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Abstract

Extractive QA models have shown very
promising performance in predicting the cor-
rect answer to a question for a given passage.
However, they sometimes result in predicting
the correct answer text but in a context irrel-
evant to the given question. This discrepancy
becomes especially important as the number
of occurrences of the answer text in a pas-
sage increases. To resolve this issue, we pro-
pose BLANC (BLock AttentioN for Context
prediction) based on two main ideas: context
prediction as an auxiliary task in multi-task
learning manner, and a block attention method
that learns the context prediction task. With
experiments on reading comprehension, we
show that BLANC outperforms the state-of-
the-art QA models, and the performance gap
increases as the number of answer text occur-
rences increases. We also conduct an experi-
ment of training the models using SQuAD and
predicting the supporting facts on HotpotQA
and show that BLANC outperforms all base-
line models in this zero-shot setting.

1 Introduction

Question answering tasks require a high level of
reading comprehension ability, which in turn re-
quires a high level of general language understand-
ing. This is why the question answering (QA) tasks
are often used to evaluate language models de-
signed to be used in various language understand-
ing tasks. Recent advances in contextual language
models brought on by attention (Hermann et al.,
2015; Chen et al., 2016; Seo et al., 2017; Tay et al.,
2018) and transformers (Vaswani et al., 2017) have
led to significant improvements in QA, and these
improvements show that better modeling of contex-
tual meanings of words plays a key role in QA.

While these models are designed to select
answer-spans in the relevant contexts from given
passages, they sometimes result in predicting the

Figure 1: Example passage, question, and answer triple.
This passage has multiple spans that are matched with
the answer text. The first occurrence of “prefrontal cor-
tex” is the only answer-span within the context of the
question.

correct answer text but in contexts that are irrel-
evant to the given questions. Figure 1 shows an
example passage where the correct answer text
appears multiple times. In this example, the only
answer-span in the context relevant to the given
question is the first occurrence of the “prefrontal
cortex” (in blue), and all remaining occurrences
of the answer text (in red) show incorrect predic-
tions. Figure 2 shows quantitatively, the discrep-
ancy between predicting the correct answer text
versus predicting the correct answer-span. Using
BERT (Devlin et al., 2019) trained on curated Nat-
uralQuestions (Fisch et al., 2019), we show the
results of extractive QA task using exact match
(EM) and Span-EM. EM only looks for the text to
match the ground truth answer, whereas Span-EM
additionally requires the span to be the same as
the ground truth answer-span. Figure 2 shows that
BERT finds the correct answer text more than it
finds the correct answer-spans, and this proportion
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of wrong predictions increases as the number of
occurrences of answer text in a passage increases.

Tackling this problem is very important in
more realistic datasets such as NaturalQuestions
(Kwiatkowski et al., 2019), where the majority of
questions have more than one occurrence of the
answer text in the passage. This is in contrast with
the SQuAD dataset, where most questions have a
single occurrence of the answer. These details of
the SQuAD (Rajpurkar et al., 2016), NewsQA, and
NaturalQuestions datasets (Fisch et al., 2019) are
shown in Figure 3.

To address this issue, we define context predic-
tion as an auxiliary task and propose a block at-
tention method, which we call BLANC (BLock
AttentioN for Context prediction) that explicitly
forces the QA model to predict the context. We
design the context prediction task to predict soft-
labels which are generated from given answer-
spans. The block attention method effectively cal-
culates the probability of each word in a passage
being included in the context with negligible ex-
tra parameters and inference time. We provide the
implementation of BLANC publicly available 1.

Adding context prediction and block attention
enhances BLANC to correctly identify context re-
lated to a given question. We conduct two types
of experiments to verify the context differentia-
tion performance of BLANC: extractive QA task,
and zero-shot supporting facts prediction. In the
extractive QA task, we show that BLANC signif-
icantly increases the overall reading comprehen-
sion performance, and we verify the performance
gain increases as the number of answer texts in
a passage increases. We verify BLANC’s context-
aware performance in terms of generalizability in
the zero-shot supporting facts prediction task. We
train BLANC and baseline models on SQuAD1.1.
and perform zero-shot supporting facts (supporting
sentences in passages) prediction experiment on
HotpotQA dataset (Yang et al., 2018). The results
show that the context prediction performance that
the model has learned from one dataset is general-
izable to predicting the context of an answer to a
question in another dataset.

