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Abstract

Aspect-category sentiment analysis (ACSA)
aims to predict sentiment polarities of sen-
tences with respect to given aspect categories.
To detect the sentiment toward a particular
aspect category in a sentence, most previ-
ous methods first generate an aspect category-
specific sentence representation for the aspect
category, then predict the sentiment polarity
based on the representation. These methods
ignore the fact that the sentiment of an aspect
category mentioned in a sentence is an aggre-
gation of the sentiments of the words indicat-
ing the aspect category in the sentence, which
leads to suboptimal performance. In this pa-
per, we propose a Multi-Instance Multi-Label
Learning Network for Aspect-Category sen-
timent analysis (AC-MIMLLN), which treats
sentences as bags, words as instances, and the
words indicating an aspect category as the key
instances of the aspect category. Given a sen-
tence and the aspect categories mentioned in
the sentence, AC-MIMLLN first predicts the
sentiments of the instances, then finds the key
instances for the aspect categories, finally ob-
tains the sentiments of the sentence toward
the aspect categories by aggregating the key
instance sentiments. Experimental results on
three public datasets demonstrate the effective-
ness of AC-MIMLLN 1.

1 Introduction

Sentiment analysis (Pang and Lee, 2008; Liu, 2012)
has attracted increasing attention recently. Aspect-
based sentiment analysis (ABSA) (Pontiki et al.,
2014, 2015, 2016) is a fine-grained sentiment anal-
ysis task and includes many subtasks, two of which
are aspect category detection (ACD) that detects
the aspect categories mentioned in a sentence and
∗Equal contribution
†Corresponding author
1Data and code are available at

https://github.com/l294265421/AC-MIMLLN

While it was large and a bit noisy, the drinks were 
fantastic, and the food was superb.

<ambience, negative>

<food, positive>

food, positivefood, positive

ambience, negativeambience, neutral

Figure 1: An example of ACD and ACSA. The under-
lined words are key instances, the labels of the key in-
stances are in the dotted line boxes, and the labels of
the sentence are in the angle brackets.

aspect-category sentiment analysis (ACSA) that
predicts the sentiment polarities with respect to the
detected aspect categories. Figure 1 shows an ex-
ample. ACD detects the two aspect categories, am-
bience and food, and ACSA predicts the negative
and positive sentiment toward them respectively.
In this work, we focus on ACSA, while ACD as an
auxiliary task is used to find the words indicating
the aspect categories in sentences for ACSA.

Since a sentence usually contains one or more
aspect categories, previous studies have developed
various methods for generating aspect category-
specific sentence representations to detect the sen-
timent toward a particular aspect category in a
sentence. To name a few, attention-based models
(Wang et al., 2016; Cheng et al., 2017; Tay et al.,
2018; Hu et al., 2019) allocate the appropriate sen-
timent words for the given aspect category. Xue
and Li (2018) proposed to generate aspect category-
specific representations based on convolutional neu-
ral networks and gating mechanisms. Since aspect-
related information may already be discarded and
aspect-irrelevant information may be retained in an
aspect independent encoder, some existing methods
(Xing et al., 2019; Liang et al., 2019) utilized the
given aspect to guide the sentence encoding from
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scratch. Recently, BERT based models (Sun et al.,
2019; Jiang et al., 2019) have obtained promising
performance on the ACSA task. However, these
models ignored that the sentiment of an aspect cat-
egory mentioned in a sentence is an aggregation of
the sentiments of the words indicating the aspect
category. It leads to suboptimal performance of
these models. For the example in Figure 1, both
“drinks” and “food” indicate the aspect category
food. The sentiment about food is a combination
of the sentiments of “drinks” and “food”. Note
that, words indicating aspect categories not only
contain aspect terms explicitly indicating an aspect
category but also contain other words implicitly
indicating an aspect category (Cheng et al., 2017).
In Figure 1, while “drinks” and “food” are aspect
terms explicitly indicating the aspect category food,
“large” and “noisy” are not aspect terms implicitly
indicating the aspect category ambience.

