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Abstract

Graph Neural Networks (GNNs) that capture
the relationships between graph nodes via mes-
sage passing have been a hot research direc-
tion in the natural language processing com-
munity. In this paper, we propose Graph Topic
Model (GTM), a GNN based neural topic
model that represents a corpus as a document
relationship graph. Documents and words in
the corpus become nodes in the graph and
are connected based on document-word co-
occurrences. By introducing the graph struc-
ture, the relationships between documents are
established through their shared words and
thus the topical representation of a document
is enriched by aggregating information from
its neighboring nodes using graph convolution.
Extensive experiments on three datasets were
conducted and the results demonstrate the ef-
fectiveness of the proposed approach.

1 Introduction

Probabilistic topic models (Blei, 2012) are tools for
discovering main themes from large corpora. The
popular Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) and its variants (Lin and He, 2009;
Zhao et al., 2010; Zhou et al., 2014) are effective
in extracting coherent topics in an interpretable
manner, but usually at the cost of designing so-
phisticated and model-specific learning algorithm.
Recently, neural topic modeling that utilizes neural-
network-based black-box inference has been the
main research direction in this field. Notably,
NVDM (Miao et al., 2016) employs variational
autoencoder (VAE) (Kingma and Welling, 2013)
to model topic inference and document generation.
Specifically, NVDM consists of an encoder infer-
ring topics from documents and a decoder generat-
ing documents from topics, where the latent topics
are constrained by a Gaussian prior. Srivastava and
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Sutton (2017) argued that Dirichlet distribution is
a more appropriate prior for topic modeling than
Gaussian in NVDM and proposed ProdLDA that
approximates the Dirichlet prior with logistic nor-
mal. There are also attempts that directly enforced
a Dirichlet prior on the document topics. W-LDA
(Nan et al., 2019) models topics in the Wasserstein
autoencoders (Tolstikhin et al., 2017) framework
and achieves distribution matching by minimizing
their Maximum Mean Discrepancy (MMD) (Gret-
ton et al., 2012), while adversarial topic model
(Wang et al., 2019a,b, 2020) directly generates doc-
uments from the Dirichlet prior and such a process
is adversarially trained with a discriminator under
the framework of Generative Adversarial Network
(GAN) (Goodfellow et al., 2014).

Recently, due to the effectiveness of Graph Neu-
ral Networks (GNNs) (Li et al., 2015; Kipf and
Welling, 2016; Zhou et al., 2018) in embedding
graph structures, there is a surge of interests of ap-
plying GNN to natural language processing tasks
(Yasunaga et al., 2017; Song et al., 2018; Yao et al.,
2019). For example, GraphBTM (Zhu et al., 2018)
is a neural topic model that incorporates the graph
representation of a document to capture biterm co-
occurrences in the document. To construct the
graph, a sliding window over the document is em-
ployed and all word pairs in the window are con-
nected.

A limitation of GraphBTM is that only word
relationships are considered while ignoring docu-
ment relationships. Since a topic is possessed by a
subset of documents in the corpus, we believe that
the topical neighborhood of a document, i.e., doc-
uments with similar topics, would help determine
the topics of a document. To this end, we propose
Graph Topic Model (GTM), a neural topic model
that a corpus is represented as a document rela-
tionship graph where documents and words in the
corpus are nodes and they are connected based on
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document-word co-occurrences. In GTM, the topi-
cal representation of a document node is aggregated
from its multi-hop neighborhood, including both
document and word nodes, using Graph Convolu-
tional Network (GCN) (Kipf and Welling, 2016).
As GCN is able to capture high-order neighborhood
relationships, GTM is essentially capable of model-
ing both word-word and doc-doc relationships. In
specific, the relationships between relevant docu-
ments are established by their shared words, which
is desirable for topic modeling as documents be-
longing to one topic typically have similar word
distributions.

The main contributions of the paper are:

• We propose GTM, a novel topic model that
incorporates document relationship graph to
enrich document and word representations.

• We extensively experimented on three datasets
and the results demonstrate the effectiveness
of the proposed approach.

