the right context. In this
paper, we use alternating-stack BiLSTMs as intro-
duced by Zhou and Xu (2015), where the forward
LSTM is used as input to the backward LSTM. As
in He et al. (2017), we employ highway connec-
tions (Srivastava et al., 2015) between layers and
recurrent dropout (Gal and Ghahramani, 2016) to
avoid overfitting.

https://github.com/diegma/span-gcn
https://github.com/diegma/span-gcn
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2.2 GCN

The second building block we use is a graph convo-
lutional network (Kipf and Welling, 2017). GCNs
are neural networks that, given a graph, compute
the representation of a node conditioned on the
neighboring nodes. It can be seen as a message-
passing algorithm where a node’s representation is
updated based on ‘messages’ sent by its neighbor-
ing nodes (Gilmer et al., 2017).

The input to GCN is an undirected graph G =
(V, E), where V (|V | = n) and E are sets of nodes
and edges, respectively. Kipf and Welling (2017)
assume that the set of edges E contains also a
self-loop, i.e., (v, v) ∈ E for any v. We refer to
the initial representation of nodes with a matrix
X ∈ Rm×n, with each of its column xv ∈ Rm

(v ∈ V) encoding node features. The new node
representation is computed as

hv = ReLU

 ∑
u∈N (v)

(Uxu + b)

 ,

where U ∈ Rm×m and b ∈ Rm are a weight ma-
trix and a bias, respectively; N (v) are neighbors
of v; ReLU is the rectifier linear unit activation
function.

The original GCN definition assumes that edges
are undirected and unlabeled. We take inspiration
from dependency GCNs (Marcheggiani and Titov,
2017) introduced for dependency syntactic struc-
tures. Our update function is defined as

h
′
v =ReLU(LayerNorm(∑

u∈N (v)

gv,u(UTc(u,v)
hu + bTf (u,v)

))), (1)

where LayerNorm refers to layer normalization
(Ba et al., 2016) applied after summing the mes-
sages. Expressions Tf (u, v) and Tc(u, v) are fine-
grained and coarse-grained versions of edge labels.
For example, Tc(u, v) may simply return the di-
rection of an arc (i.e. whether the message flows
along the graph edge or in the opposite direction),
whereas the bias can provide some additional syn-
tactic information. The typing decides how many
parameters GCN has. It is crucial to keep the
number of coarse-grained types low as the model
will have to estimate one Rm×m matrix per coarse-
grained type. We formally define the types in the
next section. We used scalar gates gu,v to weight
the contribution of each node in the neighborhood

and potentially ignore irrelevant edges:

gu,v = σ
(
ûTc(u,v)

· hu + b̂Tf (u,v)

)
, (2)

where σ is the sigmoid activation function, whereas
ûTc(u,v)

∈ Rm and b̂Tf (u,v) ∈ R are edge-type-
specific parameters.

Now, we show how to compose GCN and LSTM
layers to produce a syntactically-informed encoder.

2.3 SpanGCN
Our model is shown in Figure 2. It is composed
of three modules: constituent composition, con-
stituent GCN, and constituent decomposition. Note
that there is no parameter sharing across these com-
ponents.

Constituent composition The model takes as in-
put word representations which can either be static
word embeddings or contextual word vectors (Pe-
ters et al., 2018a; Liu et al., 2019b; Devlin et al.,
2019). The sentence is first encoded with a BiL-
STM to obtain a context-aware representation of
each word. A constituency tree is composed of
words (Vw) and constituents (Vc).5 We add rep-
resentations (initially zero vectors) for each con-
stituent in the tree; they are shown as green blocks
in Figure 2. Each constituent representation is com-
puted using GCN updates (Equation 1), relying on
the word representation corresponding to the begin-
ning of its span and the representation correspond-
ing to the end of its span. The coarse-grained types
Tc(u, v) here are binary, distinguishing messages
from start tokens vs. end tokens. The fine-grained
edge types Tf (u, v) encode additionally the con-
stituent label (e.g., NP or VP).

