
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2162–2172,
November 16–20, 2020. c©2020 Association for Computational Linguistics

2162

Lightweight, Dynamic Graph Convolutional Networks
for AMR-to-Text Generation

Yan Zhang∗∗1,2 Zhijiang Guo∗1 Zhiyang Teng3 Wei Lu1

Shay B. Cohen4 Zuozhu Liu5 Lidong Bing†2
1Singapore University of Technology and Design

2DAMO Academy, Alibaba Group, 3Westlake University
4University of Edinburgh, 5ZJU-UIUC Institute

{yan zhang,zhijiang guo}@mymail.sutd.edu.sg, luwei@sutd.edu.sg
tengzhiyang@westlake.edu.cn, scohen@inf.ed.ac.uk
zuozhuliu@intl.zju.edu.cn, l.bing@alibaba-inc.com

Abstract

AMR-to-text generation is used to transduce
Abstract Meaning Representation structures
(AMR) into text. A key challenge in this
task is to efficiently learn effective graph rep-
resentations. Previously, Graph Convolution
Networks (GCNs) were used to encode input
AMRs, however, vanilla GCNs are not able to
capture non-local information and additionally,
they follow a local (first-order) information ag-
gregation scheme. To account for these issues,
larger and deeper GCN models are required
to capture more complex interactions. In this
paper, we introduce a dynamic fusion mecha-
nism, proposing Lightweight Dynamic Graph
Convolutional Networks (LDGCNs) that cap-
ture richer non-local interactions by synthesiz-
ing higher order information from the input
graphs. We further develop two novel parame-
ter saving strategies based on the group graph
convolutions and weight tied convolutions to
reduce memory usage and model complexity.
With the help of these strategies, we are able
to train a model with fewer parameters while
maintaining the model capacity. Experiments
demonstrate that LDGCNs outperform state-
of-the-art models on two benchmark datasets
for AMR-to-text generation with significantly
fewer parameters.

1 Introduction

Graph structures play a pivotal role in NLP because
they are able to capture particularly rich structural
information. For example, Figure 1 shows a di-
rected, labeled Abstract Meaning Representation
(AMR; Banarescu et al. 2013) graph, where each
node denotes a semantic concept and each edge
denotes a relation between such concepts. Within

∗∗ Equally Contributed. Work done while Yan Zhang was
an intern at DAMO Academy, Alibaba Group and Zhijiang
Guo was at the University of Edinburgh.

†Corresponding author.

join-01

(d) Structured SANs

i game

this

kind

join-01

(c) SANs

i game

this

kind

join-01

(b) LDGCNs

i game

this

kind

join-01

(a) Vanilla GCNs

i game

this

kind

ARG0 ARG1

mod

mod

mod

mod mod

mod mod

mod

ARG0 ARG0 ARG0ARG1 ARG1 ARG1

Figure 1: The concept (join-01) in vanilla GCNs is that
it only captures information from its immediate neigh-
bors (first-order), while in LDGCNs it can integrate
information from neighbors of different order (e.g.,
second-order and third-order). In SANs, the node col-
lects information from all other nodes, while in struc-
tured SANs it is aware of its connected nodes in the
original graph.

the realm of work on AMR, we focus in this pa-
per on the problem of AMR-to-text generation, i.e.
transducing AMR graphs into text that conveys the
information in the AMR structure. A key challenge
in this task is to efficiently learn useful represen-
tations of the AMR graphs. Early efforts (Pour-
damghani et al., 2016; Konstas et al., 2017) neglect
a significant part of the structural information in
the input graph by linearizing it. Recently, Graph
Neural Networks (GNNs) have been explored to
better encode structural information for this task
(Beck et al., 2018; Song et al., 2018; Damonte and
Cohen, 2019; Ribeiro et al., 2019).

One type of such GNNs is Graph Convolutional
Networks (GCNs; Kipf and Welling 2017). GCNs
follow a local information aggregation scheme,
iteratively updating the representations of nodes
based on their immediate (first-order) neighbors.
Intuitively, stacking more convolutional layers in
GCNs helps capture more complex interactions
(Xu et al., 2018; Guo et al., 2019b). However,
prior efforts (Zhu et al., 2019; Cai and Lam, 2020;
Wang et al., 2020) have shown that the locality
property of existing GCNs precludes efficient non-
local information propagation. Abu-El-Haija et al.

2163

(2019) further proved that vanilla GCNs are un-
able to capture feature differences among neighbors
from different orders no matter how many layers
are stacked. Therefore, Self-Attention Networks
(SANs; Vaswani et al. 2017) have been explored as
an alternative to capture global dependencies. As
shown in Figure 1 (c), SANs associate each node
with other nodes such that we model interactions
between any two nodes in the graph. Still, this ap-
proach ignores the structure of the original graph.
Zhu et al. (2019) and Cai and Lam (2020) propose
structured SANs that incorporate additional neural
components to encode the structural information of
the input graph.

Convolutional operations, however, are more
computationally efficient than self-attention opera-
tions because the computation of attention weights
scales quadratically while convolutions scale lin-
early with respect to the input length (Wu et al.,
2019). Therefore, it is worthwhile to explore the
possibility of models based on graph convolutions.
One potential approach that has been considered
is to incorporate information from higher order
neighbors, which helps to facilitate non-local in-
formation aggregation for node classification (Abu-
El-Haija et al., 2018, 2019; Morris et al., 2019).
However, simple concatenation of different order
representations may not be able to model complex
interactions in semantics for text generation (Luan
et al., 2019).

