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Abstract

Simultaneous translation on both text and
speech focuses on a real-time and low-latency
scenario where the model starts translating be-
fore reading the complete source input. Evalu-
ating simultaneous translation models is more
complex than offline models because the la-
tency is another factor to consider in addition
to translation quality. The research commu-
nity, despite its growing focus on novel mod-
eling approaches to simultaneous translation,
currently lacks a universal evaluation proce-
dure. Therefore, we present SIMULEVAL, an
easy-to-use and general evaluation toolkit for
both simultaneous text and speech translation.
A server-client scheme is introduced to create
a simultaneous translation scenario, where the
server sends source input and receives predic-
tions for evaluation and the client executes cus-
tomized policies. Given a policy, it automati-
cally performs simultaneous decoding and col-
lectively reports several popular latency met-
rics. We also adapt latency metrics from text si-
multaneous translation to the speech task. Ad-
ditionally, SIMULEVAL is equipped with a vi-
sualization interface to provide better under-
standing of the simultaneous decoding process
of a system. SIMULEVAL has already been ex-
tensively used for the IWSLT 2020 shared task
on simultaneous speech translation. Code will
be released upon publication. !

1 Introduction

Simultaneous translation, the task of generating
translations before reading the entire text or speech
source input, has become an increasingly popular
topic for both text and speech translation (Gris-
som II et al., 2014; Cho and Esipova, 2016; Gu

'The code is available at https://github.com/
facebookresearch/SimulEval
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et al., 2017; Alinejad et al., 2018; Arivazhagan
et al., 2019; Zheng et al., 2019; Ma et al., 2020;
Ren et al., 2020). Simultaneous models are typi-
cally evaluated from quality and latency perspec-
tive. Note that the term latency is overloaded and
sometimes refers to the actual system speed. In this
paper, latency refers to the simultaneous ability,
which is how much partial source information is
needed to start the translation process.

While the translation quality is usually mea-
sured by BLEU (Papineni et al., 2002; Post,
2018), a wide variety of latency measurements
have been introduced, such as Average Proportion
(AP) (Cho and Esipova, 2016), Continues Wait
Length (CW) (Gu et al., 2017), Average Lagging
(AL) (Ma et al., 2019), Differentiable Average Lag-
ging (DAL) (Cherry and Foster, 2019), and so
on. Unfortunately, the latency evaluation processes
across different works are not consistent: 1) the
latency metric definitions are not precise enough
with respect to text segmentation; 2) the defini-
tions are also not precise enough with respect to
the speech segmentation, for example some models
are evaluated on speech segments (Ren et al., 2020)
while others are evaluated on time duration (Ansari
et al., 2020); 3) little prior work has released im-
plementations of the decoding process and latency
measurement. The lack of clarity and consistency
of the latency evaluation process makes it chal-
lenging to compare different works and prevents
tracking the scientific progress of this field.

In order to provide researchers in the commu-
nity with a standard, open and easy-to-use method
to evaluate simultaneous speech and text transla-
tion systems, we introduce SIMULEVAL, an open
source evaluation toolkit which automatically simu-
lates a real-time scenario and evaluates both latency
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and translation quality. The design of this toolkit
follows a server-client scheme, which has the ad-
vantage of creating a fully simultaneous translation
environment and is suitable for shared tasks such
as the IWSLT 2020 shared task on simultaneous
speech translation? or the 1st Workshop on Au-
tomatic Simultaneous Translation at ACL 2020°.
The server provides source input (text or audio)
upon request from the client, receives predictions
from the client and returns different evaluation met-
rics when the translation process is complete. The
client contains two components, an agent and a
state, where the former executes the system’s pol-
icy and the latter keeps track of information nec-
essary to execute the policy as well as generating
a translation. SIMULEVAL has built-in support
for quality metrics such as BLEU (Papineni et al.,
2002; Post, 2018), TER (Snover et al., 2006) and
METEOR (Banerjee and Lavie, 2005), and latency
metrics such as AP, AL and DAL. It also support
customized evaluation functions. While all latency
metrics have been defined for text translation, we
discuss issues and solutions when adapting them
to the task of simultaneous speech translation. Ad-
ditionally, SIMULEVAL users can define their own
customized metrics. SIMULEVAL also provides an
interface to visualize the policy of the agent. An in-
teractive visualization interface is implemented to
illustrate the simultaneous decoding process. The
initial version of SIMULEVAL was used to evaluate
submissions from the first shared task on simulta-
neous speech translation at IWSLT 2020 (Ansari
et al., 2020).