Contributions in this paper are as follows:

• We show the importance of correctly identify-
ing the answer-span to improving the model
performance on extractive QA.

1https://github.com/yeonsw/BLANC
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Figure 2: EM (text-matching) and Span-EM (span
matching) of BERT on the groups divided by the num-
ber of answer text occurrences in a passage. Note: The
difference for N = 1 results from post-processing
steps (removing articles) in EM evaluation.
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Figure 3: Proportions of questions with various num-
bers of the answer text in a passage. SQuAD has only a
few examples for (n ≥ 5), while NaturalQuestions has
a large proportion.

• We show that context prediction task plays a
key role in the QA domain.

• We propose a new model BLANC that re-
solves the discrepancy between answer text
prediction and answer-span prediction.

2 Related Work

Evidence in the form of documents, paragraphs,
and sentences, has been shown to be necessary and
effective in predicting the answers in open-domain
QA (Chen et al., 2017; Wang et al., 2018; Das et al.,
2018; Lee et al., 2019) and multi-hop QA (Yang
et al., 2018; Min et al., 2019b; Asai et al., 2020).
One problem of identifying evidence in answer-
ing questions is the expensive cost in labeling the
evidence. Self-labeling with simple heuristics can
be a solution to this problem, as shown in Choi
et al. (2017); Li et al. (2018). Self-training is an-
other solution, as presented in Niu et al. (2020). In
this paper, we propose self-generating soft-labeling
method to indicate support words of answer texts,
and train BLANC with the soft-labels.

https://github.com/yeonsw/BLANC
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Related but different from our work,
Swayamdipta et al. (2018) and Min et al.
(2019a) predict the answer-span when only the
answer texts are provided and the ground truth
answer-spans are not. Swayamdipta et al. (2018)
designs a model that benefits from aggregating
information from multiple mentions of the answer
text in predicting the final answer. Min et al.
(2019a) approach the problem of the lack of
ground truth answer-spans with latent modeling
of candidate spans. Both of these papers tackle
the problem of identifying the correct answer
among multiple mentions of the answer text
in datasets without annotations of the correct
answer-spans. Our work solves a different problem
from the above-mentioned papers in that the
golden answer-spans are provided.

3 Model

We propose BLANC based on two novel ideas: soft-
labeling method for the context prediction and a
block attention method that predicts the soft-labels.
Two important functionalities of BLANC are 1)
calculating the probability that a word in a passage
belongs to the context, which is in latent, and 2)
enabling the probability to reflect spatial locality
between adjacent words. We provide an overall
illustration of BLANC in Figure 4.

3.1 Notations

In this section, we define the notations and the
terms used in our study. We denote a word at index
i in a passage with wi. We define the context of a
given question as a segment of words in a passage
and denote with C. In our circumstance, the context
is latent. We denote the start and end indices of a
context with sc and ec. Training a block attention
model to predict the context requires the labeling
process for the latent context, and we define two
probabilities for that, psoft(wi ∈ C) and p(wi ∈ C).
psoft(wi ∈ C) represents the self-generated soft-
label that we assume as ground truth of the context,
and p(wi ∈ C) is a block attention model’s pre-
diction. We denote the start and end indices of a
labeled answer-span with sa and ea.

3.2 Soft-labeling for latent context C
We assume words near an answer-span are likely to
be included in the context of a given question. From
our assumption, we define the probability of words
belong to the context, psoft(wi ∈ C), which is used

as a soft-label for the auxiliary context prediction
task. To achieve this, we hypothesize the words
in an answer-span are included in the context and
make the probability of adjacent words decrease
with a specific ratio as the distance between answer-
span and a word increases. The soft-label for the
latent context is as follows:

psoft(wi ∈ C) =


1.0 if i ∈ [sa, ea]

q|i−sa| if i < sa

q|i−ea| if i > ea,

(1)

where 0 ≤ q ≤ 1, and q is a hyper-parameter
for the decreasing ratio as the distance from a
given answer-span. For computational efficiency,
we apply (1) to words bounded by certain window-
size only, which is a hyper-parameter, on both
sides of an answer-span. This results in assign-
ing psoft(wi ∈ C) to 0 for the words outside the
segment bounded by the window-size.