We propose to better integrate high-order infor-
mation, by introducing a novel dynamic fusion
mechanism and propose the Lightweight, Dynamic
Graph Convolutional Networks (LDGCNs). As
shown in Figure 1 (b), nodes in the LDGCN model
are able to integrate information from first to third-
order neighbors. With the help of the dynamic
mechanism, LDGCNs can effectively synthesize
information from different orders to model com-
plex interactions in the AMR graph for text genera-
tion. Also, LDGCNs require no additional compu-
tational overhead, in contrast to vanilla GCN mod-
els. We further develop two novel weight sharing
strategies based on the group graph convolutions
and weight tied convolutions. These strategies al-
low the LDGCN model to reduce memory usage
and model complexity.

Experiments on AMR-to-text generation show
that LDGCNs outperform best reported GCNs and
SANs trained on LDC2015E86 and LDC2017T10
with significantly fewer parameters. On the large-

scale semi-supervised setting, our model is also
consistently better than others, showing the ef-
fectiveness of the model on a large training set.
We release our code and pretrained models at
https://github.com/yanzhang92/LDGCNs.1

2 Background

Graph Convolutional Networks Our LDGCN
model is closely related to GCNs (Kipf and
Welling, 2017) which restrict filters to operate on
a first-order neighborhood. Given an AMR graph
G with n concepts (nodes), GCNs associate each
concept v with a feature vector hv ∈ Rd, where
d is the feature dimension. G can be represented
by concatenating features of all the concepts, i.e.,
H=[hv1 , ...,hvn]. Graph convolutions at l-th layer
can be defined as:

Hl+1 = φ(AHlWl + bl), (1)

where Hl is hidden representations of the l-th layer.
Wl and bl are trainable model parameters for the
l-th layer, φ is an activation function. A is the
adjacency matrix, Auv=1 if there exists a relation
(edge) that goes from concept u to concept v.

Self-Attention Networks Unlike GCNs, SANs
(Vaswani et al., 2017) capture global interactions
by connecting each concept to all other concepts.
Intuitively, the attention matrix can be treated as
the adjacency matrix of a fully-connected graph.
Formally, SANs take a sequence of representations
of n nodes H=[hv1 , ...,hvn] as the input. Attention
score Auv between the concept pair (u,v) is:

Auv = f(hu,hv)

= softmax(
(huW

Q)(hvWK)T√
d

)
(2)

where WQ and WK are projection parameters. The
adjacency matrix A in GCNs is given by the input
AMR graph, while in SANs A is computed based
on H, which neglects the structural information of
the input AMR. The number of operations required
by graph convolutions scales is found linearly in
the input length, whereas they are quadratic for
SANs.

Structured SANs Zhu et al. (2019) and Cai and
Lam (2020) extend SAN s by incorporating the
relation ruv between node u and node v in the

1Our implementation is based on MXNET (Chen et al.,
2015) and the Sockeye toolkit (Felix et al., 2017).

https://github.com/yanzhang92/LDGCNs

2164

Dynamic
Fusion

X

Hl
X

X

Hl
X

Hl+1

A1

A2

Vanilla GCN Layer

 LDGCN Layer

X

Hl
X

A1

Wl

Hl+1

Wl

Wl

Figure 2: Comparison between vanilla GCNs and
LDGCNs. Hl denotes the representation of l-th layer.
Wl denotes the trainable weights and × denotes ma-
trix multiplication. Vanilla GCNs take the 1st-order ad-
jacency matrix A1 as the input, which only captures
information from one-hop neighbors. LDGCNs take k
number of k-order adjacency matrix Ak as inputs, Wl

is shared for all Ak. k is set to 2 here for simplification.
A dynamic fusion mechanism is applied to integrate the
information from 1- to k-hop neighbors.

original graph such that the model is aware of the
input structure when computing attention scores:

Auv = g(hu,hv, ruv) (3)

where ruv is obtained based on the shortest relation
path between the concept pair (u, v) in the graph.
For example, the shortest relation path between
(join-01, this) in Figure 1 (d) is [ARG1, mod]. For-
mally, the path between concept u and v is rep-
resented as suv=[e(u, k1), e(k1, k2), ..., e(km, v)],
where e indicates the relation label between two
concepts and k1:m are the relay nodes. We have
ruv = f(suv) where f is a sequence encoder, and
this can be performed with gated recurrent units
(GRUs) or convolutional neural networks (CNNs).

3 Dynamic Fusion Mechanism

As discussed in Section 2, GCNs are generally
more computationally efficient than structured
SANs as their computation cost scales linearly and
no additional relation encoders are required. How-
ever, the locality nature of GCNs precludes efficient
non-local information propagation. To address this
issue, we propose the dynamic fusion mechanism,
which integrates higher order information for bet-
ter non-local information aggregation. With the
help of this mechanism, our model solely based on

graph convolutions is able to outperform competi-
tive structured SANs.

Inspired by Gated Linear Units (GLUs; Dauphin
et al. 2016), which leverage gating mechanisms
(Hochreiter and Schmidhuber, 1997) to dynami-
cally control information flows in the convolutional
neural networks, we propose dynamic fusion mech-
anism (DFM) to integrate information from differ-
ent orders. DFM allows the model to automatically
synthesize information from neighbors at varying
degrees of hops away. Similar to GLUs, DFM
retains non-linear capabilities of the layer while
allowing the gradient to propagate through the lin-
ear unit without scaling. Based on this non-linear
mixture procedure, DFM is able to control the in-
formation flows from a range of orders to specific
nodes in the AMR graph. Formally, graph convolu-
tions based on DFM are defined as:

Hl+1 =(1− 1

K − 1

∑
1<k<K

G
(k)
l)� φ(AHlWl + bl)

+
1

K − 1

∑
1<k<K

G
(k)
l � φ(AkHlWl + bl).