In this paper, we propose a Multi-Instance Multi-
label Learning Network for Aspect-Category senti-
ment analysis (AC-MIMLLN). AC-MIMLLN ex-
plicitly models the fact that the sentiment of an
aspect category mentioned in a sentence is an ag-
gregation of the sentiments of the words indicating
the aspect category. Specifically, AC-MIMLLN
treats sentences as bags, words as instances, and
the words indicating an aspect category as the key
instances (Liu et al., 2012) of the aspect category.
Given a bag and the aspect categories mentioned
in the bag, AC-MIMLLN first predicts the instance
sentiments, then finds the key instances for the as-
pect categories, finally aggregates the sentiments
of the key instances to get the bag-level sentiments
of the aspect categories.

Our main contributions can be summarized as
follows:

• We propose a Multi-Instance Multi-Label
Learning Network for Aspect-Category senti-
ment analysis (AC-MIMLLN). AC-MIMLLN
explicitly model the process that the sentiment
of an aspect category mentioned in a sentence
is obtained by aggregating the sentiments of
the words indicating the aspect category.

• To the best of our knowledge, it is the first time
to explore multi-instance multi-label learning
in aspect-category sentiment analysis.

• Experimental results on three public
datasets demonstrate the effectiveness of
AC-MIMLLN.

2 Related Work

Aspect-Category Sentiment Analysis predicts
the sentiment polarities with regard to the given
aspect categories. Many methods have been devel-
oped for this task. Wang et al. (2016) proposed an
attention-based LSTM network, which can concen-
trate on different parts of a sentence when different
aspect categories are taken as input. Some new
attention-based methods (Cheng et al., 2017; Tay
et al., 2018; Hu et al., 2019) allocated more appro-
priate sentiment words for aspect categories and
obtained bertter performance. Ruder et al. (2016)
modeled the interdependencies of sentences in a
text with a hierarchical bidirectional LSTM. Xue
and Li (2018) extracted sentiment features with
convolutional neural networks and selectively out-
putted aspect category related features with gat-
ing mechanisms. Xing et al. (2019), Liang et al.
(2019) and Zhu et al. (2019) incorporated aspect
category information into sentence encoders in the
context modeling stage. Lei et al. (2019) proposed
a human-like semantic cognition network to simu-
late the human beings’ reading cognitive process.
Sun et al. (2019) constructed an auxiliary sentence
from the aspect category and converted ACSA to a
sentence-pair classification task. Jiang et al. (2019)
put forward new capsule networks to model the
complicated relationship between aspect categories
and contexts. The capsule networks achieved state-
of-the-art results. Several joint models (Li et al.,
2017; Schmitt et al., 2018; Wang et al., 2019; Li
et al., 2019) were proposed to avoid error propaga-
tion, which performed ACD and ACSA jointly.

However, all these models mentioned above ig-
nored that the sentiment of an aspect category dis-
cussed in a sentence is an aggregation of the senti-
ments of the words indicating the aspect category.

Multi-Instance Multi-Label Learning
(MIMLL) (Zhou and Zhang, 2006) deals with
problems where a training example is described
by multiple instances and associated with multiple
class labels. MIMLL has achieved success in
various applications due to its advantages on
learning with complicated objects, such as image
classification (Zhou and Zhang, 2006; Chen
et al., 2013), text categorization (Zhang and Zhou,
2008), relation extraction (Surdeanu et al., 2012;
Jiang et al., 2016), etc. In ACSA, a sentence
contains multiple words (instances) and expresses
sentiments to multiple aspect categories (labels),
so MIMLL is suitable for ACSA. However, as far
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as our knowledge, MIMLL has not been explored
in ACSA.

