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Abstract

Consumer Price Indices (CPIs) are one of the major statistics produced by Statistical Offices,
and of crucial importance to Central Banks. Nowadays prices of many consumer goods can
be obtained online, enabling a much more detailed measurement of inflation rates. One ma-
jor challenge is to classify the variety of products from different shops and languages into the
given statistical schema consisting of a complex multi-level classification hierarchy - the Euro-
pean Classification of Individual Consumption according to Purpose (ECOICOP) for European
countries, since there is no model, mapping or labeled data available. We focus in our analysis
on food, beverage and tobacco which account for 74 of the 258 ECOICOP categories and 19
% of the Euro Area inflation basket. In this paper we build a classifier on web scraped, hand-
labeled product data from German retailers and transfer to French data using cross lingual word
embeddings. We compare its performance against a classifier trained on single languages and a
classifier with both languages trained jointly. Furthermore, we propose a pipeline to effectively
create a data set with balanced labels using transferred predictions and active learning. In addi-
tion, we test how much data it takes to build a single language classifier from scratch and if there
are benefits from multilingual training. Our proposed system reduces the time to complete the
task by about two thirds.

1 Introduction

Consumer price inflation in the euro area is measured by the Harmonised Index of Consumer Prices
(HICP), which is calculated based on a basket of goods and services. While prices for some goods, like
energy prices, are easy to observe, prices for many product groups, like e.g. food, are often collected
manually. This survey-based approach is relatively expensive and slow. Nowadays we have access to
data on prices of individual products sold on the internet. This kind of data can help to improve the
quality of the data and monitor it at a higher frequency. There are various initiatives working on the
usage of alternative data sources for the calculation of price statistics, but these are mainly country-
specific. Examples are the use of scanner data (Białek and Berkesewicz, 2020) and web scraped food
data (Macias and Stelmasiak, 2019) to measure Polish inflation, the measurement of the CPI in Finland
(Koskimäki and Ylä-Jarkko, 2003) or forecasting daily CPI in the United Kingdom (Powell et al., 2018).
The billion prices project (Cavallo and Rigobon, 2016) extensively researched this topic and validated
the usefulness by backtesting against traditional measured price indices. Furthermore, they use online
prices also to answer macroeconomic research questions, like the verification of inflation statistics from
Argentina or the review of effects from changes in US trade policy (Cavallo et al., 2019).

There is an important problem related to online price data, which is rarely addressed but always en-
countered in the process: the classification of millions of online products into categories. This is crucial
for analysing the individual components underlying inflation as required by consumer price indexes.
Those classification systems are rather complex with hundreds of categories within several layers of hi-
erarchy. Usually experts in the specific classification system are needed and the classification cannot
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be done by people without this expertise. Additionally, the product set is not static. During our in-
vestigation of scraped web product data, we found out that products are phased out and new products
appear frequently. Thus over time much more different products with the same or completely different
characteristics appear than originally available and a lot of them disappear again, meaning that constant
monitoring of the system is necessary.

Using supervised machine learning methods to automatize a classification task of this type often re-
quires a large amount of labeled training data and labeling by hand is very time consuming as it needs
to be done for every language individually. Moreover, all the texts (product names, descriptions and
categories) have to be represented by numerical features or feature vectors, which leads into the field of
natural language processing (NLP). Many of the previously mentioned initiatives have neglected a de-
tailed classification or only offer very broad classifications. This makes them less suitable for analysing
individual inflation components. Furthermore, they do not take into account the fact that product data
can be available in different languages, which is especially important for the polyglot European market.

In this study we address how contemporary NLP and machine learning techniques can be used to
automate the classification of online products, and what kind of effort is needed to build a model from
scratch without having labeled training data. The underlying classification system is the European Clas-
sification of Individual Consumption according to Purpose (ECOICOP) (European Union, 2016) used by
the European Statistic offices and the European Union.

We found the vocabulary of the product texts to be very domain specific and pretrained language
models only to cover parts. For this reason we have been working on ways to extend the vocabulary of
existing models, which limited the methods we could use.

In particular, we look at ways of transferring knowledge contained in a classification model for product
data in one language to another using cross-lingual word embeddings. In addition, we propose different
neural architectures for monolingual training, bilingual transfer and bilingual training. We also report
how much labeled data is needed for a decent model and compare the results of zero-shot bilingual
transfer to bilingual training. On the basis of our findings we propose an active learning pipeline to
create balanced training data in a target language. The goal is to build a tool-set for a multi-lingual
collection of web-scraped product corpora to make product classification accessible in many languages.