Constituent GCN The constituent composition
stage is followed by a layer where constituent
nodes exchange messages. This layer makes sure
that information about children gets incorporated
into representations of immediate parents and vice
versa. GCN operates on the graph with nodes cor-
responding to all constituents (Vc) in the trees. The
edges connect constituents and their immediate
children in the syntactic tree and do it in both
directions. Again, the updates are defined as in
Equation 1. As before, Tc(u, v) is binary, now
distinguishing parent-to-children messages from
children-to-parent messages. Tf (u, v) additionally

5We slightly abuse the notation by referring to non-
terminals as constituents: part-of-speech tags (typically ‘pre-
terminals’) are stripped off from our trees.
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includes the label of the constituent sending the
message. For example, consider the computation
of the VP constituent in Figure 2. It receives a mes-
sage from the S constituent, this is a parent-to-child
message, and the ‘sender’ is S; these two factors
determine Tf (u, v) and, as a result, the parameters
used in computing the corresponding message.

Constituent decomposition At this point, we
’infuse’ words with information coming from con-
stituents. The graph here is the inverse of the one
used in the composition stage: the constituents pass
the information to the first and the last words in
their spans. As in the composition stage, Tc(u, v)
is binary, distinguishing messages to start and end
tokens. The fine-grained edge types, as before, ad-
ditionally include the constituent label. To spread
syntactic information across the sentence, we use a
further BiLSTM layer.

Note that residual connections indicated in grey
in Figure 2, let the model bypass GCN if / where
needed.

3 Semantic Role Labeling

SRL can be cast as a sequence labeling problem
where given an input sentence x of length T , and
the position of the predicate in the sentence p ∈ T ,
the goal is to predict a BIO sequence of semantic
roles y (see Figure 1). We test our model on two dif-
ferent SRL formalisms, PropBank and FrameNet.

PropBank In PropBank conventions, a frame is
specific to a predicate sense. For example, for the
predicate make, it distinguishes ‘make.01’ (‘cre-
ate’) frame from ‘make.02’ (‘cause to be’) frame.
Though roles are formally frame-specific (e.g., A0
is the ‘creator’ for the frame ‘make.01’ and the
‘writer’ for the frame ‘write.01’), there are cer-
tain cross-frame regularities. For example, A0 and
A1 tend to correspond to proto-agents and proto-
patients, respectively.

FrameNet In FrameNet, every frame has its own
set of role labels (frame elements in FrameNet ter-
minology).6 This makes the problem of predicting
role labels harder. Differently from PropBank, lex-
ically distinct predicates (lexical units or targets in
FrameNet terms) may evoke the same frame. For
example, need and require both can trigger frame
‘Needing’.

6Cross-frame relations (e.g., the frame hierarchy) present
in FrameNet can, in principle, be used to establish correspon-
dences between a subset of roles.

As in previous work we compare to, we assume
to have access to gold frames (Swayamdipta et al.,
2018; Yang and Mitchell, 2017).

4 Semantic Role Labeling Model

For both PropBank and FrameNet, we use the same
model architecture.

Word representation We represent words with
pretrained word embeddings, and we keep them
fixed during training. Word embeddings are con-
catenated with 100-dimensional embeddings of a
predicate binary feature (indicating if the word is
the target predicate or not). Before concatenation,
the pretrained embeddings are passed through layer
normalization (Ba et al., 2016) and dropout (Srivas-
tava et al., 2014). Formally,

xt = dropout(LayerNorm(wt))◦predemb(t)),

where predemb(t) is a function that returns the
embedding for the presence or absence of the pred-
icate at position t. The obtained embedding xt is
then fed to the sentence encoder.

Sentence encoder As a sentence encoder we use
SpanGCN introduced in Section 2. SpanGCN is
fed with word representations xt. Its output is a
sequence of hidden vectors that encode syntactic
information for each candidate argument ht. As
a baseline, we use a syntax-agnostic sentence en-
coder that is the reimplementation of the encoder
of He et al. (2017) with stacked alternating LSTMs,
i.e., our model with the three GCN layers stripped
off.7

Bilinear scorer Following Strubell et al. (2018),
we used a bilinear scorer:

spt = (hpredp )TU(hargt ).

hpredp and hrolet are a non-linear projection of the
predicate hp at position p in the sentence and the
candidate argument ht. The scores spt are passed
through the softmax function and fed to the condi-
tional random field (CRF) layer.