In the remainder of the paper, we first formally
define the task of simultaneous translation. Next, la-
tency metrics and their adaptation to the speech task
are introduced. After that, we provide a high-level
overview of the client-server design of SIMULE-
VAL. Finally, usage instructions and a case study
are provided before concluding.

2 Task Formalization

An evaluation corpus for a translation task contains
one or several instances, each of which consists
of a source sequence X = [r1, ..., 7| x| and a ref-
erence sequence Y * = [y, ..., y‘*Yl} The system
to be evaluated takes X as input, and generates
Y = [y, ...,ym]. We denote the elements of

http://iwslt2020.ira.uka.de/doku.php?
id=simultaneous_translation
*https://autosimtrans.github.io/
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the X, Y and Y* segments. For text translation,
each x; is an individual word while for speech
translation, x; is a raw audio segment of dura-
tion 7. In the simultaneous translation task, a
system starts generating a hypothesis with partial
input only. Then it either reads a new source seg-
ment, or writes a new target segment. Assuming
X1 = [z1,...,x;],j < |X| has been read when
generating y;, we define the delay of y; as

{

Similar to an offline model, the quality is measured
by comparing the hypothesis Y to the reference
Y * after the translation process is complete. On
the other hand, the latency measurement involves
considering partial hypotheses. The latency met-
rics are calculated from a function which takes a
sequence of delays D = [dy, ..., d|y|] as input.

Js when input is text

Zi:l Ty, when input is speech

%

3 Latency Evaluation

3.1 Existing Text Latency Metrics

First, we review three latency metrics previously
introduced for the text translation task.

Average Proportion (AP) (Cho and Esipova,
2016), defined in Eq. (2), measures the average
of proportion of source input read when generating
a target prediction.

1

P Xy 24 @
Despite AP’s simplicity, several concerns have
been raised. Specifically, AP is not length invari-
ant, i.e. the value of the metric depends on the
input and output lengths. For instance, AP for
a wait-3 model (Ma et al., 2019) is 0.72 when
|X| = Y| =10but 0.52 when | X | = |Y'| = 100.
Moreover, AP is not evenly distributed on the [0, 1]
interval, i.e., values below 0.5 represent models
that have lower latency than an ideal policy, and an
improvement of 0.1 from 0.7 to 0.6 is much more
difficult to obtain than the same absolute improve-
ment from 0.9 to 0.8 (Ma et al., 2019).

Average Lagging (AL) first defines an ideal pol-
icy, which is equivalent to a wait-0 policy that has
the same prediction as the system to be evaluated.
Ma et al. (2019) define AL as

(1 X1) :
1 (1—1)
AL = di — —— 3
Xy = AT @
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where 7(|X|) = min{i|d; = |X|} is the index
of the target token when the policy first reaches
the end of the source sentence and v = |Y'|/| X|.
(i — 1) /~ term is the ideal policy for the system to
compare with. AL has good properties such as be-
ing length-invariant and intuitive. Its value directly
describes the lagging behind the ideal policy.

Differentiable Average Lagging (DAL) intro-
duces a minimum delay of 1/ after each oper-
ation. Unlike AL, it considers the tokens when
i > 7(]X]) (Cherry and Foster, 2019). It is de-
fined in Eq. (4):

Y| .
1 1—1
DAL = — ) d — , 4)
Y| ; gl
where

d; ;=0
d; = V)

max(d;,di_; +v) i>0

A minimum delay prevent DAL recovering from
lagging once it has been incurred.

3.2 Adapting Metrics to the Speech Task

In this section, we adapt the three latency met-
rics introduced in Section 3.1 to the simultaneous
speech translation task.

Average Proportion is straightforward to adapt to
the speech task and as follows:

Y]

1
APspeech = T X - Z d; (6)
YISE TS

Average Lagging is adapted as follows:

' (1X]

)
1
AL% eech — T i *,
speech T’(‘XD ; di — d; (7

where 7(|X|) = min{ild; = 2X|7;} and
d; are the delays of an ideal policy, of which
the straightforward adaption is df = (i — 1) x

g‘l T; /Y |. However such adaptation is not ro-
bust for models that tend to stop hypothesis genera-
tion too early and generate translations that are too
short. This is more likely to happen in simultane-
ous speech translation where a model can generate
the end of sentence token too early, for example
when there is a long pause even though the en-
tire source input has not been consumed. Fig. 1

146

Actual Source Length

n

Y2
Y|

Y3

Ya

r Y

~
1X]