Multiple instance learning (MIL) (Keeler and
Rumelhart, 1992) is a special case of MIMLL,
where a real-world object described by a number
of instances is associated with only one class label.
Some studies (Kotzias et al., 2015; Angelidis and
Lapata, 2018; Pappas and Popescu-Belis, 2014)
have applied MIL to sentiment analysis. Angelidis
and Lapata (2018) proposed a Multiple Instance
Learning Network (MILNET), where the overarch-
ing polarity of a text is an aggregation of sentence
or elementary discourse unit polarities, weighted
by their importance. An attention-based polarity
scoring method is used to obtain the importance of
segments. Similar to MILNET, our model also uses
an attention mechanism to obtain the importance of
instances. However, the attention in our model is
learned from the ACD task, while the attention in
MILNET is learned from the sentiment classifica-
tion task. Pappas and Popescu-Belis (2014) applied
MIL to another subtask of ABSA. They proposed a
multiple instance regression (MIR) model to assign
sentiment scores to specific aspects of products.
However, i) their task is different from ours, and ii)
their model is not a neural network.

3 Model

In this section, we describe how to apply the multi-
instance multi-label learning framework to the
aspect-category sentiment analysis task. We first
introduce the problem formulation, then describe
our proposed Multi-Instance Multi-Label Learning
Network for Aspect-Category sentiment analysis
(AC-MIMLLN).

3.1 Problem Formulation

In the ACSA task, there are N predefined aspect
categories A = {a1, a2, ..., aN} and a predefined
set of sentiment polarities P = {Neg,Neu, Pos}
(i.e., Negative, Neutral and Positive respectively).
Given a sentence, S = {w1, w2, ..., wn} and the
K aspect categories, AS = {AS1 , AS2 , ..., ASK},
AS ⊂ A, mentioned in S, the ACSA task pre-
dicts the sentiment polarity distributions of the
K aspect categories, p = {p1, p2, ..., pK}, where
pk = {pkNeg

, pkNeu
, pkPos

}. The multi-instance
multi-label learning assumes that, for the k-th as-
pect category, pk is an unknown function of the
unobserved word-level sentiment distributions. AC-
MIMLLN first produces a sentiment distribution

pj for each word and then combines these into a
sentence-level prediction:

pj = f̂θw(wj) (1)

pk = ĝkθS (p
1, p2, ..., pn) (2)

3.2 Multi-Instance Multi-Label Learning
Network for ACSA

In this section, we introduce our proposed
Multi-Instance Multi-Label Learning Network
for Aspect-Category sentiment analysis (AC-
MIMLLN), which is based on the intuitive assump-
tion that the sentiment of an aspect category men-
tioned in a sentence is an aggregation of the senti-
ments of the words indicating the aspect category.
In MIMLL, the words indicating an aspect category
are called the key instances of the aspect category.
Specifically, AC-MIMLLN contains two parts, an
attention-based aspect category detection (ACD)
classifier and an aspect-category sentiment analysis
(ACSA) classifier. Given a sentence, the ACD clas-
sifier as an auxiliary task generates the weights of
the words for every aspect category. The weights
indicate the probabilities of the words being the key
instances of aspect categories . The ACSA classi-
fier first predicts the sentiments of the words, then
obtains the sentence-level sentiment for each aspect
category by combining the corresponding weights
and the sentiments of the words. The overall model
architecture is illustrated in Figure 2. While the
ACD part contains four modules: embedding layer,
LSTM layer, attention layer and aspect category
prediction layer, the ACSA part also consists of
four components: embedding layer, multi-layer
Bi-LSTM, word sentiment prediction layer and as-
pect category sentiment prediction layer. In the
ACD task, all aspect categories share the embed-
ding layer and the LSTM layer, and have different
attention layers and aspect category prediction lay-
ers. In the ACSA task, all aspect categories share
the embedding layer, the multi-layer Bi-LSTM, and
the word sentiment prediction layer, and have dif-
ferent aspect category sentiment prediction layers.

Input: The input of our model is a sentence con-
sisting of n words S = {w1, w2, ..., wn}.