(4)

where G
(k)
l is a gating matrix conditioned on the

k-th order adjacency matrix Ak, namely:

G
(k)
l = (1− λk)� σ(AkHlWl + bl), (5)

where � denotes elementwise product, σ denotes
the sigmoid function, λ ∈ (0, 1) is a scalar, K ≥ 2
is the highest order used for information aggrega-
tion, and Wl denotes trainable weights shared by
different Ak. Both λ and K are hyperparameters.

Computational Overhead In practice, there is
no need to calculate or store Ak. AkHl is com-
puted with right-to-left multiplication. Specifi-
cally, if k=3, we calculate A3Hl as (A(A(AHl))).
Since we store A as a sparse matrix with m non-
zero entries as vanilla GCNs, an efficient implemen-
tation of our layer takes O(kmax ×m× d) compu-
tational time, where kmax is the highest order used
and d is the feature dimension of Hl. Under the
realistic assumptions of kmax � m and d � m,
running an l-layer model takes O(lm) computa-
tional time. This matches the computational com-
plexity of the vanilla GCNs. On the other hand,
DFM does not require additional parameters as the
weight matrix is shared over various orders.

Deeper LDGCNs To further facilitate the non-
local information aggregation, we stack several
LDGCN layers. In order to stabilize the train-
ing, we introduce dense connections (Huang et al.,

2165

g1l

Vanilla
Graph Convolutions

Depthwise
Graph Convolutions

hl hl+1 g2l

g3l

g1l+1

g2l+1

g3i+1

Figure 3: Comparison between vanilla graph convolu-
tions and depthwise graph convolutions. The input and
output representation of the l-th layer hl and hl+1 are
partitioned into N=3 disjoint groups.

2017; Guo et al., 2019b) into the LDGCN model.
Mathematically, we define the input of the l-th layer
Ĥl as the concatenation of all node representations
produced in layers 1, · · · , l − 1:

Ĥl = [H0;H1; ...;Hl−1]. (6)

Accordingly, Hl in Eq. 4 is replaced by Ĥl.

Hl+1 =(1− 1

K − 1

∑
1<k<K

G
(k)
l)� φ(AĤlWl + bl)

+
1

K − 1

∑
1<k<K

G
(k)
l � φ(AkĤlWl + bl).

(7)

where Wl ∈ Rdl×d and dl=d× (l− 1). The model
size scales linearly as we increase the depth of the
network.

4 Parameter Saving Strategies

Although we are able to train a very deep LDGCN
model, the LDGCN model size increases sharply as
we stack more layers, resulting in large model com-
plexity. To maintain a better balance between pa-
rameter efficiency and model capacity, we develop
two novel parameter saving strategies. We first
reduce partial parameters in each layer based on
group graph convolutions. Then we further share
parameters across all layers based on weight tied
convolutions. These strategies allow the LDGCN
model to reduce memory usage and model com-
plexity.

4.1 Group Graph Convolutions

Group convolutions have been used to build effi-
cient networks for various computer vision tasks
as they can better integrate feature maps (Xie et al.,
2017; Li et al., 2019b) and have lower computa-
tional costs (Howard et al., 2017; Zhang et al.,
2017) compared to vanilla convolutions. In order to
reduce the model complexity in the deep LDGCN

L1

L3

L2

L1

L3

L2

Densely Connected
Graph Convolutions

Layerwise
Graph Convolutions

h0

g10

g20

g30

Figure 4: Comparison between vanilla graph convolu-
tions and layerwise graph convolutions. The input rep-
resentation h0 is partitioned into M=3 disjoint groups.

model, we extend group convolutions to GCNs by
introducing group convolutions along two direc-
tions: depthwise and layerwise.

Depthwise Graph Convolutions: As discussed
in Section 2, graph convolutions operate on the fea-
tures of n nodes H ∈ Rn×d. For simplicity, we
assume n=1, the input and output representation
of the l-th layer are hl ∈ Rdl and hl+1 ∈ Rdl+1 ,
respectively. As shown in Figure 3, the size of
the weight matrix Wl in a vanilla graph convo-
lutions is dl × dl+1. In depthwise graph convo-
lutions, hl is partitioned into N mutually exclu-
sive groups {g1

l ,...,gN
l }. The weight Wl of each

layer is also partitioned into N mutually exclusive
groups W1

l ,...,WN
l . The dimension of each weight

is dl
N ×

dl+1

N . Finally, we obtain the output represen-
tation hl+1 by concatenating N groups of outputs
[g1

l+1;...;gN
l+1]. Now the parameters of each layer

can be reduced by a factor of N , to dl×dl+1

N .

Layerwise Graph Convolutions: These group
convolutions are built based on densely connected
graph convolutions (Guo et al., 2019b). As shown
in Figure 4, each layer takes the concatenation
of outputs from all preceding layers as its input.
For example, layer L2 takes the concatenation of
[h0;h1] as its input. Guo et al. (2019b) further
adopt a dimension shrinkage strategy. Assume
h0 ∈ Rd and that the network has L layers. The di-
mension of output for each layer is set to d

L . Finally,
we concatenate the output of L layers [h1; ...;hL]
to form the final representation hfinal ∈ Rd. There-
fore, the size of weight matrix for l-th layer is
(d+ d×(l−1)

L)× d
L .