Conditional random field For the output layer,
we use a first-order Markov CRF (Lafferty et al.,
2001). We use the Viterbi algorithm to predict the
most likely label assignment at testing time. At
training time, we learn the scores for transitions

7To have a fair baseline, we independently tuned the num-
ber of BiLSTM layers for our model and the baseline.
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Dev
P R F1

Baseline 82.78 83.58 83.18
SpanGCN 84.48 84.26 84.37

(w/o BiLSTM) 83.31 83.35 83.33
SpanGCN (Gold) 90.50 90.65 90.58

(w/o BiLSTM) 88.96 90.02 89.49
DepGCN 83.4 83.73 83.56

(w/o BiLSTM) 83.01 83.18 83.09

Table 1: Results with predicted and gold syntax on the
CoNLL-2005 development set.

between BIO labels. The entire model is trained to
minimize the negative conditional log-likelihood:

L = −
N∑
j

logP (y|x, p)

where p is the predicate position for the training
example j.

5 Experiments

5.1 Data and setting

We experiment on the CoNLL-2005 and CoNLL-
2012 (OntoNotes) datasets and use the CoNLL
2005 evaluation script for evaluation. We also ap-
ply our approach to FrameNet 1.5 with the data
split of Das et al. (2014) and follow the official
evaluation set-up from the SemEval07 Task 19 on
frame-semantic parsing (Baker et al., 2007).

We train the self-attentive constituency parser
of Kitaev and Klein (2018)8 on the training data
of the CoNLL-2005 dataset (Penn Treebank) and
parse the development and test sets of CoNLL-
2005 dataset. We apply the same procedure for the
CoNLL-2012 dataset. We perform 10-fold jack-
knifing to obtain syntactic predictions for the train-
ing set of CoNLL-2005 and CoNLL-2012. For
FrameNet, we parse the entire corpus with the
parser trained on the training set of CoNLL-2005.
All hyperparameters are reported in Appendix A.

5.2 Importance of syntax and ablations

Before comparing our full model to state-of-the-art
SRL systems, we show that our model genuinely
benefits from incorporating syntactic information
and motivate other modeling decisions (e.g., the
presence of BiLSTM layers at the top).

8https://github.com/nikitakit/self-attentive-parser
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Figure 3: CoNLL-2005 F1 score as a function of sen-
tence length.

We perform this analysis on the CoNLL-2005
dataset. We also experiment with gold-standard
syntax, as this provides an upper bound on what
SpanGCN can gain from using syntactic informa-
tion.

From Table 1, we can see that SpanGCN im-
proves over the syntax-agnostic baseline by 1.2%
F1, a substantial boost from using predicted syn-
tax. We can also observe that it is important to
have the top BiLSTM layer. When we remove the
BiLSTM layer, the performance drops by 1% F1.
Interestingly, without this last layer, SpanGCN’s
performance is roughly the same as that of the
baseline. This shows the importance of spreading
syntactic information from constituent boundaries
to the rest of the sentence.

When we provide to SpanGCN gold-standard
syntax instead of the predicted one, the SRL scores
improve greatly.9 This suggests that, despite its
simplicity (e.g., somewhat impoverished parame-
terization of constituent GCNs), SpanGCN is capa-
ble of extracting predictive features from syntactic
structures.

We also measure the performance of the models
above as a function of sentence length (Figure 3),

9The syntactic parser we use scores 92.5% F1 on the de-
velopment set.
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Figure 4: CoNLL-2005 F1 score as a function of the
distance of a predicate from its arguments.

and as a function of the distance between a predi-
cate and its arguments (Figure 4). Not surprisingly,
the performance of every model degrades with the
length. For the model using gold syntax, the differ-
ence between F1 scores on short sentences and long
sentences is smaller (2.2% F1) than for the models
using predicted syntax (6.9% F1). This is also ex-
pected as in the gold-syntax set-up, SpanGCN can
rely on perfect syntactic parses even for long sen-
tences. In contrast, in the realistic set-up syntactic
features start to be unreliable. SpanGCN performs
on par with the baseline for very short and very
long sentences. Intuitively, for short sentences,
BiLSTMs may already encode enough syntactic
information, while for longer sentences, the quality
of predicted syntax is not good enough to get gains
over the BiLSTM baseline. When considering the
performance of each model as a function of the
distance between a predicate and its arguments, we
observe that all models struggle with more ‘remote’
arguments. Evaluated in this setting, SpanGCN is
slightly better than the baseline.