Embedding Layer for ACD: The input of this
layer is the sentence. With an embedding matrix
Ww, the sentence is converted to a sequence of
vectors XD = {xD1 , xD2 , ..., xDn }, where,Ww ∈
Rd×|V | , d is the dimension of the word embed-
dings, and |V | is the vocabulary size.
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Figure 2: Overall architecture of the proposed method.

LSTM Layer: When LSTM (Hochreiter and
Schmidhuber, 1997) is effective enough, attention
mechanisms may not offer effective weight vectors
(Wiegreffe and Pinter, 2019). In order to guarantee
the effectiveness of the weights offered by attention
mechanisms, we use a single-layer single-direction
LSTM for ACD. This LSTM layer takes the word
embeddings of the ACD task as input, and outputs
hidden states H = {h1, h2, ..., hn}. At each time
step i, the hidden state hi is computed by:

hi = LSTM(hi−1, x
D
i ) (3)

The size of the hidden state is also set to be d.

Attention Layer: This layer takes the output of
the LSTM layer as input, and produce an attention
(Yang et al., 2016) weight vector for each prede-
fined aspect category. For the j-th aspect category:

Mj = tanh(WjH + bj), j = 1, 2, ..., N (4)

αj = softmax(uTj Mj), j = 1, 2, ..., N (5)

where Wj ∈ Rd×d,bj ∈ Rd,uj ∈ Rd are learnable
parameters, and αj ∈ Rn is the attention weight
vector.

Aspect Category Prediction Layer: We use the
weighted hidden state as the sentence representa-
tion for ACD prediction. For the j-th category:

rj = HαTj , j = 1, 2, ..., N (6)

ŷj = sigmoid(Wjrj + bj), j = 1, 2, ..., N (7)

where Wj ∈ Rd×1 and bj is a scalar.

Embedding Layer for ACSA: For ease of ref-
erence, we use different embedding layers for
ACD and ACSA. This embedding layer converts
the sentence S to a sequence of vectors XC =
{xC1 , xC2 , ..., xCn } with the help of the embedding
matrix Ww.

Multi-Layer Bi-LSTM: The output of the em-
bedding layer for ACSA are fed into a multi-layer
Bidirectional LSTM (Graves et al., 2013) (Bi-
LSTM). Each layer takes the output of the previous
layer as input. Formally, given the hidden states of
the (l− 1)-th layer,H l−1 = {hl−11 , hl−12 , ..., hl−1n },
the l-th Bi-LSTM outputs hidden states H l =
{hl1, hl2, ..., hln}. At each time step i, the hidden
state hli is computed by:

−→
hli =

−−−−→
LSTM(

−−→
hli−1, h

l−1
i ) (8)

←−
hli =

←−−−−
LSTM(

←−−
hli+1, h

l−1
i ) (9)

hli = [
−→
hli ;
←−
hli ] (10)

where H0 = {xC1 , xC2 , ..., xCn },
−→
hli ∈ Rd/2,

←−
hli ∈

Rd/2, hi ∈ Rd, and d/2 denote the size of the
hidden state of LSTM. The total number of Bi-
LSTM layers is L.

Word Sentiment Prediction Layer: We use the
hidden state hLi at the time step i of the L-th layer
Bi-LSTM as the representation of the i-th word,
and two fully connected layers are used to produce
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the i-th word sentiment prediction pi:

pi =W 2ReLU(W 1hLi + b1) + b2 (11)

where W 1 ∈ Rd×d, W 2 ∈ Rd×3, b1 ∈ Rd,
b2 ∈ R3 are learnable parameters. Note there is
no softmax activation function after the fully con-
nected layer, which lead it difficult to train our
model.

Aspect Category Sentiment Prediction Layer:
We obtain the aspect category sentiment predic-
tions by aggregating the word sentiment predic-
tions based on the weights offered by the ACD task.
Formally, for the j-th aspect category, its sentiment
pj can be computed by:

pj = softmax(
n∑
i=1

piαij) (12)

where pj ∈ R3 , and αij indicates the weight of the
i-th word about the j-th aspect category from the
weight vector αj offered by the ACD task.