3.3 Block Attention

Block attention model calculates p(wi ∈ C) to pre-
dict the soft-label, psoft(wi ∈ C), and localizes the
correct index of an answer-span with p(wi ∈ C).
We embed spatial locality of p(wi ∈ C) to block
attention model with the following steps: 1) predict-
ing the start and end indices of context, p(i = sc)
and p(i = ec), and 2) calculating p(wi ∈ C) with
cumulative distribution of p(i = sc) and p(i = ec).
In the first step, at predicting the start and end in-
dices, all encoder models that produce vector repre-
sentation of words in a passage are compatible with
the block attention model. In this paper, we apply
the same structure of the answer-span classification
layer used in the transformer model (Devlin et al.,
2019) to our context words prediction layer.

HHH = Encoder(Passage,Question) (2)

Here, we denoteHHH as output vectors of transformer
encoder and HHHj as output vector of wj . From HHH ,
we predict the start and end indices of the context:

p(i = sc) =
exp(WcWcWcHHH i + bcs)∑
j exp(WcWcWcHHHj + bcs)

,

p(i = ec) =
exp(VcVcVcHHH i + bce)∑
j exp(VcVcVcHHHj + bce)

,

(3)

whereWcWcWc, VcVcVc, bcs, and bce represent weight and bias
parameters for context prediction layer. We calcu-
late p(wi ∈ C) as multiplication of the probability
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Figure 4: Schematic visualization of BLANC. Block attention model takes contextual vector representations from
transformer encoder and predicts context words of an answer, p(wi ∈ C). We define loss function for context words
with the prediction, p(wi ∈ C) and the self-generated soft-label psoft(wi ∈ C) defined in (1). Answer-span predictor
takes p(wi ∈ C andHHH to predict an answer-span. We optimize our model in manner of multi-task learning of two
tasks: answer-span prediction and context words prediction.

of the word wi which appears after sc and that of
the word wi which appears before ec.

p(wi ∈ C) = p(i ≥ sc)× p(i ≤ ec). (4)

Here, we assume the independence between sc and
ec for computational conciseness. The cumulative
distributions of p(i ≥ sc) and p(i ≤ ec) are calcu-
lated with the following equations:

p(i ≥ sc) =
∑
j≤i

p(j = sc)

p(i ≤ ec) =
∑
j≥i

p(j = ec).
(5)

We explicitly force the block attention model to
learn context words of a given question by mini-
mizing the cross-entropy of the two probabilities,
p(wi ∈ C) and psoft(wi ∈ C). The loss function
for the latent context is defined by the following
equation:

Lcontext =−
∑
1≤i≤l

psoft(wi ∈ C) log p(wi ∈ C)

−
∑
1≤i≤l

psoft(wi /∈ C) log p(wi /∈ C),

(6)

where l is the length of a passage. By averaging
Lcontext across all train examples, we get the final
context loss function.

3.4 Answer-span Prediction
BLANC predicts answer-span with the context
probability, p(wi ∈ C). We use the same answer-
span prediction layer as BERT, but we multiply
p(wi ∈ C) to the output of the encoder,HHH to give
attention at indices of answer-span within the con-
text, C.

p(i = sa) =
exp(AiWaWaWaHHH i + bas)∑
j exp(AjWaWaWaHHHj + bas)

,

p(i = ea) =
exp(AiVaVaVaHHH i + bae)∑
j exp(AjVaVaVaHHHj + bae)

,

(7)

where WaWaWa, VaVaVa, bas , and bae represent weight and
bias parameters for answer-span prediction layer,
and Ai = p(wi ∈ context). The loss function for
answer-span prediction is defined by the following
equation:

Lanswer = −
1

2
{
∑
1≤i≤l

1(i = sa) log p(i = sa)

+
∑
1≤i≤l

1(i = ea) log p(i = ea)}.

(8)

1(condition) represents an indicator function that
returns 1 if the condition is true and returns 0 oth-
erwise. By averaging Lanswer across all train exam-
ples, we get the final answer-span loss function. We
define our final loss function as the weighted sum
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of the two loss functions:

Ltotal = (1− λ)Lanswer + λLcontext, (9)

where λ is a hyper-parameter moderating the ratio
of two loss functions.

3.5 Property of Block Attention
psoft(wi ∈ C) defined at (1) can be represented by
the probability distributions calculated by block
attention model, p(wi ∈ C). We provide detailed
proof in Appendix A.1.