We also check what kind of errors these models
make by using an oracle to correct one error type at
the time and measuring the influence on the perfor-
mance (He et al., 2017). Figure 5 (top) shows the
results. We can see that all the models make the
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Figure 5: Performance of CoNLL-2005 models after
performing corrections from He et al. (2017).

same fraction of mistakes in labeling arguments,
even with gold syntax. It is also clear that using
gold syntax and, to a lesser extent, predicted syntax,
helps the model to figure out the exact boundaries
of argument spans. These results also suggest that
using gold-syntax leads to many fewer span-related
errors: fixing these errors (merge two spans, spit
into two spans, fix both boundaries) yields 6.1%
and 1.4% improvements, when using predicted and
gold syntax, respectively. The BiLSTM is even
weaker here (6.8% increase in F1).

SpanGCN vs. DependencyGCN To show the
benefits of using constituency syntax, we compare
SpanGCN with the dependency GCN (DepGCN)
of Marcheggiani and Titov (2017). We use
DepGCN in our architecture in place of the 3-
stage SpanGCN. We obtain dependency trees by
transforming the predicted constituency trees with
CoreNLP (de Marneffe and Manning, 2008). Ta-
ble 1 shows that while the model with DepGCN
preforms +0.38% better than the baseline, it per-
forms worse than SpanGCN 83.56 vs. 84.36 F1.
In Figure 3 (bottom), we also compare the perfor-
mance of the two syntactic encoders as a function
of sentence length. Interestingly, DepGCN per-
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WSJ Test
Single P R F1

He et al. (2017) 83.1 83.0 83.1
He et al. (2018a) 84.2 83.7 83.9
Tan et al. (2018) 84.5 85.2 84.8
Ouchi et al. (2018) 84.7 82.3 83.5
Strubell et al. (2018)(LISA)†‡ 84.7 84.6 84.6
SpanGCN† 85.8 85.1 85.4

Single / Context. Emb.
He et al. (2018a)(ELMo) - - 87.4
Li et al. (2019)(ELMo) 87.9 87.5 87.7
Ouchi et al. (2018)(ELMo) 88.2 87.0 87.6
Wang et al. (2019)(ELMo)† - - 88.2
SpanGCN (ELMo)† 87.5 87.9 87.7
SpanGCN (RoBERTa)† 87.7 88.1 87.9

Brown Test
Single P R F1

He et al. (2017) 72.9 71.4 72.1
He et al. (2018a) 74.2 73.1 73.7
Tan et al. (2018) 73.5 74.6 74.1
Ouchi et al. (2018) 76.0 70.4 73.1
Strubell et al. (2018)(LISA)†‡ 74.8 74.3 74.6
SpanGCN† 76.2 74.7 75.5

Single / Context. Emb.
He et al. (2018a)(ELMo) - - 80.4
Li et al. (2019)(ELMo) 80.6 80.4 80.5
Ouchi et al. (2018)(ELMo) 79.9 77.5 78.7
Wang et al. (2019)(ELMo)† - - 79.3
SpanGCN(ELMo)† 79.4 79.6 79.5
SpanGCN(RoBERTa)† 80.5 80.7 80.6

Table 2: Precision, recall and F1 on the CoNLL-2005
test sets. † indicates syntactic models and ‡ indicates
multi-task learning models.

forms slightly better than SpanGCN on short sen-
tences. Figure 4 (bottom) shows that SpanGCN
performs on par with DepGCN when arguments
are close to the predicate but better for more dis-
tant arguments. As with SpanGCN, Figure 3 and
4 (bottom) show that adding a BiLSTM on top of
DepGCN helps to capture long range dependen-
cies. In Figure 5(bottom), we show the different
behaviour of DepGCN with respect to SpanGCN in
terms of prediction mistakes. Unsurprisingly, the
main mistake that DepGCN makes is on deciding
span boundaries. Fixing span related errors (merge
two spans, spit into two spans, fix both boundaries)
yields an improvement of 6.6% for DepGCN vs.
6.1% of SpanGCN.