Loss: For the ACD task 2, as each prediction is a
binary classification problem, the loss function is
defined by:

LA(θA) = −
N∑
j=1

yjlogŷj + (1− yj)log(1− ŷj)

(13)
For the ACSA task, only the loss of theK aspect

categories mentioned in the sentence is included,
and the loss function is defined by:

LS(θS) = −
K∑
j=1

∑
c∈P

yjc logpjc (14)

We jointly train our model for the two tasks.
The parameters in our model are then trained by
minimizing the combined loss function:

L(θ) = LA(θA) + βLS(θS) + λ ‖θ‖22 (15)

where β is the weight of ACSA loss, λ is the L2
regularization factor and θ contains all parameters
of our model.

2ACD is an auxiliary task. Although AC-MIMLLN per-
forms both ACD and ACSA, the aspect categories it detects
(i.e., the results of ACD) are usually ignored in both training
stage and testing stage. The reason is that our ACD classifier
is simple, it can produce effective attention weights, but may
not generate effective predictions for the ACD task. In this
paper, we focus on ACSA and only evaluate the performance
of AC-MIMLLN on ACSA.

Dataset Pos. Neg. Neu.

Rest14
Train 1855 733 430
Dev 324 106 70
Test 657 222 94

Rest14-hard Test 21 20 12

MAMS-ACSA
Train 1929 2084 3077
Dev 241 259 388
Test 245 263 393

Table 1: Statistics of the datasets.

4 Experiments

4.1 Datasets

Rest14: The SemEval-2014 restaurant review
(Rest14) (Pontiki et al., 2014) dataset has been
widely used. Following previous works (Cheng
et al., 2017; Tay et al., 2018; Hu et al., 2019), we re-
move samples with conflict polarities. Since there
is no official development set for Rest14, we use
the split offered by Tay et al. (2018).

Rest14-hard: Following Xue and Li (2018), we
construct Rest14-hard. In Rest14-hard, training set
and development set are same as Rest14’s, while
test set is constructed from the test set of Rest14.
The test set of Rest14-hard only includes sentences
containing at least two aspect categories with dif-
ferent sentiment polaritiess.

MAMS-ACSA: Since the test set of Rest14-hard
is small, we also adopt the Multi-Aspect Multi-
Sentiment dataset for Aspect Category Sentiment
Analysis (denoted by MAMS-ACSA). MAMS-
ACSA is released by Jiang et al. (2019), all sen-
tences in which contain multiple aspect categories
with different sentiment polarities.

We select Rest14-hard and MAMS-ACSA that
we call hard datasets because most sentences in
Rest14 contain only one aspect or multiple aspects
with the same sentiment polarity, which makes
ACSA degenerate to sentence-level sentiment anal-
ysis (Jiang et al., 2019). Rest14-hard and MAMS-
ACSA can measure the ability of a model to detect
multiple different sentiment polarities in one sen-
tence toward different aspect categories. Statistics
of these three datasets are given in Table 1.

4.2 Comparison Methods

We compare AC-MIMLLN with various baselines.
(1) non-BERT models: GCAE (Xue and Li, 2018),
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Methods Rest14 Rest14-hard MAMS-ACSA
GCAE (Xue and Li, 2018) 81.336(±0.883) 54.717(±4.920) 72.098†
As-capsule (Wang et al., 2019) 82.179(±0.414) 60.755(±2.773) 75.116(±0.473)
CapsNet (Jiang et al., 2019) 81.172(±0.631) 53.962(±0.924) 73.986†
AC-MIMLLN (ours) 81.603(±0.715) 65.283(±2.264) 76.427(±0.704)
AC-MIMLLN – w/o mil (ours) 80.596(±0.816) 64.528(±2.201) 75.650(±1.100)
AC-MIMLLN-Affine (ours) 80.843(±0.760) 64.151(±3.375) 74.517(±1.299)
BERT (Jiang et al., 2019) 87.482(±0.906) 67.547(±5.894) 78.292†
BERT-pair-QA-B (Sun et al., 2019) 87.523(±1.175) 69.433(±4.368) 79.134(±0.973)
CapsNet-BERT (Jiang et al., 2019) 86.557(±0.943) 51.321(±1.412) 79.461†
AC-MIMLLN-BERT (ours) 89.250(±0.720) 74.717(±3.290) 81.198(±0.606)