Notice that main computation cost originates in
the computation of h0 as it has a large dimension
and it is concatenated to the input of each layer. In
layerwise graph convolutions however, we improve
the parameter efficiency by dividing the input repre-

2166

sentation h0 into M groups {g1
0,...gM

0 }, where M
equals the total number of layers L. The first group
g1
0 is fed to all L layers, and the second group g2

0

is fed to (L-1) layers, so on and so forth. Accord-
ingly, the size of weight matrix for the l-th layer is
(d×(2l−1)L)× d

L .
Formally, we partition the input representations

of n concept H0 ∈ Rn×d to the first layer into
M groups {G1

0, ...,G
M
0 }, where the size of each

group is n× d
M . Accordingly, we modify the input

of the l-th layer Ĥl in Eq. 6 as:

Ĥl = [G1
0; ...;G

M
0 ;H1; ...;Hl−1] (8)

In practice, we combine these two convolutions
together to further reduce the model size. For ex-
ample, assume the size of the input is d=360 and
the number of layers is L=6. The size of the weight
matrix for the first layer (l=1) is (d + d×(l−1)

L) ×
d
L=360 × 60. Assume we set N=3 for depthwise
graph convolutions and M=6 for layerwise graph
convolutions. We first use layerwise graph convo-
lutions by dividing the input into 6 groups, where
each one has the size d

M =60. Then we feed the
first group to the first layer. Next we use depthwise
graph convolutions to further split the input into
3 groups. We now have 3 weight matrices for the
first layer, each one with the size d×(2l−1)

M × d
M×N =

20 × 20. With the increase of the feature dimen-
sion d and the number of layer L, more prominent
parameter efficiency can be observed.

4.2 Weight Tied Convolutions

We further adopt a more aggressive strategy where
parameters are shared across all layers. This further
significantly reduces the size of the model. Theoret-
ically, weight tied networks can be unrolled to any
depth, typically with improved feature abstractions
as depth increases (Bai et al., 2019a). Recently,
weight tied SANs were explored to regularize the
training and help with generalization (Dehghani
et al., 2019; Lan et al., 2020). Mathematically,
Eq. 1 can be rewritten as:

Hl+1 = φ(AĤlW + b), (9)

where W and b are shared parameters for all con-
volutional layers. To stabilize training, a gating
mechanism was introduced to graph neural net-
works in order to build graph recurrent networks
(Li et al., 2016; Song et al., 2018), where parame-
ters are shared across states (time steps). However,

the graph convolutional structure is very deep (e.g.,
36 layers). Instead, we adopt a jumping connection
(Xu et al., 2018), which forms the final representa-
tion Hfinal based on the output of all layers. This
connection mechanism can be considered deep su-
pervision (Lee et al., 2015; Bai et al., 2019b) for
training deep convolutional neural networks. For-
mally, the Hfinal of LDGCNs which have L layer
is obtained by: Hfinal = F(ĤL, ..., Ĥ1), where
F is a linear transformation.

5 Experiments

5.1 Setup

We evaluate our model on the LDC2015E86
(AMR1.0), LDC2017T10 (AMR2.0) and
LDC2020T02 (AMR3.0) datasets, which have
16,833, 36,521 and 55,635 instances for training,
respectively. Both AMR1.0 and AMR2.0 have
1,368 instances for development, and 1,371
instances for testing. AMR3.0 has 1,722 instances
for development and 1,898 instances for testing.
Following Zhu et al. (2019), we use byte pair
encodings (Sennrich et al., 2016) to deal with rare
words.

Following Guo et al. (2019b), we stack 4
LDGCN blocks as the encoder of our model. Each
block consists of two sub-blocks where the bottom
one contains 6 layers and the top one contains 3
layers. The hidden dimension of LDGCN model
is 480. Other model hyperparameters are set as
λ=0.7, K=2 for dynamic fusion mechanism, N=2
for depthwise graph convolutions and M=6 and
3 for layerwise graph convolutions for the bottom
and top sub-blocks, respectively. For the decoder,
we employ the same attention-based LSTM as in
previous work (Beck et al., 2018; Guo et al., 2019b;
Damonte and Cohen, 2019). Following Wang et al.
(2020), we use a transformer as the decoder for
large-scale evaluation. For fair comparisons, we
use the same optimization and regularization strate-
gies as in Guo et al. (2019b). All hyperparameters
are tuned on the development set2.

For evaluation, we report BLEU scores (Pap-
ineni et al., 2002), CHRF++ (Popovic, 2017) scores
and METEOR scores (Denkowski and Lavie, 2014)
with additional human evaluation results.

2Hyperparameter search; all hyperparameters are attached
in the supplementary material.

2167

Model Type AMR2015 AMR2017

B C M #P B C M #P

Seq2Seq (Cao and Clark, 2019) Single 23.5 - - - 26.8 - - -
GraphLSTM (Song et al., 2018) Single 23.3 - - - 24.9 - - -
GGNNs (Beck et al., 2018) Single - - - - 23.3 50.4 - 28.3M
GCNLSTM (Damonte and Cohen, 2019) Single 24.4 - 23.6 - 24.5 - 24.1 030.8M‡

DCGCN (Guo et al., 2019b) Single 25.7 0 54.5‡ 031.5‡ 018.6M‡ 27.6 57.3 34.0 19.1M
DualGraph (Ribeiro et al., 2019) Single 24.3 053.8‡ 30.5 060.3M‡ 27.9 058.0‡ 33.2 061.7M‡

Seq2Seq (Konstas et al., 2017) Ensemble - - - - 26.6 52.5 - 142M
GGNNs (Beck et al., 2018) Ensemble - - - - 27.5 53.5 - 141M
DCGCN (Guo et al., 2019b) Ensemble - - - - 30.4 59.6 - 92.5M