Test
Single P R F1

He et al. (2017) 81.7 81.6 81.7
He et al. (2018a) - - 82.1
Tan et al. (2018) 81.9 83.6 82.7
Ouchi et al. (2018) 84.4 81.7 83.0
Swayamdipta et al. (2018)†‡ 85.1 81.2 83.8
SpanGCN† 84.5 84.3 84.4

Single / Context. Emb.
Peters et al. (2018a)(ELMo) - - 84.6
He et al. (2018a)(ELMo) - - 85.5
Li et al. (2019)(ELMo) 85.7 86.3 86.0
Ouchi et al. (2018)(ELMo) 87.1 85.3 86.2
Wang et al. (2019)(ELMo)† - - 86.4
SpanGCN (ELMo)† 86.3 86.8 86.5
SpanGCN (RoBERTa)† 86.5 87.1 86.8

Table 3: Precision, recall and F1 on the CoNLL-2012
test set. † indicates syntactic models and ‡ indicates
multi-task learning models.

5.3 Comparing to the state of the art

We compare SpanGCN with state-of-the-art models
on both CoNLL-2005 and CoNLL-2012.10

CoNLL-2005 In Table 2 (Single) we show re-
sults on the CoNLL-2005 dataset. We compare the
model with approaches that use syntax (Strubell
et al., 2018; Wang et al., 2019) and with syntax-
agnostic models (He et al., 2018a, 2017; Tan et al.,
2018; Ouchi et al., 2018). SpanGCN obtains the
best results also outperforming the multi-task self-
attention model of Strubell et al. (2018)11 on the
WSJ (in-domain) (85.43 vs. 84.64 F1) and Brown
(out-of-domain) (75.45 vs. 74.55 F1) test sets.
The performance on the Brown test shows that
SpanGCN is robust with nosier syntax.

CoNLL-2012 In Table 3 (Single) we report re-
sults on the CoNLL-2012 dataset. SpanGCN ob-
tains 84.4 F1, outperforming all previous models
evaluated on this data.

Experiments using contextualized embeddings
We also test SpanGCN using contextualized word
embeddings. We use ELMo (Peters et al., 2018a)
to train the syntactic parser of Kitaev and Klein
(2018), and provide ELMo and RoBERTa (Liu
et al., 2019b) embeddings as input to our model.

10We only consider single, non-ensemble models.
11We compare with the LISA model where no ELMo infor-

mation (Peters et al., 2018a) is used, neither in the syntactic
parser nor the SRL components.
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Model P R F1

Yang and Mitchell (2017) (SEQ) 63.4 66.4 64.9
Yang and Mitchell (2017) (ALL) 70.2 60.2 65.5
Swayamdipta et al. (2018)†‡ 69.2 69.0 69.1

SpanGCN† 69.8 68.8 69.3

Table 4: Results on FrameNet 1.5 test set using gold
frames. † indicates syntactic models and ‡ indicates
multi-task learning models.

In Table 2 (Single / Context. Emb.) we show re-
sults of models that employ contextualized embed-
dings on the CoNLL-2005 test set. Both SpanGCN
models with contextualized embeddings perform
better than the models with GloVe embeddings in
both test sets. SpanGCN(RoBERTa) is outperformed
by the syntax-aware model of Wang et al. (2019)
on the WSJ test but obtains results on par with the
state of the art (Li et al., 2019) on the Brown test
set.