2 Data

2.1 ECOICOP Classification System
Consumer inflation and CPI in the euro area are based on the ECOICOP schema. The classification
schema has different hierarchies; we focus on the five-digit level, which consist of 258 different cate-
gories and is identical for all countries in the euro area. The 5-digit level distinguishes between, e.g.,
”rice”, ”bread” or ”pasta products and couscous” which all belong to the category ”bread and cereals”
at the four-digit level. The 5-digit level is currently used for the calculation of the CPI and inflation
(Eurostat, 2020).

We limit our analysis to the following two two-digit categories and hierarchical subcategories up to
the 5-digit level, because those match our scraped data from supermarket websites:

• food and non-alcoholic beverages (01.)

• alcoholic beverages and tobacco (02.)

Together they account for 74 of the 258 ECOICOP 5-digit categories and 19% of the euro area inflation
basket. All other items are classified as non-food.

The task of COICOP classification of products cannot be delegated to anyone. The classification
system is complex and requires expertise in food classification as the categories are described using a
language/concepts that only statistic experts understand. Furthermore, expert classification ensures also
more consistency in the classification of products. An example of an ECOICOP 5 digit category is the
following:

• Food and non-alcoholic beverages (01.)
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ECOICOP category # of observations
9999 Non-Food 9,396
1171 Fresh or chilled vegetables [...] 1,182
2121 Wine from grapes 1,177
...

...
2123 Fortified wines 23
2202 Cigars 10
2112 Alcoholic soft drinks 8

Table 1: COICOP categories observations

– Food (01.1)
∗ Bread and Cereals (01.1.1)
· Pizza and quiche (01.1.1.5)

2.2 Product Data
The product data is scraped from selected online shops of supermarkets in Germany, France and Belgium.
The products sold by different supermarkets are similar, but each website provides different information
or categorization. In particular, we use the product name and category given by the supermarket. For
example, a product name from a German supermarket would be ”Eiweiß Toastbrötchen” and a super-
market category would be ”Lebensmittel / Frühstück / Brot / Brötchen”. Both contain very specialised
terminology that are usually not found in many public corpora, especially brand names or special food
descriptions. For example, the German word ”Zitronenglasur” (lemon glaze) does not exist currently in
the German Wikipedia, but is commonly found in supermarkets. Furthermore, the supermarket category
can usually not be mapped to COICOP. In addition, we extracted words from the product URLs as they
often provide additional information.

For many products we have further information like product description, producer, brand, quantity or
ingredients. However, due to their variability, especially across shops, we did not include them in our
current research.

We do some basic preprocessing steps on the text including tokenizing, lowercasing and replacing
special characters and numbers with the goal of reducing the vocabulary and making it more language
independent. The texts from name, categorization and URL are concatenated with a separator token
<sep> in between. The average German text consists of 19 tokens, while the average French text of
28 tokens. We classified 31,000 random products of eight German supermarkets and 22,000 products
from two French supermarkets, two thirds by hand and one third rule based with manual validation. The
appearance of products per category is imbalanced, with a mean of 419 products per class for the German
data (see Table 1).

The French data is distributed similarly, as a difference we do not have tobacco products. The rea-
son for this category imbalance is the products’ imbalanced occurrence on the shop websites, i.e. the
distribution corresponds to what is available in reality.

3 Related Work

Although there is interest for detailed inflation monitoring, only a small amount of research exists about
classification into the ECOICOP or similar schemes for online product data. For example, the billion
prices project emphasize the use of big data for inflation measurement (Cavallo and Rigobon (2016)).
They collected web scraped data from large multi-channel retailers in the United States and built a Naive
Bayes classifier on ”language-specific, hand-categorized items”. To our knowledge there is just a single
study on using vector representations of words in the context of COICOP classification: Martindale et al.
(2019) take web scraped clothing data and use a semi-supervised approach to create training labels for
their products. They useed various methods to spread existing labels. They found them to be correctly
classified in 70% of all cases.
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Text classification. Text classification is one of the core NLP tasks with a huge number of applications
(e.g., sentiment analysis, spam filtering, and intent detection in chatbots to mention some of the most
important ones). Specifically, the classification of short texts that do not necessarily consist of a well-
formed sentence or sentences is also a much-studied problem (Wang et al., 2017; Saha et al., 2019;
Chen et al., 2019). State-of-the-art short text classification models typically consist of a deep neural
architecture on top of a static word or subword embedding layer. While recurrent neural nets (RNNs)
using long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) are often the first choice
for sequential data like time series or texts, one-dimensional convolutional neural networks (CNNs)
were found to outperform LSTM-based RNN variants in many settings, especially in the case of short or
unstructured texts (Lee and Dernoncourt, 2016; Seo et al., 2020).