2 Graph Topic Model

2.1 Graph Representation of the Corpus

We represent the whole corpus D with an undi-
rected graph G = (N , E), where N and E are
nodes and edges in the graph respectively. To
model both words and documents, each of them is
represented as a node ni ∈ N , which gives rise to
N = V +D nodes in total, where V is the size of
vocabulary V and D is the number of documents in
corpus D. An edge (ni, nj) indicates the relevance
of node ni and nj , whose weight is determined by

Ai,j =





TF-IDFij , i ∈ D and j ∈ V
TF-IDFji, i ∈ V and j ∈ D
1, i = j

0, otherwise

(1)

where A is the adjacency matrix of G and TF-IDFij

denotes the max-normalized TF-IDF (Term Fre-
quency–Inverse Document Frequency) weight of
word j in document i. Besides self-connections,
we only apply positive weights to edges between
documents and words, while rely on the model to
capture higher-order relationships, e.g. doc-doc
and word-word relationships, by applying graph
convolutions on graph G.

I X

XT I





 E Ẑ

ZDirichlet(α)

G X̂

Lrec(X, X̂)

MMD(PZ , QẐ)

Figure 1: The framework of GTM. Circles denote neu-
ral networks. X , I , Ẑ, X̂ , Z are the TF-IDF matrix
of the corpus, an identity matrix, latent topics of all
documents, reconstructed word weights and topic dis-
tributions drawn from the Dirichlet prior respectively.
Lrec(X, X̂) and MMD(PZ , QZ) are training objec-
tives.

2.2 Model Architecture
The proposed GTM consists of an encoder E and
a decoder G. The framework is shown in Figure 1,
and we detail the architecture in the following.

The encoder network E maps nodes in G to their
topic distributions by iteratively applying graph
convolution to the node features. Following (Kipf
and Welling, 2016), the layer-wise propagation rule
of the graph convolution at layer l + 1 ∈ [1, L] is
defined as

H(l+1) = σ(D−
1
2AD−

1
2H(l)W (l)) (2)

where A ∈ RN×N is the adjacency matrix of G,
Dii =

∑
j Aij , W (l) ∈ Rd(l)×d(l+1)

is a layer-
specific weight matrix where d(l) is the output size
of layer l, and σ denotes an activation function that
is LeakyReLU (Maas et al., 2013) in this paper.
H(l) ∈ RN×d(l) is the activations of all nodes at
layer l and H

(0)
i is the embedding of node i.

At each encoder layer, what the graph convolu-
tion does is aggregating node features from a node’s
first-order neighborhood, which consequently en-
larges the receptive field of the central node and
enables the information propagation between rel-
evant nodes. After successively applying L graph
convolution layers, the encoding of a node essen-
tially involves its Lth-order neighborhood. With
L ≥ 2, doc-doc and word-word relationships are
naturally captured in the topic inference process.

We also add a batch normalization (Ioffe and
Szegedy, 2015) after each graph convolution. After
the graph encoding, a softmax is further applied
to the node features of a document to produce a
multinomial topic distribution ẑ ∈ RK , where K
is the topic number.
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Based on the inferred topic distribution ẑ, the
decoder network G tries to restore the original doc-
ument representations. To achieve this goal, we
employ a 2-layer MLP with LeakyReLU activation
and batch normalization in the first layer. The out-
put of the MLP decoder is then softmax-normalized
to generate a word distribution x̂ ∈ RV .

The decoder is also used to interpret topics. In
this case, we feed to the decoder an identity matrix
I ∈ RK×K , and the decoder output G(I)i is the
word distribution of the i-th topic.

2.3 Training Objective
Based on the Wasserstein Autoencoder (Tolstikhin
et al., 2017) framework, the training objective of
GTM is to minimize the document reconstruction
loss when the latent topic space is constrained by
a prior distribution. The reconstruction loss is de-
fined as

Lrec(X, X̂) = −E(x log x̂), (3)

where x denotes the TF-IDF of a document and x̂ is
the reconstructed word distribution corresponding
to x. we use TF-IDF as the reconstruction target
since TF-IDF basically preserves the relative impor-
tance of words and reduces some background noise
that may hurt topic modeling, e.g., stop words.