4 Experimental Setup

We validate the efficacy of BLANC on two types
of tasks: extractive QA and zero-shot supporting
fact prediction. In the extractive QA, we evaluate
the overall reading comprehension performance
with three QA datasets, and we further analyze the
ability of BLANC to discern relevant contexts on
passages with multiple answer texts. In zero-shot
supporting facts prediction, we train QA models on
SQuAD (Rajpurkar et al., 2016) and predict sup-
porting facts (supporting sentences) of answers in
HotpotQA (Yang et al., 2018). Due to our experi-
mental computing resource limitation, we compare
BLANC to baseline models trained in slightly mod-
ified hyperparameter settings instead of the results
from their original papers.

4.1 Datasets
SQuAD: SQuAD1.1 (Rajpurkar et al., 2016) is a
large reading comprehension dataset for QA. Since
the test set for SQuAD1.1 (Rajpurkar et al., 2016)
is not publicly available, and their benchmark does
not provide an evaluation on the span-based metric,
we split train data (90%/10%) into new train/dev
dataset and use development dataset as test dataset.

NewsQA & NaturalQ: NewsQA (Trischler
et al., 2017) consists of answer-spans to ques-
tions generated in a way that reflects realistic in-
formation seeking processes in the news domain.
NaturalQuestions (Kwiatkowski et al., 2019) is
a QA benchmark in a real-world scenario with
Google search queries for naturally-occurring ques-
tions and passages from Wikipedia for annotating
answer-spans. Due to computational limits, we use
the curated versions of NewsQA and NaturalQ pro-
vided by Fisch et al. (2019). The curated datasets
contain train and development set only, so we use
the development set as the test set and build new
train and dev sets from the train set (90%/10%).

HotpotQA: HotpotQA (Yang et al., 2018) aims
to measure complex reasoning performance of QA
models and requires finding relevant sentences
from the given passages. HotpotQA consists of pas-
sages, questions, answer, and corresponding sup-
porting facts (sentences) for each answer. We use
the development set in HotpotQA.

4.2 Evaluation Metrics

F1 and EM are evaluation metrics widely used in
existing QA models (Rajpurkar et al., 2016). These
two metrics measure the number of overlapping to-
kens between the predicted answers and the ground
truth answers. Token matching evaluation treats as
correct even answers in unrelated contexts, thus
being insufficient to evaluate the context prediction
performance. As the alternatives, we propose span-
EM and span-F1. We modify the metric proposed
in Kwiatkowski et al. (2019) to be suitable for our
experiment setting.

Span-F1 and Span-EM: Span-F1 and span-EM
are defined with overlapping indices between the
predicted span and the ground truth span:

Span-P = |[sp, ep] ∩ [sg, eg]|/|[sp, ep]|
Span-R = |[sp, ep] ∩ [sg, eg]|/|[sg, eg]|

Span-F1 = 2× Span-P× Span-R
Span-P + Span-R

Span-EM = 1(sp = sg ∧ ep = eg)

Here, sp / ep represent the start/end indices of a
predicted answer-span in a passage and sg / eg
denote the start/end indices of the ground truth
answer-span in a passage. Span-EM measures ex-
actly matched predicted spans, and Span-F1 quan-
tifies the degree of overlap between the predicted
answer-span and the ground truth span.

4.3 Baselines

BERT, RoBERTa, and ALBERT: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
ALBERT (Lan et al., 2019) are language models
built upon the transformer encoder. They use the
same model structure, except for the bigger vocab-
ulary size of RoBERTa. Due to the computational
limitation, we use 12-layer base models for BERT,
and RoBERTa and 24-layer large model for AL-
BERT.

SpanBERT: SpanBERT (Joshi et al., 2020) has
the same model structure and the same parameter
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#Param Span-F1 Span-EM F1 EM

BERT 108M 72.92 ± 0.36 60.63 ± 0.39 76.39 ± 0.26 64.48 ± 0.28
ALBERT 17M 72.66 ± 0.48 60.31 ± 0.49 75.89 ± 0.36 63.81 ± 0.37
RoBERTa 124M 75.07 ± 0.17 62.59 ± 0.14 78.54 ± 0.20 66.33 ± 0.09
SpanBERT 108M 75.16 ± 0.26 62.71 ± 0.37 78.31 ± 0.22 66.60 ± 0.31
BLANC 108M 76.99 ± 0.09 64.57 ± 0.12 80.04 ± 0.06 68.33 ± 0.09