Transfer learning. Using representations learned for a supervised task on a large data set as a basis
for building and training a model for a different data set is a frequently used method for addressing
data scarcity problems. One of the first models widely used for this kind of transfer learning was the
AlexNet convolutional image classifier by Krizhevsky et al. (2012). For the transfer the upper layers
are cut off while lower layers get frozen and on top of them new layers are trained on the new task.
Word embeddings are another example where representations trained on one task (to predict a word
given its surrounding) are used for many other tasks. Originally, an important limitation of pre-trained
word embeddings was their limited vocabulary, since they provided representations only for words that
occurred in the training corpus. To overcome this limitation, Facebook AI Research additionally trained
their embedding model on certain subwords occurring in the corpus as well (Bojanowski et al., 2017).
The resulting framework (fastText) provides models pre-trained on Wikipedia for a large amount of
languages. Klementiev et al. (2012) trained word embeddings jointly for English and German to obtain
representations in one common vector space. Transferring knowledge from a classifier only trained
on English data to a classifier for German data using these cross-lingual word vectors outperformed a
simple translation approach. In the following section we use a common vector space for French and
German to transfer the ECOICOP classification. A very successful approach for cross-lingual zero
shot learning was introduced by Eriguchi et al. (2018). They used state-of-the-art transformer-based
language models trained on multiple languages. Only the encoder part of the model was transferred,
why the decoder was replaced with their own classification layer with impressive results in transferring
the learned information between English and French. Earlier, Johnson et al. (2017) already showed that
a single Neural Machine Translation model trained on multiple languages can generalize to some extent,
allowing for zero shot prediction on unseen data.

4 Framework

We propose a CNN architecture (cf. Figure 2) on top of word vector representations exemplified in
Figure 1.

4.1 Results
We start with a discussion of cross-lingual word embeddings and methods of extending the vocabulary
to take into account the specialised vocabulary found in our product data. Then we describe the network
architecture based on a convolutional neural network and the aforementioned embeddings. Finally, we
present results obtained by using single language training, by using transfer learning from German to
French, and by multilingual joint training of the model on both languages. The NLP research of the last
few years has been dominated by the rise of the transformer neural architecture, also for multilingual
problems (Johnson et al., 2017). For our specific problem the typically used pretrained transformer
models were not suitable because there is no straightforward way to include domain specific vocabulary.

4.2 Cross-lingual Embeddings
Context. Word embeddings represent words in a high-dimensional vector space in which semantic
relations between words correspond to geometric relationships. The embeddings are trained on the task
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Figure 1: Artificial joint plot of different embed-
ding models

Figure 2: CNN architecture following the example
of Kim (2014)

of predicting a word given its context, thereby, indirectly, a joint probability distribution of words is
also learned. The learned vector representations capture both syntactic and semantic properties of words
because they have to represent all information about words that is useful for the prediction task. As
these syntactic and semantic properties are often similar across languages, word vectors from different
languages can be aligned into one common space in which cross-lingual semantic and syntactic relations
are also represented by geometric ones. The alignment is typically realized by applying a linear mapping
between the two vector spaces (Mikolov et al., 2013). This mapping is often learned in a supervised
manner by using a bilingual dictionary or parallel texts with the objective of minimizing the distances
between the representations of corresponding word pairs (Zou et al., 2013). In general, it is not possible
to align word vectors perfectly between languages because all of the texts the model is trained on and all
of the semantic relations have a cultural background. It is even possible to observe cultural processes in
texts from different points in times (Kozlowski et al., 2019). This also applies to our problem, e.g., while
it is common in Germany to have savoury dishes for breakfast, in France sweet breakfasts are strongly
preferred. The fact that word embeddings represent cultural characteristics has the consequence that they
can also amplify biases, e.g. gender stereotypes (Bolukbasi et al., 2016). Fortunately, for our analysis
this is of minor importance as we deal with food product data, which does not seem to be affected by
such biases.