Transformer (Zhu et al., 2019) Single 25.5 59.9 33.1 49.1M 27.4 61.9 34.6 -
GT Dual (Wang et al., 2020) Single 25.9 - - 19.9M 29.3 59.0 - 19.9M
GT GRU (Cai and Lam, 2020) Single 27.4 56.4 32.9 30.8M 29.8 59.4 35.1 32.2M
GT SAN (Zhu et al., 2019) Single 29.7 060.7‡ 35.5 49.3M 31.8 061.8‡ 36.4 054.0M‡

LDGCN WT Single 28.6 58.5 33.1 10.6M 31.9 61.2 36.3 11.8M
LDGCN GC Single 30.8 61.8 36.4 12.9M 33.6 63.2 37.5 13.6M

Table 1: Main results on AMR-to-text generation. B, C, M and #P denote BLEU, CHRF++, METEOR and the
model size in terms of parameters, respectively. Results with ‡ are obtained from the authors. We also conduct
the statistical significance tests by following (Zhu et al., 2019). All our proposed systems are significant over the
baseline at p < 0.01, tested by bootstrap resampling (Koehn, 2004).

Model #P External B

Seq2Seq (Konstas et al., 2017) - 2M 32.3
Seq2Seq (Konstas et al., 2017) - 20M 33.8
GraphLSTM (Song et al., 2018) - 2M 33.6
Transformer (Wang et al., 2020) - 2M 35.1
GT Dual (Wang et al., 2020) 78.4M 2M 36.4

LDGCN GC 23.2M 0.5M 36.0
LDGCN WT 20.8M 0.5M 36.8

Table 2: Results on AMR1.0 with external training data.
‡ denotes the ensemble model.

5.2 Main Results

We consider two kinds of baseline models: 1) mod-
els based on Recurrent Neural Networks (Kon-
stas et al., 2017; Cao and Clark, 2019) and Graph
Neural Networks (GNNs) (Song et al., 2018; Beck
et al., 2018; Damonte and Cohen, 2019; Guo et al.,
2019b; Ribeiro et al., 2019). These models use an
attention-based LSTM decoder. 2) models based on
SANs (Zhu et al., 2019) and structured SANs (Cai
and Lam, 2020; Zhu et al., 2019; Wang et al.,
2020). Specifically, Zhu et al. (2019) leverage addi-
tional SANs to incorporate the relational encoding
whereas Cai and Lam (2020) use GRUs. Addi-
tional results of ensemble models are also included.
The results are reported in Table 1. Our model
has two variants based on different parameter sav-
ing strategies, including LDGCN WT (weight tied)
and LDGCN GC (group convolutions), and both of
them use the dynamic fusion mechanism (DFM).

LDGCN v.s. Structured SANs. Compared to
state-of-the-art structured SANs (GT SAN), the

Model B C M #P

GGNNs (Beck et al., 2018) 26.7† 57.2† 33.1† 30.9M†

DCGCN (Guo et al., 2019b) 29.8‡ 59.9‡ 35.6‡ 22.2M‡

LDGCN WT 33.0 62.6 36.5 11.5M
LDGCN GC 34.3 63.7 38.2 14.3M

Table 3: Results on the AMR3.0. B, C, M and #P de-
note BLEU, CHRF++, METEOR and the model size
in terms of parameters, respectively. The results with
† are based on open implementations, while the results
with ‡ are obtained from the authors.

performance of LDGCN GC is 1.1 and 1.8 BLEU
points higher on AMR1.0 and AMR2.0, respec-
tively. Moreover, LDGCN GC requires only
about a quarter of the number of parameters
(12.9M vs 49.0M, and 13.6M vs 54.0M). Our more
lightweight variant LDGCN WT achieves better
BLEU scores than GT SAN on AMR2.0 while us-
ing only 1/5 of their model parameters. However,
LDGCN WT obtains lower scores on AMR1.0
than GT SAN. We hypothesize that weight tied
convolutions require more data to train as we ob-
serve severe oscillations when training the model
on the small AMR1.0 dataset. The oscillation is
reduced when we train it on the larger AMR2.0
dataset and the semi-supervised dataset.

LDGCN v.s. Other GNNs. Both LDGCN mod-
els significantly outperform GNN-based models.
For example, LDGCN GC surpasses DCGCN by
5.1 points on AMR1.0 and surpasses DualGraph
by 5.7 points on AMR2.0. Moreover, the sin-

2168

gle LDGCN model achieves consistently better re-
sults than previous ensemble GNN-based models in
BLEU, CHRF++ and METEOR scores. In particu-
lar, on AMR2.0, LDGCN WT obtains 1.5 BLEU
points higher than the DCGCN ensemble model,
while requiring only about 1/8 of the number of
parameters. We also evaluate our model on the lat-
est AMR3.0 dataset. Results are shown in Table 3.
LDGCN WT and LDGCN GC consistently outper-
form GNN-based models including DCGCN and
GGNNs on this larger dataset. These results sug-
gest that LDGCN can learn better representation
more efficiently.

Large-scale Evaluation. We further evaluate
LDGCNs on a large-scale dataset. Following Wang
et al. (2020), we first use the additional data to
pretrain the model, then finetune it on the gold
data. Evaluation results are reported in Table.2.
Using 0.5M data, LDGCN WT outperforms all
models including structured SANs with 2M addi-
tional data. These results show that our model is
more effective in terms of using a larger dataset. In-
terestingly, LDGCN WT consistently outperforms
LDGCN GC under this setting. Unlike training the
model on AMR1.0, training LDGCN WT on the
large-scale dataset has fewer oscillations, which
confirms our hypothesis that sufficient data acts
as a regularizer to stabilize the training process of
weight tied models.