We impose a Dirichlet prior, the conjugate prior
of the multinomial distribution, to the latent topic
distributions. Following W-LDA (Nan et al., 2019),
we achieve this goal by minimizing the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012)
between the distribution QẐ of inferred topic dis-
tributions ẑ and the Dirichlet prior PZ from which
we draw multinomial noises z:

MMD(PZ , QẐ) =
1

m(m− 1)

∑
i6=j

k(z(i),z(j))+

1

n(n− 1)

∑
i 6=j

k(ẑ(i), ẑ(j))− 2

mn

∑
i,j

k(z(i), ẑ(j)), (4)

where m and n are the number of samples from Z
and Ẑ respectively (m and n are batch sizes and
they are equal in our experiments), and k : Z×Z →
R is the kernel function. We use the information
diffusion kernel (Lebanon and Lafferty, 2003) as
in W-LDA:

k(z, z′) = exp(− arccos2(

K∑

i=1

√
ziz′i)), (5)

which is sensitive to points near the simplex bound-
ary and thus more suitable for the sparse topic dis-
tributions.

3 Experiments

We evaluate our model on three datasets: 20News-
groups consisting of 11,259 documents, Grolier
consisting of 29,762 documents, and NYTimes
consisting of 99,992 documents. We use the pre-
processed 20Newsgroups of (Srivastava and Sut-
ton, 2017), and preprocessed Grolier and NYTimes
of (Wang et al., 2019a). We compare the perfor-
mance of our model with LDA (Blei et al., 2003),
NVDM (Miao et al., 2016), ProdLDA (Srivastava
and Sutton, 2017), GraphBTM (Zhu et al., 2018),
ATM (Wang et al., 2019a) and W-LDA (Nan et al.,
2019) using topic coherence measures (Röder et al.,
2015). To quantify the understandability of the
extracted topics, a topic coherence measure aggre-
gates the relatedness scores of the topic words (top-
weighted words) of each topic, where the word
relatedness scores are estimated based on word
co-occurrence statistics on a large external corpus.
For example, the NPMI coherence measure (Ale-
tras and Stevenson, 2013) applies a sliding window
of size 10 over the Wikipedia corpus to calculate
NPMI (Bouma, 2009) for word pairs. We use three
topic coherence measures in our experiments: C A
(Aletras and Stevenson, 2013), C P (Röder et al.,
2015), and NPMI. The topic coherence scores are
calculated using Palmetto (Röder et al., 2015) 1.

Dataset Model C A C P NPMI

20Newsgroups

LDA 0.1769 0.2362 0.0524
NVDM 0.1432 −0.2558 −0.0984
ProdLDA 0.2155 0.1859 −0.0083
GraphBTM 0.2195 0.2152 0.0082
ATM 0.1720 0.1914 0.0207
W-LDA 0.2065 0.2501 0.0400
GTM 0.2465 0.3451 0.0629

Grolier

LDA 0.2009 0.1908 0.0498
NVDM 0.1457 −0.1877 −0.0619
ProdLDA 0.1734 −0.0374 −0.0193
ATM 0.2189 0.2104 0.0582
W-LDA 0.2354 0.2579 0.0725
GTM 0.2464 0.3251 0.0950

NYTimes

LDA 0.2128 0.3083 0.0773
NVDM 0.1342 −0.4131 −0.1437
ProdLDA 0.1964 −0.0035 −0.0282
ATM 0.2375 0.3568 0.0899
W-LDA 0.2253 0.3352 0.0783
GTM 0.2443 0.3776 0.0911

Table 1: Average topic coherence of 5 topic number
settings (20, 30, 50, 75, 100). Bold values indicate
the best performing model under the corresponding
dataset/metric setting.

1https://github.com/AKSW/Palmetto

https://github.com/AKSW/Palmetto
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Figure 2: Topic coherence scores (C P, C A, NPMI) w.r.t. topic numbers on 20Newsgroups (20NG), NYTimes
(NYT), and Grolier.

We use 2 graph convolution layers with output
dimensions of 100 and K respectively in the en-
coder. The hidden size of the decoder is also set
to 100. We use the RMSProp (Hinton et al., 2012)
optimizer with a learning rate of 0.01 to train the
model for 100 epochs. Since the training datasets
scale up to 100K documents, i.e., 100K document
nodes in the graph, it is hard to do batch training
on a single GPU given the large memory require-
ments. We solve this issue by mini-batching the
datasets and feeding to the model a subgraph con-
sisting of 1000 document nodes and all word nodes
at a training step, which results in efficient training
(The training time increases almost linearly with
the number of documents) and makes it possible to
apply our model to even bigger datasets.