Figure 1: An example of original AL failed on early
stop translation. Red (solid straight) line shows the
ideal policy in (Ma et al., 2019). Green (dotted straight)
line depicts the modified ideal policy in this paper.
Black (solid zigzag) line demonstrates the alignment
between source and target.

illustrate this phenomenon. The red line in Fig. 1
corresponds to the ideal policy defined in (Ma et al.,
2019). We can see that when the model stops gen-
erating the translation, the lagging behind the ideal
policy is negative. This is because the model stops
reading any input after completing hypothesis gen-
eration. This kind of model can obtain relatively
good latency-quality trade-offs as measured by AL
(and BLEU), which does not reflect the reality. We
thus define

| X|

di =(i-1)- ) T, /[Y”] (8)
j=1

to prevent this issue, i.e., it is assumed that the
ideal policy generates the reference rather than the
system hypothesis. The newly defined ideal policy
is represented by the green line in Fig. 1.

Differentiable Average Lagging for the speech
task still uses Eq. (4) and Eq. (5) with a new
defined as

|X|

“Vspeech = ’Y’/ Z Tj (9)
j=1
4 Architecture

SIMULEVAL simulates a real-time scenario by set-
ting up a server and a client. The server and client
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Figure 2: The architecture of SIMULEVAL. The client executes the policy and the server operates the evaluation.

can be run separately or jointly, and are connected
through RESTful APIs. An overview is shown in
Fig. 2.

4.1 Server

The server has primarily four functions. First, read
source and reference files. Second, send source
segments to the client upon a READ action. Third,
receive predicted segments from the client upon a
WRITE action, and record the corresponding de-
lays. Fourth, run the evaluation on instances.

The evaluation process by the server on one in-
stance is shown in Algorithm 1. Note that in line
18 in Algorithm 1, the server only runs sentence-
level metrics. The server will collect Y, D and
T for every instance in the evaluation corpus, and
calculate corpus-level metrics after all hypotheses
are complete.

Algorithm 1 Server side algorithm
Input: X = [z1, ..., 71x|, Y™ =[], .., Y]y~
Input: Y =[],D =[]
Input: : = 0,5 =0,y0 = BOS,do =0

1: while y; # EOS do

2: r = await_request_from_client()

3: if r.action == READ then

4: if j < | X| then

5: j=7+1

6: send_segment_to_client(x ;)
7: else

8: send_segment_to_client(EOS)
9: else
10: 1=1+1
11: y; = r.segment
12: Y =Y + [y]
13: if data type is speech then
14: di =d;i—1 + Tj
15: else
16: d; = ]

17: D =D + [dy]

18: return evaluate(Y,Y ", D, T

4.2 Client

The client contains two components — an agent
and a state. The agent is a user-defined class that

147

operates the policy and generates hypotheses for
simultaneous translation, the latter provides func-
tions such as pre-processing, post-processing and
memorizing context. The purpose of this design
is to make the user free from complicated setups,
and focus on the policy. The client side algorithm
is shown in Algorithm 2.

Algorithm 2 Client side algorithm
Input: X =[],i =0, =0,y = BOS, State, Agent

1: while y; # EOS do

2 action = Agent.policy(State)

3 if action == READ then

4: x = request_segment_from_server()
5: if = is not EOS then

6: j=7+1

7 x; = State.preprocess(x)

8 States.update_source(x ;)

9: continue
10: t=14+1

11: y; = Agent.predict(State)
12: y; = State.postprocess(y;)
13: States.update_target(y;)

14: send_segment_to_server(y;)

5 Usage Instructions

5.1 User-Defined Agent

A user-defined agent class is required for evalu-
ation, along with the user’s model specific argu-
ments. The user is able to add customized argu-
ments and initialize the model. Two functions must
be defined in order to successfully run online de-
coding. The first one is “policy”’, which takes the
state as input and returns a decision on whether to
perform a read or write action. The other function
is “predict” which will be called when the “policy”
returns a write action and return a new target pre-
diction given the state. An example of a text wait-k
model is shown below.



from simuleval.agents import TextAgent
from simuleval import READ_ACTION, WRITE_ACTION,
— DEFAULT_EOS

# User def. mc 1 code

from user_library import init_model

class WaitKTextAgent (TextAgent) :
def _ init_ (self, args):
super () init (args)

self.waitk
self.model

ion

args.waitk
init_model (args.model)

Za

@staticmethod
def add (parser) :
ized a
parser.add_argument (
"--waitk", type=int,
help="Lagging between source and
— target")
parser.add_argument (
"--model", help="model specifics")

def preprocess(self, state):
¢ pr
return state

#

eprocess code

def postprocess(self,
postprocess code

return state

state) :

#

def policy(self, state):
f e a decision here
len (state.source)
< self.waitk

and not state.finish_read()

— len(state.target)

) s

return READ
else:

return WRITE

def predict (self, state):

return model.predict (state)

Listing 1: An example of user defined agent class for a text
wait-k model.