SpanBERTlarge 333M 77.62 ± 0.10 65.28 ± 0.41 80.66 ± 0.11 69.14 ± 0.18

NaturalQA

BLANClarge 333M 79.04 ± 0.27 66.75 ± 0.14 81.99 ± 0.16 70.59 ± 0.12

BERT 108M 83.36 ± 0.25 70.74 ± 0.43 88.10 ± 0.14 80.49 ± 0.28
ALBERT 17M 84.60 ± 0.13 72.04 ± 0.38 88.75 ± 0.20 81.05 ± 0.27
RoBERTa 124M 85.21 ± 0.25 72.82 ± 0.56 89.91 ± 0.16 82.53 ± 0.44
SpanBERT 108M 86.67 ± 0.16 74.08 ± 0.13 91.58 ± 0.09 84.97 ± 0.18
BLANC 108M 86.89 ± 0.15 74.69 ± 0.37 91.87 ± 0.13 85.30 ± 0.32

SpanBERTlarge 333M 88.27 ± 0.14 75.96 ± 0.22 93.22 ± 0.08 87.14 ± 0.11

SQuAD1.1

BLANClarge 333M 88.42 ± 0.17 76.26 ± 0.31 93.37 ± 0.05 87.30 ± 0.10

BERT 108M 59.18 ± 0.57 45.53 ± 0.55 65.07 ± 0.52 50.11 ± 0.50
ALBERT 17M 60.12 ± 0.36 46.54 ± 0.04 66.02 ± 0.35 51.18 ± 0.18
RoBERTa 124M 61.36 ± 0.63 47.43 ± 0.54 67.28 ± 0.63 52.36 ± 0.64
SpanBERT 108M 62.26 ± 0.22 48.04 ± 0.48 67.93 ± 0.26 52.85 ± 0.49
BLANC 108M 64.39 ± 0.76 50.60 ± 0.50 70.31 ± 0.66 55.52 ± 0.43

SpanBERTlarge 333M 63.43 ± 0.42 49.03 ± 0.13 69.06 ± 0.55 53.84 ± 0.27

NewsQA

BLANClarge 333M 66.48 ± 0.20 52.39 ± 0.08 72.36 ± 0.01 57.40 ± 0.21

Table 1: Reading comprehension performance of baseline models and BLANC. We conduct experiments on three
QA datasets: NaturalQ, SQuAD1.1, and NewsQA. For all evaluation metrics, we report mean and standard devia-
tion of three separate trials. The results show that BLANC outperforms baseline models.

size as BERT. SpanBERT uses span-oriented pre-
training for span representation. Since the block
attention is stacked on SpanBERT, and to provide
detailed results of effectiveness of BLANC, we
use both 12-layer SpanBERT-base and 24-layer
SpanBERT-large.

4.4 Hyper-parameter Settings

We conduct experiments on limited hyper-
parameter settings (e.g. max len, batch size), as
we were limited by computational resources. We
use the same hyperparameter settings across all
baseline models and BLANC. We set the training
batch size to 8, learning-rate to 2×e−5, the number
of train epochs to 3, the max sequence length of
transformer encoder to 384, warm-up proportion
to 10%, and we use the various optimizers used
in the respective original papers. We set λ to 0.8,
which is the optimal value as we show in Figure
6, for all experiments except the large model ex-
periment on SQuAD1.1. We set λ = 0.2 in the
large model experiment on SQuAD1.1. We use dif-

Span-F1 Span-EM

RoBERTa 65.99 ± 0.92 60.12 ± 0.86
SpanBERT 63.47 ± 0.72 57.63 ± 0.79
BLANC 67.07 ± 0.36 61.43 ± 0.38

Table 2: Performance of BLANC on passages of Natu-
ralQ that have answer texts two or more.

ferent q, the decreasing ratio in (1), and different
window-size for each dataset to reflect the average
length of passages of each QA datasets. We set
q = 0.7 and window-size to 2 on SQuAD which
contains relatively short passages, and q = 0.99
and window-size to 3 on the other two QA datasets
where most passages are longer than SQuAD. q
and window-size are optimized empirically.