5.3 Development Experiments
We conduct an ablation study to demonstrate how
dynamic fusion mechanism and parameter sav-
ing strategies are beneficial to the lightweight
model with better performance based on devel-
opment of experimental results on AMR1.0. Re-
sults are shown in Table 4. DeepGCN is the
model with dense connections (Huang et al., 2017;
Guo et al., 2019b). DeepGCN+GC+DF and Deep-
GCN+WT+DF are essentially LDGCN GC and
LDGCN WT models in Section 5.2, respectively.

Dynamic Fusion Mechanism. The performance
of DeepGCN+DF is 1.1 BLEU points higher than
DeepGCN, which demonstrates that our dynamic
fusion mechanism is beneficial for graph encoding
when applied alone. Adding the group graph con-
volutions strategies gives a BLEU score of 30.3,
which is only 0.1 points lower than DeepGCN+DF.
This result shows that the representation learning
ability of the dynamic fusion mechanism is robust
against parameter sharing and reduction. We also

Model #Parameters BLEU

DeepGCN 19.9M 29.3
DeepGCN+DF 19.9M 30.4
DeepGCN+GC 12.9M 29.0
DeepGCN+GC+DF (LDGCN GC) 12.9M 30.3
DeepGCN+WT 10.6M 27.4
DeepGCN+WT+DF (LDGCN WT) 10.6M 28.3

Table 4: Comparisons between baselines. +DF denotes
dynamic fusion mechanism. +WT and +GC refer to
weight tied and group convolutions, respectively.

Model Inference Speed

Transformer 1.00x
DeepGCN 1.21x
LDGCN WT 1.22x
LDGCN GC 1.17x

Table 5: Speed comparisons between baselines. For
inference speed, the higher the better. Implementa-
tions are based on MXNet (Chen et al., 2015) and the
Sockeye neural machine translation toolkit (Felix et al.,
2017). Results on speed are based on beam size 10,
batch size 30 on an NVIDIA RTX 1080 GPU.

observe that the mechanism helps to alleviate oscil-
lation when training the weight tied model. Deep-
GCN+WT+DF achieves better results than Deep-
GCN+WT, which is hard to converge when training
it on the small AMR1.0 dataset.

Parameter Saving Strategy. Table 4 demon-
strates that although the performance of Deep-
GCN+GC is only 0.3 BLEU points lower than that
of DeepGCN, DeepGCN+GC only requires 65%
of the number of parameters of DeepGCN. Fur-
thermore, by introducing the dynamic fusion mech-
anism, the performance of DeepGCN+GC is im-
proved greatly and is in fact on par with DeepGCN.
Also, DeepGCN+GC+DF does not rely on any kind
of self-attention layers, hence, its number of param-
eters is much smaller than that of graph transform-
ers, i.e., DeepGCN+GC+DF only needs 1/4 to 1/3
the number of parameters of graph transformers,
as shown in Table 1. On the other hand, Deep-
GCN+WT is more efficient than DeepGCN+GC.
As shown in Table 2, with an increase in training
data, more prominent parameter efficiency can be
observed.

Time Cost Analysis. As shown in the Table 5,
all three GCN-based models outperform the SAN-
based model in terms of speed because the com-
putation of attention weights scales quadratically
while convolutions scale linearly with respect to
the input graph size. LDGCN GC is slightly slower

2169

Model Similarity Readability

DualGraph (Ribeiro et al., 2019) 65.07 68.78
GT SAN (Zhu et al., 2019) 69.63 72.23
DeepGCN 68.91 71.45
LDGCN GC 71.92 74.16

Table 6: Human evaluation. We also perform signifi-
cance tests by following (Ribeiro et al., 2019). Results
are statistically significant with p < 0.05.

than the other two models, since it requires addi-
tional tensor split operations. We believe that state-
of-the-art structured SANs are also strictly slower
than vanilla SANs, as they require additional neural
components, such as GRUs, to encode structural
information in the AMR graph. In summary, our
model not only has better parameter efficiency, but
also lower time costs.

5.4 Human Evaluation

We further assess the quality of the generated sen-
tences with human evaluation. Following Ribeiro
et al. (2019), two evaluation criteria are used: (i)
meaning similarity: how close in meaning the gen-
erated text is to the gold sentence; (ii) readability:
how well the generated sentence reads. We ran-
domly select 100 sentences generated by 4 models.
30 human subjects rate the sentences on a 0-100
rating scale. The evaluation is conducted sepa-
rately and subjects were first given brief instruc-
tions explaining the criteria of assessment. For
each sentence, we collect scores from 5 subjects
and average them. Models are ranked according to
the mean of sentence-level scores. Also, we apply
a quality control step filtering subjects who do not
score some faked and known sentences properly.

As shown in Table 6, LDGCN GC has better hu-
man rankings in terms of both meaning similarity
and readability than the state-of-the art GNN-based
(DualGraph) and SAN-based model (GT SAN).
DeepGCN without dynamic fusion mechanism ob-
tains lower scores than GT SAN, which further
confirms that synthesizing higher order informa-
tion helps in learning better graph representations.

5.5 Additional Analysis

To further reveal the source of performance gains,
we perform additional analysis based on the charac-
teristics of AMR graphs, i.e., graph size and graph
reentrancy (Damonte and Cohen, 2019; Damonte
et al., 2020). All experiments are conducted on the
AMR2.0 test set and CHRF++ scores are reported.