Additionally, the user can define pre-processing
or post-processing methods to handle different
types of input. For example, for a speech trans-
lation model, the pre-processing method can be
a feature extraction function that converts speech
samples to filterbank features while for text trans-
lation, the pre-processing can be tokenization or
subword splitting. Post-processing can implement
functions such as merging subwords and detok-
enization.

5.2 User-Defined Client

A typical user will only need to implement an agent
and will rely on the out-of-the-box client implemen-
tation of Algorithm 2. However, sometimes, a user
may want to customize the client, for example if
they want to use a different programming language
than Python or make the implementation of Al-
gorithm 2 more efficient. In that case, they can
take advantage of the RESTful APIs between the
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client and the server described in Table 1. Users
can easily plug in these APIs into their own client
implementations.

5.3 Evaluation

With a well-defined agent class, SIMULE-
VAL is able to start the evaluation automati-
cally. Assuming the agent class is stored in
text_waitk_agent.py, the evaluation can be
run in one single command or separate commands:

simuleval \
-—output S$OUT_DIR \
--source $SOURCE \
—-reference STARGET \
-—agent text_waitk_agent.py \
——waitk 3 \
--model $MODEL_PARAMS

Listing 2: Evaluation command (joint)

simuleval server \
--output $OUT_DIR \
——port 5000 \
--source $SOURCE \
—-—reference S$TARGET &

simuleval client \
——port 5000 \
--agent text_waitk_agent.py \
——waitk 3 \
—--model S$SMODEL_PARAMS

Listing 3: Evaluation command (Separate)

After all hypotheses are generated, the interme-
diate results and corpus level evaluation metrics
will be saved in the output directory. SIMULEVAL
also supports resuming an evaluation if the process
has been interrupted.

5.4 Visualization

SIMULEVAL provides a web user interface (UI) for
visualizing the online decoding process. Fig. 3
shows an interactive example on simultaneous
speech translation. A user can move the cursor to
find the corresponding translation at a certain point.
The visualization server can be simply started by

simuleval server --visual --log-dir $OUT_DIR

The default port is 7777 and the web UI can be
accessed at http://ip-of-server:7777.

5.5 Case Study: IWSLT 2020

In order to avoid inconsistencies in how latency
metrics are computed and to ensure fair compar-
isons between results presented in research pa-
pers, we encourage the research community to use
SIMULEVAL when reporting latency in the future.


http://ip-of-server:7777

Function | Endpoint | Params | Response / Body
Get next source segment ' ; /src {sent_id: sent_idx} x; (text)

Get next T} ms speech segment z; | /src {sent_id: sent_idx, segment_size: T;} | z; (samples)
Send a predicted y; /hypo {sent_id: sent_idx} Yi

Table 1: A subset of the RESTful APIs for the SIMULEVAL server.

SimulEval Home Docs Options ¥

Visualize

Instance Index

Average Lagging

Average Proportion
Differentiable Average Lagging

Computation-Aware Average Lagging

1
1978.30
0.62
2368.58
4779.16
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Figure 3: Visualization interface of SIMULEVAL.

In addition, an earlier version of SIMULEVAL
was used in the context of the first simultaneous
speech translation shared task at IWSLT (Ansari
et al., 2020), where it is of paramount importance
to have the same evaluation conditions for all sub-
missions. In order to preserve the integrity of the
evaluation process, the test set, including the source
side, could not be released to participants. This mo-
tivated the client-server design, where participants
defined their own agent file and submitted their
system in a Docker (Merkel, 2014) environment.
The organizers of the task were then able to run
SIMULEVAL and score each submission in a consis-
tent way, even for systems implemented in different
frameworks.

6 Conclusion

In this paper, we introduced SIMULEVAL, a general
and easy-to-use evaluation toolkit for simultaneous
speech and text translation. It simulates a real-time
scenario with a server-client scheme and automat-
ically evaluates simultaneous translation given a
user-defined agent, both for text and speech. Fur-
thermore, it provides a visualization interface for
the user to track the online decoding process. We
introduced example use cases of the toolkit and
showed that its general design allows evaluation

on different frameworks. We encourage future re-
search on simultaneous speech and text translation
to make use of this toolkit in order to obtain an
accurate and standard comparison of the latency
between different systems.
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