5 Results & Discussion

We now present the results for the experiments de-
scribed in the previous section. We describe the
overall reading comprehension performance, high-
lighting the increased gain for passages with mul-
tiple mentions of the answer text. We show that
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Figure 5: Span-F1 and Span-EM of baseline models
and BLANC trained on NaturalQ. We categorize Natu-
ralQ dataset into five groups by number answer texts ap-
peared in a passage: n = 1, 2, 3, 4, and n ≥ 5. BLANC
outperforms baseline models on every groups and the
performance gap increases as the number of answer
texts in a passage increases.

BLANC outperforms other models for zero-shot
supporting fact prediction. We also demonstrate the
importance of the context prediction loss and the
negligible extra parameter and inference time.

5.1 Reading Comprehension
We verify the reading comprehension performance
of BLANC with four evaluation metrics (F1, EM,
Span-F1, and Span-EM) on three QA datasets:
SQuAD, NaturalQ, and NewsQA. We show the
results in Table 1 which shows BLANC consis-
tently outperforms all comparison models includ-
ing RoBERTa and SpanBERT.

We focus on the evaluation metric Span-EM
which measures the exact match of the answer-
span, and we further highlight the performance
gain of BLANC over the most recent SpanBERT
model, both base and large. On NaturalQ, BLANC
outperforms SpanBERT by 1.86, whereas the
performance difference between SpanBERT and
RoBERTa is 0.12. On NewsQA, BLANC outper-
forms by 2.56, whereas the difference between
SpanBERT and RoBRTa is 0.61. This pattern holds
for the large models as well.

We now compare the performance gain between
the datasets. Recall that we showed in Figure 3
the proportion of multi-mentioned answer is small-
est in SQuAD, medium for NaturalQ-MRQA, and

Accuracy

BERT 33.34 ± 0.82
ALBERTlarge 35.62 ± 1.17
RoBERTa 37.93 ± 0.80
SpanBERT 34.79 ± 0.40
BLANC 39.80 ± 1.18

Table 3: Performance on zero-shot supporting fact (sup-
porting sentence) prediction by models trained with
SQuAD1.1. BLANC outperforms all other models.

largest in NewsQA-MRQA. Reading comprehen-
sion results show the performance gap of BLANC
and SpanBERT increases in the same order, veri-
fying the effectiveness of BLANC on the realistic
multi-mentioned datasets.

5.2 Performance on Passages with
Multi-mentioned Answers

In Section 5.1, we show Span-EM and EM of
BLANC and baselines on the entire datasets. How-
ever, the context discerning performance is only
observed on passages with multiple mentions of
the answer text. We investigate the context-aware
performance (distinguishing relevant context and
irrelevant context) of BLANC by categorizing Nat-
uralQ dataset by the number of occurrences of the
answer text in a passage. We subdivide the dataset
into five groups: n = 1, 2, 3, 4 and n ≥ 5, where
n is the number of occurrences of the answer text
in a passage. Figure 5 presents Span-F1 and Span-
EM on those subsets of the data. BLANC outper-
forms SpanBERT and BERT across all subsets,
and we show that the performance gain increases
as n increases. In Table 2, we explicitly show read-
ing comprehension performance of BLANC on
the question-answer pairs of passages with n ≥ 2
from NaturalQ, and we confirm that block atten-
tion method increases context-aware performance
of SpanBERT by 3.6 with Span-F1, and by 3.8 with
Span-EM, which are larger improvements than the
increments on the data including n = 1 shown in
Table 1.

5.3 Supporting Facts Prediction

We present the results of the zero-shot supporting
facts prediction task on HotpotQA dataset (Yang
et al., 2018) in Table 3. HotpotQA has ten pas-
sages and two supporting facts (sentences) for each
question-answer pair. Since HotpotQA has a differ-
ent data format than the extractive QA datasets, we
curate HotpotQA with the following steps. We con-
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Figure 6: Analysis on λ for context word prediction for
NaturalQ. We adjust λ, weight of (Lcontext), from 0.0
to 0.99 and report Span-F1 and Span-EM. Increasing
λ improves answer-span prediction until λ = 0.8 and
then decreases. This decrease is expected as the weight
for (Lanswer) becomes too small.