The topic coherence results on the three datasets
are shown in Table 1, where each value is the av-
erage of 5 topic number settings: 20, 30, 50, 75,
100. From Table 1, we can observe that our pro-
posed GTM is the best-performing model under all
dataset/metric settings. W-LDA, ATM, LDA, and

GraphBTM alternately achieve the second-best but
they are always under-performed compared to our
model. As described in section 2, GTM is an exten-
sion to W-LDA with the main difference that GTM
models topics in a larger context and incorporates
more global information with the graph encoder.
Therefore the improvements of GTM over W-LDA
indicate the effectiveness of such information for
topic modeling. We only experimented GraphBTM
on 20Newsgroups because only 20Newsgroups pre-
serves the sequential information that is necessary
for GraphBTM to build graphs. GraphBTM per-
forms well on the C A metric, which is reasonable
since C A is a coherence measure based on a small
sliding window of size 5 and consequently prefers
models concentrating on a smaller context like
GraphBTM. However, GraphBTM fails to achieve
a high C P or NPMI score, which uses a bigger
window (70 and 10 respectively).

To explore how topic coherence results vary w.r.t.
different topic numbers, we present in Figure 2
the topic coherence scores under different topic
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Model Topics

GTM
cancer medicine patient treatment medical disease md health hospital investigation
satellite mission space launch lunar spacecraft shuttle orbit nasa flight
car honda bmw engine ford saturn dealer turbo rear model
ticket send mail price credit sale offer receive list customer

GraphBTM
cancer hus md medical health disease patient mission laboratory culture
probe mission spacecraft lunar shuttle orbit nasa solar satellite space
car bike cop road hit gas insurance fbi guy lot
car buy mouse scsi engine card audio pc windows faster
village turkish armenia azerbaijan troops militia greek lebanon armenian greece

W-LDA
msg food patient disease study science one treatment doctor scientific
space launch nasa satellite ground mission shuttle use rocket orbit
car dog road ride speed light drive bike go front
condition sale offer shipping sell excellent car speaker cd include

LDA
use drug cause effect medical study disease patient doctor treatment
space launch earth nasa mission system orbit satellite design moon
car buy price sale new engine offer model dealer
car buy sell price sale new engine offer model dealer

Table 2: Discovered topics that are most similar to 4 ground-truth categories (sci.med, sci.space, rec.autos,
misc.forsale) on 20Newsgroups with topic number 50. Italics are manually labeled off-topic words.

numbers settings. It can be observed in Figure
2 that GTM enjoys the best overall performance,
achieving the highest scores in most settings. LDA
has a slightly higher NPMI score on 20Newsgroups
dataset with 75 and 100 topics, nevertheless, GTM
outperforms all baseline models with a relatively
large margin on other settings of 20Newsgroups.
NVDM is apparently the worst-performing model,
while performances of models other than GTM
and NVDM are not so consistent. Notably, W-
LDA, GraphBTM, and LDA obtain the second-best
overall C P, C A, and NPMI scores respectively.
Another observation from Figure 2 is that GTM
performs better on smaller topics, probably due
to the fact that topics become more discriminative
against each other when the topic number is small.

To gain an intuitive impression on the discov-
ered topics, we present in Table 2 4 topics corre-
sponding to 4 out of 20 ground-truth categories of
20Newsgroups. It can be observed that the topics
discovered by GTM are more coherent and inter-
pretable, containing few off-topic words. As a
comparison, GraphBTM’s rec.autos topic mixes up
automobiles and criminals, W-LDA’s misc.forsale
topic is difficult to identify with too many off-
topic words, while LDA can not distinguish be-
tween rec.autos and misc.forsale well thus recog-

nizes them as the same topic. It can be observed
that GTM learns more discriminative topics by ex-
amining topic words from overlapping topics, e.g.
rec.autos and misc.forsale.