When we train the syntax-agnostic baseline of
Section 4 with RoBERTa embeddings, we obtain
87.0 F1 on the WSJ test set and 79.7 on the Brown
test set, 0.9% F1 worse than SpanGCN on both
test sets. This suggests that although contextual-
ized word embeddings contain information about
syntax (Tenney et al., 2019; Peters et al., 2018b; He-
witt and Manning, 2019), explicitly encoding high-
quality syntax is still useful. SpanGCN(ELMo) has
comparable results to SpanGCN(RoBERTa) when
tested on the WSJ test set, but has a 1.1% differ-
ence when tested on the Brown test set. This differ-
ence is not surprising; BERT-like embeddings have
been shown to perform better than ELMo embed-
dings in various probing tasks (Liu et al., 2019a).
We believe that on top of this, the sheer volume
of data used to train RoBERTa (160GB of text) is
beneficial in the out-of-domain setting.

We report results with contextualized embed-
dings on CoNLL-2012 in Table 3 (Single / Context.
Emb.). SpanGCN(RoBERTa) obtains the best re-
sults. It is interesting to notice, though, that results
of the syntax-aware model of Wang et al. (2019)
are overall (on both CoNLL 2005 - 2012) simi-
lar to SpanGCN(RoBERTa). Also in this setting,
SpanGCN(ELMo) obtains similar (although infe-
rior) results to SpanGCN(RoBERTa) 86.5 vs. 86.8
F1. Compared with the best ELMo-based model
(Wang et al., 2019), SpanGCN(ELMo) obtains simi-
lar (0.1% lower) results.

FrameNet On FrameNet data, we compare
SpanGCN with the sequential and sequential-span
ensemble models of Yang and Mitchell (2017), and
with the multi-task learning model of Swayamdipta
et al. (2018). Swayamdipta et al. (2018) use a multi-
task learning objective where the syntactic scaf-
folding model and the SRL model share the same
sentence encoder and are trained together on dis-
joint data. Like our method, this approach injects
syntactic information (though dependency rather
than constituent syntax) into word representations
used by the SRL model. We show results obtained
on the FrameNet test set in Table 4. SpanGCN
obtains 69.3% F1 score. It performs better than
the syntax-agnostic baseline (2.9% F1) and better
than the syntax-agnostic ensemble model (ALL)
of Yang and Mitchell (2017) (3.8% F1). SpanGCN
also slightly outperforms (0.2% F1) the multi-task
model of Swayamdipta et al. (2018).

6 Related Work

Among earlier approaches to incorporating syn-
tax into neural networks, Socher et al. (2013); Tai
et al. (2015) proposed recursive neural networks
that encode constituency trees by recursively creat-
ing representations of constituents. There are two
important differences between these approaches
and ours. First, in our model, the syntactic informa-
tion in the constituents flows back to word repre-
sentations. This may be achieved with their inside-
outside versions (Le and Zuidema, 2014; Teng and
Zhang, 2017). Second, these previous models do a
global pass over the tree, whereas GCNs consider
only small fragments of the graph. This may make
GCNs more robust when using noisy, predicted
syntactic structures.

In SRL, dependency syntax has gained a lot of
attention. Similarly to this work, Marcheggiani
and Titov (2017) encoded dependency structures
using GCNs. Strubell et al. (2018) used a multi-
task objective to force the self-attention model to
predict syntactic edges. Roth and Lapata (2016) en-
coded dependency paths between predicates and ar-
guments using an LSTM. Li et al. (2018) analysed
different ways of encoding syntactic dependencies
for dependency-based SRL, while He et al. (2018b)
and He et al. (2019) proposed an argument pruning
technique which calculates promising candidate ar-
guments. Recently, Wang et al. (2019) used syntax
linearizaton approaches of Gómez-Rodrı́guez and
Vilares (2018) and employed this information as a
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word-level feature in a SRL model. Swayamdipta
et al. (2018); Cai and Lapata (2019) used multi-task
learning to produce syntactically-informed word
representation, with a sentence encoder shared be-
tween SRL and an auxiliary syntax-related task.