Fine-tuning pretrained embeddings. We use aligned Multilingual Unsupervised and Supervised Em-
beddings (MUSE) by Joulin et al. (2018), who make use of a Generative Adversarial Network and Pro-
crustes for fine-tuning. They outperform other embedding models on many benchmark tasks (Joulin et
al., 2018). When using the embeddings for training we make use of the existence of shared word forms
in the vocabularies like pizza. In fact, 13% of the German word forms covered by the MUSE embeddings
also appears in the French MUSE embeddings’ vocabulary. For these shared words we calculate the av-
erage embedding vector and afterwards we combine both embedding spaces into one with the effect that
the shared vocabulary will already be fine-tuned to the task, and this fine-tuning is directly transferred as
the French model uses the same embedding space.
The pre-trained German embeddings cover only 47% and the French 75% of unique tokens in data. Sub-
word embeddings are not provided with the published MUSE models, and, at least for transfer learning,
aligning sub-words is a topic of its own since they carry much more syntactic then semantic information
(Kayi et al., 2020).

Expanding Vocabularies using K-Nearest-Neighbour (KNN). We generate embeddings for words
not covered by the pre-trained MUSE embedding vocabularies based on their distribution in our data set
using a KNN approach (cf. Algorithm 1). Specifically, we trained a fastText model using the Gensim im-
plementation (Řehůřek and Sojka, 2010) on 500,000 German and 330,000 French web scraped products.
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While this amount of data is not sufficient to learn good semantics, the model still learns statistics which
is especially important for the morphologically rich German language. It is an open research problem on
how many web scraped products we would need to benefit significantly more, but our results, as we will
see later, are still very good with the given data set.

From our own and the pre-trained fastText models we build a list of words that appeared in both
models. This shared vocabulary is, in turn, used to generate MUSE-aligned embeddings for words
in the data set that are not in the MUSE vocabulary. The aligned word vectors are calculated as a
distance-weighted average of the MUSE embeddings of the shared vocabulary words that are nearest in
the embedding space of our trained fastText model.

Algorithm 1 KNN-WEIGHTED-AVG-VECTORS(P,L,K)

Require: P , a dictionary with pre-trained word embeddings (keys are words, values the corresponding vectors); L, a dictionary
with embeddings trained locally on the data set; K, number of nearest neighbours to consider

1: SharedV ocab← P.keys ∩ L.keys
2: OutOfV ocab← L.keys \ SharedV ocab
3: for all o in OutOfV ocab do
4: SD ← [ ]
5: for all s in SharedV ocab do
6: SD ← SD ⊕ 〈DISTANCE(L[o], L[s]), s〉
7: end for
8: SD ← SORT(SD) . sort increasing by distance
9: v← 0

10: for i = 1 to K do
11: d, s← SDi

12: p← P [s]
13: v← v + dp
14: end for
15: v←NORMALIZE(v) . e.g., to have 1.0 L2 norm
16: P [o]← v . extend the pre-trained embeddings
17: end for

4.3 Network Architecture
We use MUSE embeddings extended by the method outlined in the previous subsection to represent the
product texts. The classifier model itself is based on the aforementioned fastText framework. Since
prediction of ECOICOP categories on the 5-digit level has never been done before for web scraped
supermarket products, we investigate how well the classes can be predicted and how much labeled data
is necessary in order to achieve satisfactory results. We differentiate between single language models,
single language models for transfer learning and multilingual models. For the classification of the web
scraped text strings we trained and tested different neural net architectures using the enriched MUSE
embeddings as base.

Preparation. For the single language case we fine-tune word vectors during model training to adjust
to the problem. The input sequences have a length of 34 tokens, which is the 95% quantile for our texts.
Shorter documents are padded with zero vectors. To address the class imbalance we apply class weights
to our network which are calculated as

weightclass = N/(C ·Nclass),

where N is the number of products, C the number of classes and Nclass the number of products in the
class in question. The calculated class weights are taken into account during the learning phase. We
train our model stepwise on 250, 500, 2,000, 10,000, 15,000 (French), and 25,000 (German) data points
to report the fit at different levels. When training multilingual models we take the whole data of the
source language while adding stepwise data of the target language. We oversample the target language
in addition to balance the data. We split our data into training, validation, and test data sets. The held
out test set includes products which appear neither in the training nor in the validation set. Therefore,
we also measure the effect of changing product ranges.
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Language Train Validation Test
German 23,597 3,933 3,933
French 17,124 2,854 2,854