Table 2: Results of the ACSA task in terms of accuracy (%, mean±(std)). † refers to citing from Jiang et al. (2019).

Methods food
ser-
vice

amb-
ience

price misc

As-capsule 82.7 90.1 84.3 80.5 74.6
AC-
MIMLLN

83.7 90.5 83.6 84.0 69.0

Table 3: Results of the ACSA task on Rest14’s aspect
categories in terms of accuracy (%).

As-capsule (Wang et al., 2019) 3 and CapsNet
(Jiang et al., 2019); (2) BERT (Devlin et al., 2019)
based models: BERT (Jiang et al., 2019), BERT-
pair-QA-B (Sun et al., 2019) and CapsNet-BERT
(Jiang et al., 2019). We also provide the compar-
isons of several variants of AC-MIMLLN:

AC-MIMLLN – w/o mil generates aspect
category-specific representations for the ACAC
task. The representations are the weighted sum
of the word representations based on the weights
offered by the ACD task.

AC-MIMLLN-Affine replaces the LSTM in
AC-MIMLLN with an affine hidden layer, which is
used to evaluate the effectiveness of the attention
in AC-MIMLLN (Wiegreffe and Pinter, 2019).

AC-MIMLLN-BERT replaces the embedding
layer for ACSA and the multi-layer Bi-LSTM in
AC-MIMLLN with the uncased basic pre-trained
BERT. Since the overall sentiment of a sentence
as context information is important for infering
the sentiment of a particular aspect category, AC-
MIMLLN-BERT also predicts the sentiment of the
token “[CLS]” and assigns weight 1 to it. AC-
MIMLLN-BERT takes “[CLS] sentence [SEP] as-
pect category [SEP]” as input like CapsNet-BERT.

3As-capsule is also a multi-task model, which performs
ACD and ACSA simultaneously like our model.

4.3 Implementation Details

We implement our models in PyTorch (Paszke et al.,
2017). We use 300-dimentional word vectors pre-
trained by GloVe (Pennington et al., 2014) to ini-
tialize the word embedding vectors. The batch
sizes are set to 32 and 64 for non-BERT models on
the Rest14(-hard) dataset and the MAMS-ACSA
dataset, respectively, and 16 for BERT-based mod-
els. All models are optimized by the Adam opti-
mizer (Kingma and Ba, 2014). The learning rates
are set to 0.001 and 0.00002 for non-BERT mod-
els and BERT-based models, respectively. We set
L = 3, λ = 0.00001 and β = 1. For the ACSA
task, we apply a dropout of p = 0.5 after the em-
bedding and Bi-LSTM layers. For AC-MIMLLN-
BERT, ACD is trained first then both of ACD and
ACSA are trained together. For other models, ACD
and ACSA are directly trained jointly. We apply
early stopping in training and the patience is 10.
We run all models for 5 times and report the aver-
age results on the test datasets.