Train Inf

BERT 1.00x 1.00x
ALBERTlarge 1.42x 1.89x
RoBERTa 1.01x 1.02x
SpanBERT 1.00x 1.00x
BLANC 1.04x 1.00x

Table 4: Training and inference time of each model
measured on the same number of QA pairs.

catenate the ten passages to make one passage. Two
supporting facts exist in the passage. By removing
each one of them, we build two passages and each
of passage contains one supporting fact. We re-
peat this process for all examples in HotpotQA.
As a result, the curated dataset contains triples of
one question, one supporting fact, and one pas-
sage. We report the accuracy of models by check-
ing if the supporting fact includes the predicted
span. We train baseline models and BLANC on
SQuAD1.1 and test on the curated development set
of HotpotQA dataset. Table 3 shows that BLANC
captures sentence relevant to the given question
better than other baseline models in zero-shot set-
ting. This result shows that BLANC is capable of
applying what it has learned from one dataset to
predicting the context of an answer to a question in
another dataset.

5.4 Analysis on λ
We verify the relationship between reading compre-
hension performance and context word prediction
task by conducting reading comprehension exper-
iment with λ = [0.2, 0.4, 0.6, 0.8, 0.9, 0.99]. The
hyperparameter λ represents weight of Lcontext in
the total loss function Ltotal. Figure 6 shows that
the performance increases as λ increases until it

reaches 0.8 and decreases after λ = 0.8. Lever-
aging the context word prediction task increases
reading comprehension performance, and we show
efficacy of BLANC. As λ increases, the weight on
Lanswer decreases, so we expect to see a decrease
in performance as λ becomes too large.

5.5 Space and Time Complexity

The additional parameters of block attention model
come from Eq. (3) in Section 3.3. The number
of parameters is (768 + 1) ∗ 2 = 1538 when the
hidden dimension size of the transformer encoder
is 768, and 1538 is negligible considering the total
number of parameters in BERT-base (108M). The
exact numbers of parameters of baseline models
are presented in Table 1. Table 4 shows relative
training and inference time of baseline models and
BLANC. We measure each model’s train time on
the same number of train steps and the inference
time on the same number of passage-question pairs.
Since we use the 24-layer ALBERT-large model
which has twice as many layers as other models,
ALBERT requires the longest training/inference
time, despite its much smaller model size. BLANC
requires 4% extra training time which includes the
time to generate the soft-labels in (1) and the time
to calculate the context word distribution in (4). For
inference, BLANC requires negligible additional
time on SpanBERT.

6 Conclusion

In this paper, we showed the importance of predict-
ing an answer with the correct context of a given
question. We proposed BLANC with two novel
ideas: context word prediction task and a block
attention method that identifies an answer within
the context of a given question. The context words
prediction task labels latent context words with the
labeled answer-span and is used in a multi-task
learning manner. Block attention models the latent
context words with negligible extra parameters and
training/inference time. We showed that BLANC
increases reading comprehension performance, and
we verify that the performance gain increases for
complex examples (i.e., when the answer occurs
two or more times in the passage). Also, we showed
the generalizability of BLANC and its context-
aware performance with the zero-shot supporting
fact prediction task on the HotpotQA dataset.
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A Properties of Block Attention

A.1 Block Attention on a Soft-label

Theorem 1. There exist two probability distri-
butions, p(i = sc) and p(i = ec), that makes
p(wi ∈ C) equal to psoft(wi ∈ C), which is defined
as follows:

psoft(wi ∈ C) =


1.0 if i ∈ [sa, ea]

q|i−sa| if sw ≤ i < sa

q|i−ea| if ea < i ≤ ew
0.0 if i < sw or i > ew

.

(10)
Here, q is the decreasing ratio, which satisfies q ≤
1.0. sa and ea are the start and end indices of an
answer-span. sa and ea satisfy sa ≤ ea. sw and
ew are the start and end indices of the segments
bounded by certain window-size. sw and ew satisfy
sw ≤ sa and ea ≤ ew.

Proof. Based on the independent assumption be-
tween sc and ec in section 3.3, p(wi ∈ C) becomes
multiplication of two probability distributions as
follows:

p(wi ∈ C) = p(i ≥ sc)× p(i ≤ ec). (11)

Then, the following two cumulative distributions,
p(i ≥ sc) and p(i ≤ ec), make p(wi ∈ C) equal to
psoft(wi ∈ C):

p(i ≥ sc) =


0.0 if i < sw

psoft(wi ∈ C) if sw ≤ i < sa

1.0 if sa ≤ i
,

(12)

p(i ≤ ec) =


1.0 if i ≤ ea
psoft(wi ∈ C) if ea < i ≤ ew
0.0 if ew < i

.