Table 2: Number of data points available for training, validation and test

Convolutional Neural Network. We make use of the idea to treat our products, represented as a se-
quence of vectors, as an image with the size sequence length×embedding dimension and use convo-
lutions to extract features. This method was first used by Kim (2014). Using this technique the training
can be fully parallelized and has today replaced RNNs in many NLP tasks (Gehring et al., 2017). We use
multiple convolutional filters which move through the input sequence with the kernel looking at n tokens
(n ∈ {3, 4, 5}) and all embedding coordinates (with a kernel size of n × 300) at a time as proposed
by Kim (2014). The used CNN looks at context windows of up to five words (Wang et al., 2018) and
recognizes short-range dependencies, does not learn long-range dependencies as RNNs can. This reflects
the characteristics of our data well. The outputs of the convolutions are pooled using maximum pooling,
and the resulting outputs are concatenated and flattened into a one-dimensional vector. To regularize
the network we apply dropout to 50% of the connections before the final dense layer which outputs a
probability distribution over the 75 categories using softmax activation (Wang et al., 2018).

Single language training. Results of single language training with max pooling and trainable (non-
static) embeddings, and average pooling with static embeddings for German on the test data are presented
in Table 3.

Similarly, results for single language training on the French test data are presented in Table 4.

N 250 500 2,000 10,000 25,000
CNNmax 59.9 78.29 92.0 96.0 97.4
CNNavg 58.8 63.2 88.3 94.2 95.3

Table 3: Accuracy on test data - training the CNN
model on N German products in percent

N 250 500 2,000 10,000 15,000
CNNmax 58.5 82.8 90.8 95.0 96.2
CNNavg 54.4 71.5 89.5 94.0 94.6

Table 4: Accuracy on test data training the CNN
model on N French products in percent

For the German data we classified 96.0% of the test products correctly, training on 10,000 data points
with max pooling. Our best French model reached 95.0% accuracy, trained on 10,000 data points with
max pooling. Overall, the training curve is steep and the model learns even on small data. In addition,
the training process is rather stable.

Transfer learning. Having built the classifier on our German product data set we want to make use of
the MUSE property that the embeddings for individual languages are cross-lingually aligned, and reuse
the German model on our French data. In particular, we examine the prospects of directly transferring
knowledge by predicting the category of French products without the model having seen French data
before (zero shot learning) and we also experiment with fine-tuning the German model with a small
amount of French product data (few shot learning). To make this work we have to make a few changes
to our model. Most important is the freezing of our word vectors. While we had them fine-tuned during
single language training, now we need to ensure that they stay aligned. To further train the the model
on French data we cut the last layer of the German model and replace it with a new initialized layer. In
Table 5 we report scores both using max and average pooling layers.

Comparing the results with single language training we observe that, especially for cases where there
is little training data available (up to 1,000 examples), transfer learning brings significant advantage
compared to training models only on the corresponding monolingual data for each language.

Multilingual training. Results also confirm a higher advantage when both languages are trained jointly
(cf. Table 6). Initially, with few samples, this is much higher then later when more training data is
available. However, even then a small advantage can be observed.
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N 0 100 250 1,000 5,000
CNNmax 42.0 63.9 78.7 87.4 93.3
CNNavg 38.0 60.0 77.8 88.7 93.7

Table 5: Accuracy on test data training the trans-
ferred CNN model on N French products in percent

N 250 500 2,000 10,000 25,000
German 65.8 78.6 90.7 95.9 97.8
French 74.6 82.2 91.6 96.0 98.2

Table 6: Accuracy on test data training the CNN
model on N French and German products in percent

Summary. We present in Figure 3 a comparison of all training approaches we experimented with.
The CNN SL learning curve corresponds to the approach of using single-language training. CNN ML
describes multi-language training, and the remaining curves show the characteristics of transfer learning,
with static (CNN SE) and non-static embeddings (CNN NSE). Transfer learning has been shown to only

Figure 3: Accuracy on test data training the CNN
models on N French products, single language train-
ing (CNN SL), multi language training (CNN ML),
transfer learning with static embedding (CNN SE) and
non-static (CNN NSE), in percent

Figure 4: Labeling tool with a drop-down list to
select the category one wants to label, informa-
tion about the product and drop-down to select
the correct label, pre-filled with the model’s pre-
diction

partially transfer results from German to French. Transferred models cannot be used for automation
without additional supervised training, but can still provide predictions useful in certain settings, e.g. as
annotation aids, as will be shown in the next section. In contrast, the joint German and French training
achieved very good results and outperformed French single language training on every amount of data as
well as the results from transfer learning. Especially when trained on all data available the multi language
training raised the result by 2%. We therefore see an improvement for the low resource language when
trained jointly.