4.4 Experimental Results

Experimental results are illustrated in Table 2. Ac-
cording to the experimental results, we can come
to the following conclusions. First, AC-MIMLLN
outperforms all non-BERT baselines on the Rest14-
hard dataset and the MAMS-ACSA dataset, which
indicates that AC-MIMLLN has better ability to
detect multiple different sentiment polarities in one
sentence toward different aspect categories. Sec-
ond, AC-MIMLLN obtains +1.0% higher accuracy
than AC-MIMLLN – w/o mil on the Rest14 dataset,
+0.8% higher accuracy on the Rest14-hard dataset
and +0.8% higher accuracy on the MAMS-ACSA
dataset, which shows that the Multiple Instance
Learning (MIL) framework is more suitable for
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Methods Rest14 Rest14-hard MAMS-ACSA
KID(F1) KISC(acc) KID(F1) KISC(acc) KID(F1) KISC(acc)

AC-MIMLLN 38.132 73.731 48.927 62.250 69.480 68.804
AC-MIMLLN-Affine 60.035 76.503 66.920 67.250 75.083 68.503
AC-MIMLLN-BERT 63.477 83.894 70.027 72.250 74.172 75.666

Table 4: Performance of detecting the key instances (KID) of the given aspect category in terms of accuracy (%)
and classifying the sentiments of the given key instances (KISC) in terms of F1 measure (%).

Methods Rest14
Rest14-
hard

MAMS-
ACSA

single-pipeline 81.459 61.509 72.231
single-joint 80.329 62.641 75.605
multi-pipeline 82.117 63.396 72.675
multi-joint 81.603 65.283 76.427

Table 5: Results of AC-MIMLLN in different multi-
task settings on ACSA in terms of accuracy(%).

the ACSA task. Third, AC-MIMLLN-BERT sur-
passes all BERT-based models on all three datasets,
indicating that AC-MIMLLN can achieve better
performance by using more powerful sentence en-
coders for ACSA. In addition, AC-MIMLLN can’t
outperform As-capsule on Rest14. The main rea-
son is that AC-MIMLLN has poor perfmance on
the aspect category misc (the abbreviation for anec-
dotes/miscellaneous) (see Table 3 and Figure 4 (f)).

4.5 Impact of Multi-Task Learning

AC-MIMLLN is a multi-task model, which per-
forms ACD and ACSA simultaneously. Multi-task
learning (Caruana, 1997) achieves improved perfor-
mance by exploiting commonalities and differences
across tasks. In this section, we explore the per-
formance of AC-MIMLLN in different multi-task
settings on the ACSA task. Specifically, we explore
four settings: single-pipeline, single-joint, multi-
pipeline and multi-joint. The “single” means that
the ACSA task predicts the sentiment of one aspect
category in sentences every time, while the “multi”
means that the ACSA task predicts the sentiments
of all aspect categories in sentences every time.
The “pipeline” indicates that ACD is trained first,
then ACSA is trained, while the “joint” indicates
ACD and ACSA are trained jointly. The multi-joint
is AC-MIMLLN.

Experimental results are shown in Table 5. First,
we observe that, multi-* outperform all their coun-
terparts, indicating modeling all aspect categories
in sentences simultaneously can improve the per-
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Figure 3: The impact of the number of Bi-LSTM layers
and the softmax activation function.

formance of the ACSA task. Second, *-joint sur-
pass *-pipeline on the Rest14-hard dataset and the
MAMS-ACSA dataset, which shows that training
ACD and ACSA jointly can improve the perfo-
mance on hard datasets. Third, *-joint obtain worse
perfomance on the Rest14 dataset than *-pipeline.
One possible reason is that Rest14 is simple and
*-joint have bigger model capacity than *-pipeline
and overfit on Rest14.

4.6 Impact of Multi-layer Bi-LSTM Depth

In this section, we explore the effect of the number
of the Bi-LSTM layers. Experiments results are
shown in Figure 3, which also contains the results
of AC-MIMLLN-softmax. AC-MIMLLN-softmax
is obtained by adding the softmax activation func-
tion to the word sentiment prediction layer of AC-
MIMLLN. We observe that, when the number of
Bi-LSTM layer increases, AC-MIMLLN usually
obtains better performance, and AC-MIMLLN-
softmax obtains worse results. It indicates that AC-
MIMLLN-softmax is hard to train when its com-
plexity increases, while AC-MIMLLN can achieve
better performance by using more powerful sen-
tence encoders for ACSA.