0-20 20-30 30-40 >40
Graph Sizes

58

62

66

70

C
H

R
F+

+

GT_SAN
LDGCN_GC

Figure 5: Performance against graph sizes.

0-1 2-3 4-5 >5
Graph Reentrancies

58

64

70

76

C
H

R
F+

+

GT_SAN
LDGCN_GC

Figure 6: Performance against graph re-entrancies.

Graph Size. As shown in Figure 5, the size
of AMR graphs is partitioned into four cate-
gories ((0, 20], (20, 30], (30, 40], > 40), Over-
all, LDGCN GC outperforms the best-reported
GT SAN model across all graph sizes, and the per-
formance gap becomes more profound with the in-
crease of graph sizes. Although both models have
sharp performance degradation for extremely large
graphs (> 40), the performance of LDGCN GC is
more stable. Such a result suggests that our model
can better deal with large graphs with more com-
plicated structures.

Graph re-entrancies. Reentrancies describe the
co-references and control structures in AMR
graphs. A graph is considered more complex if
it contains more re-entrancies. In Figure 6, we
show how the LDGCN GC and GT SAN gener-
alize to different scales of reentrancies. Again,
LDGCN GC consistently outperforms GT SAN
and the performance gap becomes noticeably wider
when the number of re-entrancies increases. These
results suggest that our model can better model the

2170

(m / multi-sentence
000 :snt1 (t / trust-01
000000 :ARG2 (i / i))
000 :snt2 (g / good-02
000000 :ARG1 (g2 / get-01
000000000 :ARG1 (t2 / thing
000000000000 :mod (t3 / this))
000000000 :time e.10,12 (e / early
000000000000 :degree (m2 / most)
0000000 00000:compared-to (p / possible-01
000000000000000 :ARG1 g2))
000000000 :ARG1-of (i2 / instead-of-91
000000000000 :ARG2 (l / let-01
000000000000000 :ARG1 (w / worsen-01
000000000000000000 :ARG1 t2
000000000000000000 :mod (e2 / even)))))
0000000 :degree e.5 (m3 / more)))

Reference: trust me , it ’s better to get these things as early
as possible rather than let them get even worse .

DualGraph: so to me , this is the best thing to get these
things as they can , instead of letting it even worse .

DeepGCN: i trust me , it ’s better that these things get
in the early than letting them even get worse .

GT SAN: trust me , this is better to get these
things , rather than let it even get worse .

LDGCN GC: trust me . better to get these things as early
as possible , rather than letting them even make worse .

Table 7: An example of AMR graph and generated sen-
tences by different models.

complex dependencies in AMR graphs.

Case Study. Table 7 shows the generated sen-
tence of an AMR graph from four models together
with the gold reference. The phrase “trust me” is
the beginning of the sentence. DualGraph fails to
decode it. On the other hand, GT SAN success-
fully generates the second half of the sentence, i.e.,
“rather than let them get even worse”, but it fails
to capture the meaning of word “early” in its out-
put, which is a critical part. DeepGCN parses both
“early” and “get even worse” in the results. How-
ever, the readability of the generated sentence is
not satisfactory. Compared to baselines, LDGCN is
able to produce the best result, which has a correct
starting phrase and captures the semantic mean-
ing of critical words such as “early” and “get even
worse” while also attaining good readability.

6 Related Work

Graph convolutional networks (Kipf and Welling,
2017) have been widely used as the structural en-
coder in various NLP applications including ques-
tion answering (De Cao et al., 2019; Lin et al.,
2019), semantic parsing (Bogin et al., 2019a,b) and
relation extraction (Guo et al., 2019a, 2020).

Early efforts for AMR-to-text generation mainly
include grammar-based models (Flanigan et al.,
2016; Song et al., 2017) and sequence-based mod-
els (Pourdamghani et al., 2016; Konstas et al., 2017;
Cao and Clark, 2019), discarding crucial structural
information when linearising the input AMR graph.
To solve that, various GNNs including graph re-
current networks (Song et al., 2018; Ribeiro et al.,
2019) and graph convolutional networks (Damonte
and Cohen, 2019; Guo et al., 2019b) have been
used to encode the AMR structure. Though GNNs
are able to operate directly on graphs, the local-
ity nature of them precludes efficient information
propagation (Abu-El-Haija et al., 2018, 2019; Luan
et al., 2019). Larger and deeper models are required
to model the complex non-local interactions (Xu
et al., 2018; Li et al., 2019a). More recently, SAN-
based models (Zhu et al., 2019; Cai and Lam, 2020;
Wang et al., 2020) outperform GNN-based mod-
els as they are able to capture global dependencies.
Unlike previous models, our local, yet efficient
model, based solely on graph convolutions, outper-
forms competitive structured SANs while using a
significantly smaller model.

7 Conclusion

In this paper, we propose LDGCNs for AMR-to-
text generation. Compared with existing GCNs and
SANs, LDGCNs maintain a better balance between
parameter efficiency and model capacity. LDGCNs
outperform state-of-the-art models on AMR-to-text
generation. In future work, we would like to inves-
tigate methods to stabilize the training of weight
tied models and apply our model on other tasks in
Natural Language Generation.

Acknowledgments

We would like to thank the anonymous reviewers
for their constructive comments. We would also
like to thank Zheng Zhao, Chunchuan Lyu, Jiang-
ming Liu, Gavin Peng, Waylon Li and Yiluan Guo
for their helpful suggestions. This research is par-
tially supported by Ministry of Education, Singa-
pore, under its Academic Research Fund (AcRF)
Tier 2 Programme (MOE AcRF Tier 2 Award No:
MOE2017-T2-1-156). Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the authors and do not reflect
the views of the Ministry of Education, Singapore.