4 Conclusion

We have introduced Graph Topic Model, a neural
topic model that incorporates corpus-level neigh-
boring context using graph convolutions to enrich
document representations and facilitate the topic
inference. Both quantitative and qualitative results
are presented in the experiments to demonstrate
the effectiveness of the proposed approach. In the
future, we would like to extend GTM to corpora
with explicit doc-doc interactions, e.g., scientific
documents with citations or social media posts with
user relationships. Replacing GCN in GTM with
more advanced graph neural networks is another
promising research direction.
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Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM Inter-
national Conference on Web Search and Data Min-
ing, WSDM ’15, pages 399–408, New York, NY,
USA. ACM.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616–
1626, Melbourne, Australia. Association for Compu-
tational Linguistics.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. arXiv
preprint arXiv:1703.01488.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and
Bernhard Schoelkopf. 2017. Wasserstein auto-
encoders. arXiv preprint arXiv:1711.01558.

Rui Wang, Xuemeng Hu, Deyu Zhou, Yulan He, Yux-
uan Xiong, Chenchen Ye, and Haiyang Xu. 2020.
Neural topic modeling with bidirectional adversarial
training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 340–350, Online. Association for Com-
putational Linguistics.

Rui Wang, Deyu Zhou, and Yulan He. 2019a. ATM:
Adversarial-neural topic model. Information Pro-
cessing & Management, 56(6):102098.

Rui Wang, Deyu Zhou, and Yulan He. 2019b. Open
event extraction from online text using a genera-
tive adversarial network. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 282–291, Hong Kong,
China. Association for Computational Linguistics.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
Proceedings of the AAAI Conference on Artificial In-
telligence, 33:7370–7377.

https://www.aclweb.org/anthology/W13-0102
https://www.aclweb.org/anthology/W13-0102
https://doi.org/10.1145/2133806.2133826
https://dl.acm.org/doi/10.5555/944919.944937
http://papers.nips.cc/paper/5423-generative-adversarial- nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial- nets.pdf
https://dl.acm.org/doi/10.5555/2188385.2188410
https://www.cs.toronto.edu/~tijmen/csc321/slides/ lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/ lecture_slides_lec6.pdf
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
http://papers.nips.cc/paper/2216-information-diffusion- kernels.pdf
http://papers.nips.cc/paper/2216-information-diffusion- kernels.pdf
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
https://doi.org/10.1145/1645953.1646003
https://doi.org/10.1145/1645953.1646003
http://proceedings.mlr.press/v48/miao16.html
http://proceedings.mlr.press/v48/miao16.html
https://doi.org/10.18653/v1/P19-1640
https://doi.org/10.18653/v1/P19-1640
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/P18-1150
https://arxiv.org/abs/1703.01488
https://arxiv.org/abs/1703.01488
https://arxiv.org/abs/1711.01558
https://arxiv.org/abs/1711.01558
https://doi.org/10.18653/v1/2020.acl-main.32
https://doi.org/10.18653/v1/2020.acl-main.32
https://doi.org/10.1016/j.ipm.2019.102098
https://doi.org/10.1016/j.ipm.2019.102098
https://doi.org/10.18653/v1/D19-1027
https://doi.org/10.18653/v1/D19-1027
https://doi.org/10.18653/v1/D19-1027
https://doi.org/10.1609/aaai.v33i01.33017370


3796

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu,
Ayush Pareek, Krishnan Srinivasan, and Dragomir
Radev. 2017. Graph-based neural multi-document
summarization. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 452–462, Vancouver, Canada.
Association for Computational Linguistics.

Xin Zhao, Jing Jiang, Hongfei Yan, and Xiaoming Li.
2010. Jointly modeling aspects and opinions with
a MaxEnt-LDA hybrid. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 56–65, Cambridge, MA.
Association for Computational Linguistics.

Deyu Zhou, Liangyu Chen, and Yulan He. 2014. A
simple Bayesian modelling approach to event extrac-
tion from twitter. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 700–
705, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. 2018. Graph neural networks: A re-
view of methods and applications. arXiv preprint
arXiv:1812.08434.

Qile Zhu, Zheng Feng, and Xiaolin Li. 2018.
GraphBTM: Graph enhanced autoencoded varia-
tional inference for biterm topic model. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4663–4672,
Brussels, Belgium. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/K17-1045
https://doi.org/10.18653/v1/K17-1045
https://www.aclweb.org/anthology/D10-1006
https://www.aclweb.org/anthology/D10-1006
https://doi.org/10.3115/v1/P14-2114
https://doi.org/10.3115/v1/P14-2114
https://doi.org/10.3115/v1/P14-2114
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434
https://doi.org/10.18653/v1/D18-1495
https://doi.org/10.18653/v1/D18-1495