In earlier work, Naradowsky et al. (2012) used
graphical models to encode syntactic structures
while Moschitti et al. (2008) applied tree kernels
for encoding constituency trees. Many methods
cast the problem of SRL as a span classification
problem. FitzGerald et al. (2015) used hand-crafted
features to represent spans, while He et al. (2018a)
and Ouchi et al. (2018) adopted a BiLSTM feature
extractor. In principle, SpanGCN can be used as
a syntactic feature extractor within this class of
models.

7 Conclusions

In this paper, we introduced SpanGCN, a novel
neural architecture for encoding constituency syn-
tax at the word level. We applied SpanGCN to
SRL, on PropBank and FrameNet. We observed
substantial improvements from using constituent
syntax on both datasets, and also in the realistic
out-of-domain setting. By comparing to depen-
dency GCN, we observed that for SRL constituent
structures yield more informative features that the
dependency ones. Given that GCNs over depen-
dency and constituency structure have access to
very different information, it would be interesting
to see in future work if combining two types of
representations can lead to further improvements.
While we experimented only with constituency syn-
tax, SpanGCN may be able to encode any kind of
span structure, for example, co-reference graphs,
and can be used to produce linguistically-informed
encoders for other NLP tasks rather than only SRL.
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Figure 6: CoNLL-2005 F1 score as a function of sen-
tence length.

A Implementation details

We used 100-dimensional GloVe embeddings (Pen-
nington et al., 2014) for all our experiments unless
otherwise specified. We tuned the hyperparam-
eters on the CoNLL-2005 development set. The
LSTMs hidden state dimensions were set to 300 for
CoNLL experiments and to 200 for FrameNet ones.
In our model, we used a four-layer BiLSTM below
GCN layers and a two-layer BiLSTM on top. We
used an eight-layer BiLSTM in our syntax-agnostic
baseline; the number of layers was independently
tuned on the CoNLL-2005 development set. For
RoBERTa (Liu et al., 2019b) experiments, we used
the last layer of the 12-layers (roberta-base) pre-
trained transformer (Vaswani et al., 2017) without
fine tuning it. In the case words got split into mul-
tiple subwords by the RoBERTa tokenizer, we took
the vector of the first subword unit as the represen-
tation of the word as in Devlin et al. (2019).

For ELMo experiments, we learned the mixing
coefficients of ELMo, and we concatenated the
weighted sum of the ELMo layers with a GloVe
100-dimensional vector. We used the original 5.5B
ELMo model 12.

For FrameNet experiments, we constrained the

12https://allennlp.org/elmo

Figure 7: CoNLL-2005 F1 score as a function of the
distance of a predicate from its arguments.

CRF layer to accept only BIO tags compatible with
the selected frame.

We used Adam (Kingma and Ba, 2015) as an
optimizer with an initial learning rate of 0.001; we
halved the learning rate if we did not see an im-
provement on the development set for two epochs.
We trained the model for a maximum of 100 epochs.
We clipped the norm of the gradient to 1.

All models were implemented with PyTorch.13

We used some modules from AllenNLP14 and
the reimplementation of the FrameNet evaluation
scripts by Swayamdipta et al. (2018).15

B Analysis on Syntax Plus
Contextualized Embeddings

We perform an analysis on the use of syntax
on top of contextualized representations ELMo
and RoBERTa. We perform this analysis on the
CoNLL-2005 development set and we measure the
impact of contextualized syntax-agnostic vs contex-
tualized syntactic model in function of: sentence
length (Figure 6), of the distance of arguments from
the predicate (Figure 7), and in function of the type
of mistakes they make (Figure 8). In Figures 6,

13https://pytorch.org
14https://github.com/allenai/allennlp
15https://github.com/swabhs/scaffolding

https://allennlp.org/elmo
https://pytorch.org
https://github.com/allenai/allennlp
https://github.com/swabhs/scaffolding
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Figure 8: Performance of CoNLL-2005 models after
performing corrections from He et al. (2017).

7, and 8, baselines consist of a syntax agnostic 8
layer BiLSTMs on top of the frozen contextualized
representation.

Figure 6 shows that for both ELMo and
RoBERTa, SpanGCN is beneficial. For ELMo
though SpanGCN is not helpful for short sentences
(up to length 10), while for RoBERTa, the syntax
is beneficial across all sentence lengths.