2171

References
Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and

Joonseok Lee. 2018. N-gcn: Multi-scale graph con-
volution for semi-supervised node classification. In
Proc. of UAI.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor,
Hrayr Harutyunyan, Nazanin Alipourfard, Kristina
Lerman, Greg Ver Steeg, and Aram Galstyan. 2019.
Mixhop: Higher-order graph convolutional architec-
tures via sparsified neighborhood mixing. In Proc.
of ICML.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2019a.
Deep equilibrium models. In Proc. of NeurIPS.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2019b.
Trellis networks for sequence modeling. In Proc. of
ICLR.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. of LAW@ACL.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proc. of ACL.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019a.
Global reasoning over database structures for text-to-
sql parsing. In Proc. of EMNLP.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019b.
Representing schema structure with graph neural
networks for text-to-sql parsing. In Proc. of ACL.

Deng Cai and Wai Lam. 2020. Graph transformer for
graph-to-sequence learning. In Proc. of AAAI.

Kris Cao and Stephen Clark. 2019. Factorising AMR
generation through syntax. In Proc. of NAACL-HLT.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. 2015. Mxnet: A flexible
and efficient machine learning library for heteroge-
neous distributed systems. arXiv preprint.

Marco Damonte and Shay B. Cohen. 2019. Struc-
tural neural encoders for AMR-to-text generation.
In Proc. of NAACL-HLT.

Marco Damonte, Ida Szubert, Shay B. Cohen, and
Mark Steedman. 2020. The role of reentrancies in
abstract meaning representation parsing. In Find-
ings of EMNLP.

Yann Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2016. Language modeling with gated con-
volutional networks. In Proc. of ICML.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2019.
Question answering by reasoning across documents
with graph convolutional networks. In Proc. of
NAACL-HLT.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In Proc. of ICLR.

Michael J. Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proc. of WMT@ACL.

Hieber Felix, Domhan Tobias, Denkowski Michael, Vi-
lar David, Sokolov Artem, Clifton Ann, and Post
Matt. 2017. Sockeye: A toolkit for neural machine
translation. arXiv preprint.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime G. Carbonell. 2016. Generation from abstract
meaning representation using tree transducers. In
Proc. of NAACL-HLT.

Zhijiang Guo, Guoshun Nan, Wei Lu, and Shay B. Co-
hen. 2020. Learning latent forests for medical rela-
tion extraction. In Proc. of IJCAI.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019a. Atten-
tion guided graph convolutional networks for rela-
tion extraction. In Proc. of ACL.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019b. Densely connected graph convolutional
networks for graph-to-sequence learning. Transac-
tions of the Association for Computational Linguis-
tics, 7:297–312.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. 2017. Mo-
bilenets: Efficient convolutional neural networks for
mobile vision applications. ArXiv, abs/1704.04861.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. 2017. Densely connected con-
volutional networks. In Proc. of CVPR.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proc. of ICLR.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proc. of EMNLP.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke S. Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proc. of ACL.

Zhen-Zhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. In Proc. of ICLR.

Chen-Yu Lee, Saining Xie, Patrick W. Gallagher,
Zhengyou Zhang, and Zhuowen Tu. 2015. Deeply-
supervised nets. In Proc. of AISTATS.

2172

Guohao Li, Matthias Müller, Ali Thabet, and Bernard
Ghanem. 2019a. Can gcns go as deep as cnns? In
Proc. of ICCV.

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang.
2019b. Selective kernel networks. In Proc. of
CVPR.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard S. Zemel. 2016. Gated graph sequence neu-
ral networks. In Proc. of ICLR.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi-
ang Ren. 2019. Kagnet: Knowledge-aware graph
networks for commonsense reasoning. In Proc. of
EMNLP.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and
Doina Precup. 2019. Break the ceiling: Stronger
multi-scale deep graph convolutional networks. In
Proc. of NeurIPS.

Christopher Morris, Martin Ritzert, Matthias Fey,
William L. Hamilton, Jan Eric Lenssen, Gaurav Rat-
tan, and Martin Grohe. 2019. Weisfeiler and leman
go neural: Higher-order graph neural networks. In
Proc. of AAAI.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proc. of ACL.

Maja Popovic. 2017. chrf++: words helping character
n-grams. In Proc. of WMT@ACL.

Nima Pourdamghani, Kevin Knight, and Ulf Herm-
jakob. 2016. Generating english from abstract mean-
ing representations. In Proc. of INLG.

Leonardo Filipe Rodrigues Ribeiro, Claire Gardent,
and Iryna Gurevych. 2019. Enhancing AMR-to-text
generation with dual graph representations. In Proc.
of EMNLP.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. of ACL.

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo
Wang, and Daniel Gildea. 2017. AMR-to-text gener-
ation with synchronous node replacement grammar.
In Proc. of ACL.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proc. of ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020.
AMR-to-text generation with graph transformer.
Transactions of the Association for Computational
Linguistics, 8:19–33.

Felix Wu, Angela Fan, Alexei Baevski, Yann N
Dauphin, and Michael Auli. 2019. Pay less atten-
tion with lightweight and dynamic convolutions. In
Proc. of ICLR.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He. 2017. Aggregated residual
transformations for deep neural networks. In Proc.
of CVPR.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro
Sonobe, Ken ichi Kawarabayashi, and Stefanie
Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In Proc. of
ICML.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. 2017. Shufflenet: An extremely efficient con-
volutional neural network for mobile devices. In
Proc. of CVPR.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better AMR-to-text gen-
eration. In Proc. of EMNLP.