4.7 Quality Analysis

In this subsection, we show the advantages of our
model and analyze where the error lies in through
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Figure 4: Visualization of the attention weights and the word sentiment prediction results. For each subfigure, the
lines corresponding aspect categories show the attention weights offered by the ACD task, while the other three
lines show the word sentiment distributions predicted by the ACSA task.

some typical examples and estimating the perfor-
mance of our model detecting the key instances
(KID) of the given aspect category and classifying
the sentiments of the given key instances (KISC).
We annotate the key instances for the aspect cate-
gories mentioned in sentences and their sentiment
polarities on the test set of the three datasets. Mod-
els judge a word as a key instance if the weight of
the word is greater than or equal to 0.1. Experimen-
tal results are illustrated in Table 4.

Case Study Figure 4 visualizes the attention
weights and the word sentiment prediction results
of four sentences. Figure 4 (a) shows that, our
model accurately finds the key instances “expen-
sive” for the aspect category price and “food” for
food, and assigns correct sentiments to both the
aspect categories and the key instances. Com-
pared with previous models, which generate as-
pect category-specific sentence representations for
the ACSA task directly (e.g. BERT-pair-QA-B) or
based on aspect category-related sentiment words
(e.g. As-capsule), our model is more interpretable.

In Figure 4, (b) and (c) show that, both AC-
MIMLLN and AC-MIMLLN-Affine can correctly
predict the sentiments of the aspect categories, food
and service. While AC-MIMLLN-Affine accu-
rately find the key instance “service” for service,
AC-MIMLLN assigns weights to all the words

in the text snippet “service was dreadful!”. This
is because the LSTM-based ACD model in AC-
MIMLLN can select useful words for both ACD
and ACSA based on the context, which results in
better performance (see Table 2). This also can
explain why AC-MIMLLN has worse performance
on detecting the key instances of the given aspect
category than AC-MIMLLN-Affine (see Table 4).

Error Analysis In Figure 4 (d), the sentiments
toward “drinks” and “dessert” (key instances of
the aspect category food) should be neutral, how-
ever AC-MIMLLN assigns negative sentiment to
”drinks” and positive sentiment to ”dessert”. Fig-
ure 4 (e) shows AC-MIMLLN-BERT also assigns
wrong sentiments to “drinks” and “dessert”. Ta-
ble 4 shows that although AC-MIMLLN-BERT
significantly improve the performance of KISC, it’s
results are also less than 80% on the Rest14-hard
dataset and the MAMS-ACSA dataset.

In Figure 4 (f), AC-MIMLLN wrongly predict
the sentiment of the aspect category misc, because
it finds the wrong key instances for misc. Com-
pared to other aspect categories, it’s harder to de-
cide which words are the key instances of misc for
AC-MIMLLN, resulting in poor performance of
AC-MIMLLN on the aspect category misc. Fig-
ure 4 (g) shows AC-MIMLLN-BERT correctly pre-
dict the sentiments of the aspect category misc, but
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also finds the wrong key instances for misc. Table 4
shows that all results on KID are less than 75%.

5 Conclusion

In this paper, we propose a Multi-Instance Multi-
Label Learning Network for Aspect-Category senti-
ment analysis (AC-MIMLLN). AC-MIMLLN pre-
dicts the sentiment of an aspect category mentioned
in a sentence by aggregating the sentiments of the
words indicating the aspect category in the sen-
tence. Experimental results demonstrate the ef-
fectiveness of AC-MIMLLN. Since AC-MIMLLN
finds the key instances for the given aspect category
and predicts the sentiments of the key instances, it
is more interpretable. In some sentences, phrases or
clauses rather than words indicate the given aspect
category, future work could consider multi-grained
instances, including words, phrases and clauses.
Since directly finding the key instances for some
aspect categories is ineffective, we will try to first
recognize all opinion snippets in a sentence, then
assign these snippets to the aspect categories men-
tioned in the sentence.
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