Figure 7 shows that syntax is beneficial for both
contextualized representations. An interesting dif-
ference is that for ELMo, syntax is more helpful for
arguments very far from the predicate. In contrast,
for RoBERTa, syntax is helpful on arguments 4-7
tokens away from the predicate, but hurts perfor-
mance on arguments farther away from the predi-
cate.

Finally, in Figure 8, we see rather different
behaviour between the two representations. For
ELMo, the errors that the syntax agnostic model
makes are the ones related to span boundaries. For
RoBERTa, the syntax-agnostic model makes errors
regarding labels, but it is as good as the syntactic
model at predicting span boundaries.

C Additional Results

Additional development results for CoNLL-2005
(Table 5) and CoNLL-2012 (Table 6) datasets.
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Dev WSJ Test Brown Test
Single P R F1 P R F1 P R F1

He et al. (2017) 81.6 81.6 81.6 83.1 83.0 83.1 72.9 71.4 72.1
He et al. (2018a) - - - 84.2 83.7 83.9 74.2 73.1 73.7
Tan et al. (2018) 82.6 83.6 83.1 84.5 85.2 84.8 73.5 74.6 74.1
Ouchi et al. (2018) 83.6 81.4 82.5 84.7 82.3 83.5 76.0 70.4 73.1
Strubell et al. (2018)†‡ 83.6 83.74 83.67 84.72 84.57 84.64 74.77 74.32 74.55
DepGCN† 83.4 83.73 83.56 85.07 84.7 84.88 75.5 74.46 74.98
SpanGCN† 84.48 84.26 84.37 85.8 85.05 85.43 76.17 74.74 75.45

Single / Contextualized Embeddings
He et al. (2018a)(ELMo) - - 83.9 - - 87.4 - - 80.4
Li et al. (2019)(ELMo) - - - 87.9 87.5 87.7 80.6 80.4 80.5
Ouchi et al. (2018)(ELMo) 87.4 86.3 86.9 88.2 87.0 87.6 79.9 77.5 78.7
Wang et al. (2019)(ELMo)† - - - - - 88.2 - - 79.3
Baseline(ELMo)† 86.07 86.84 86.46 86.81 87.13 86.97 78.43 77.81 78.12
Baseline(RoBERTa)† 85.95 86.3 86.13 86.85 87.19 87.02 79.99 79.33 79.66
SpanGCN(ELMo)† 86.46 87.38 86.92 87.47 87.85 87.66 79.38 79.56 79.47
SpanGCN(RoBERTa)† 86.77 87.56 87.17 87.72 88.05 87.89 80.45 80.71 80.58

Table 5: Precision, recall and F1 on the CoNLL-2005 development and test sets. † indicates syntactic models and
‡ indicates multi-task learning models.

Dev Test
Single P R F1 P R F1

He et al. (2017) 81.8 81.4 81.5 81.7 81.6 81.7
Tan et al. (2018) 82.2 83.6 82.9 81.9 83.6 82.7
Ouchi et al. (2018) 84.3 81.5 82.9 84.4 81.7 83.0
Swayamdipta et al. (2018)†‡ - - - 85.1 81.2 83.8
SpanGCN† 84.45 84.16 84.31 84.47 84.26 84.37

Single / Contextualized Embeddings
Peters et al. (2018a)(ELMo) - - - - - 84.6
Li et al. (2019)(ELMo) - - 85.7 86.3 86.0
Ouchi et al. (2018)(ELMo) 87.2 85.5 86.3 87.1 85.3 86.2
Wang et al. (2019)(ELMo)† - - - - - 86.4
Baseline(ELMo)† 84.55 83.7 84.13 84.55 83.56 84.06
Baseline(RoBERTa)† 84.6 84.69 84.64 84.71 84.85 84.78
SpanGCN(ELMo)† 86.26 86.74 86.5 86.25 86.83 86.54
SpanGCN(RoBERTa)† 86.69 87.22 86.95 86.48 87.09 86.78

Table 6: Precision, recall and F1 on the CoNLL-2012 development and test sets. † indicates syntactic models and
‡ indicates multi-task learning models.