(13)
Since block attention method can predict any form
of p(i = sc) and p(i = ec), any soft-label can be
represented by block attention method.

A.2 Block Attention on Multiple Spans
Block attention model can be expanded to predict
multiple spans.

Theorem 2. Any form of the following
pmulti-span(wi ∈ C), which has m-blocks, can
be represented by the multiplication of a scal-
ing factor, k, and the probability distribution
calculated by block attention model, p(wi ∈ C).

pmulti-span(wi ∈ C) =

{
a if i ∈ B1 ∨ ... ∨ i ∈ Bm
ε otherwise

.

(14)
Here, Bi is the set of indices of the i-th span, Bi =
[sbi , e

b
i ]. s

b
i and ebi are the start and end indices of

Bi. Bi satisfies sbi ≤ ebi and ebi < sbi+1 for all i.

Proof. Following two cumulative distributions and
the scaling factor make k × p(i ≥ sc)× p(i ≤ ec)
equal to psoft(wi ∈ C) for all i.

p(i ≥ sc) =


( εa)

m if i < sb1
( εa)

m−j if sbj ≤ i < sbj+1; j ∈ [1,m)

1.0 if sbm ≤ i
(15)

p(i ≤ ec) =


1.0 if i ≤ eb1
( εa)

j if ebj < i ≤ ebj+1; j ∈ [1,m)

( εa)
m if i > ebm

(16)

k = ε
(a
ε

)m
(17)

Since block attention model can predict any form
of p(i = sc) and p(i = ec), pmulti-span(wi ∈ C) can
be represented by the multiplication of a scaling
factor and the probability distribution calculated by
block attention model.

B Semantic Similarity Between Context
Words and Questions

Soft-labeling method assumes that words near an
answer-span are likely to be included in the context
of a given question. We provide the basis of this as-
sumption with the question-word similarity exper-
iment. The question-word similarity is calculated
with the cosine similarity between word vectors
and question vectors. We use word2vec vectors and
calculate the question vectors by averaging word
vectors in the questions. Figure 7 shows that words
adjacent to the answer-spans have the most similar
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Figure 7: The semantic similarity between a given
question and words in a passage. The x-axis represents
the distance between a word and an answer-span. The y-
axis represents the cosine similarity between the ques-
tion and the word on 100 scale. Words near an answer-
span are likely to have a similar meaning to a given
question.

WS Span-F1 Span-EM F1 EM AVG

1 77.06 64.52 80.02 68.04 72.41
2 75.95 63.35 79.80 67.84 71.73
3 76.99 64.41 80.05 68.38 72.45
4 76.38 63.96 80.09 68.44 72.21
5 77.01 64.33 80.02 68.04 72.35
7 76.37 64.19 79.81 68.11 72.12
21 76.65 64.14 79.96 68.06 72.20

Table 5: The performance of BLANC on NaturalQues-
tions. We vary window-size to find the optimal context
size. AVG represents the average of the four perfor-
mances.

meaning to given questions. Also, the similarity
decreases as the distance between the words and
the answer-spans increases. From the results, we
verify the assumption.

C Details about Hyperparameter
Settings

We vary window-size, and λ to find the optimal
hyperparameters of BLANC.

C.1 Analysis on Window-size

Table 5 shows the performance of BLANC
trained on NaturalQuestions with window-size =
[1, 2, 3, 4, 5, 7, 21]. AVG represents the average of
the four performances. BLANC shows the best
AVG performance at WS = 3, and we set window-
size to 3 for NaturalQuestions and NewsQA exper-
iments.

λ Span-F1 Span-EM

0.2 88.42 ± 0.17 76.26 ± 0.31
0.8 88.30 ± 0.16 75.71 ± 0.30

Table 6: The performance of BLANC on SQuAD1.1
with two different λ settings.

C.2 Varying λ on SQuAD1.1
Table 6 shows the performance of BLANC with
two different λ settings on SQuAD1.1. The results
show that BLANC performs better at λ = 0.2 than
λ = 0.8 (the optimal value for NaturalQuestions)
on SQuAD1.1. We set λ to 0.2 in SQuAD1.1 ex-
periments.