5 Active Learning

Motivation. The main idea of active learning is to achieve higher model performance on the same
amount of data or the same performance on less data by letting the learning algorithm choose which
data points to label and train on. Using this approach we can take advantage of our transferred results to
reduce annotation costs when transferring to other European and non-European languages.

Active learning is an active research field and strategies often differ for certain use cases. Methods
suitable for our problem belong to the field of pool-based sampling (Settles, 2009) as we have a large
pool of web-scraped products and it has to be decided which products should be labeled. One popular
sampling strategy is uncertainty sampling: this approach always labels and learns from the data point
the model is most uncertain about, with the goal to concentrate on the observation from which the model
can acquire the maximal amount of new information:

xleast confident =x P (ŷ|x).

This strategy is often refined by taking the distance to the second most likely class as measurement.
This variant is called margin sampling (Settles, 2009). The exact opposite is suitable for our zero shot
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prediction. As we start without annotated data, every observation in the new language is valuable in the
beginning and we use the ones we are most certain about. To sample from different ECOICOP classes
we condition the sampling on highest prediction certainty for a specific class.

Enhancing the annotation process for new languages. In this context, our transfer learning results
give valuable input. The data creation process means adapting the classifier to a new language without
having any labeled data. While uncertainty sampling is often used to find training examples where the
model learns most, at the beginning of the annotation process every observation is valuable. Hence, we
propose the following approach:

1. At the beginning we use zero shot predictions from the existing (transferred) model to create label
proposals and use certainty sampling, i.e. select the ones the model is most certain about and
present it to the human annotator for confirmation. This saves significantly time for annotating the
first examples.

2. As we have shown above, the learning curve is very steep. Already 250 annotated observations
increased the accuracy to 80%, which is double the rate of zero shot learning. After retraining
the model with the 250 annotated examples, we switch to conditional certainty sampling and label
further data points chosen both on the basis of the model’s certainty and with the aim of generating
an equally distributed data set which is beneficial for training.

3. In the last step, we propose to select the data points from which the classifier can learn the most, i.e.
where it is most uncertain, using uncertainty sampling.

Labeling tool. We present in Figure 4 a screenshot of our labeling tool that implements the aforemen-
tioned process. Based on a given data set of unlabeled products, it tries to predict the correct labeling
according to ECOICOP (5 digits) and presents this to the user. The user can simply look if it makes sense
for the description, and when in doubt they can also open the product URL. If the label is correct then
the human annotator simply clicks save and can continue with the next product. Otherwise the annotator
needs to select the correct category. Since ECOICOP is hierarchical the annotator might simply select
the correct label from another nearby category at a higher level, i.e., a label close to the predicted one.

Preliminary results. The benefits of the labeling tool were measured in a preliminary evaluation setup
by two human annotators for French product data. Their feedback indicated that by using the proposals
based on zero-shot learning they could accelerate the annotation process by a magnitude of 2. After
retraining the classifier with the newly annotated data (ca. 1,000 labels) they could increase annotation
speed by a magnitude of 3. This means just 20-30% of the time is needed compared to random annota-
tion. These results are very encouraging, although a more thorough investigation is required with more
languages as well as non-food ECOICOP categories.

6 Conclusion and Further Research

We investigated in this work how web scraped product data ca be classified in to the ECOICOP classifica-
tion schema and how multilingual transfer learning can be applied to transfer results between languages.
We demonstrated that zero-shot learning can be very useful, especially in the early phases when no man-
ually labeled data is available. In the future we want to extend this work to further European languages
and explore if some language combinations benefit more than others from the transfer from a pretrained
single-language classification model and if a multilingual model generalizes for transfer learning. We
found the predicted scores for the categories to be a good proxy for the certainty of the model and we
expect that the generic framework introduced here can be reused for many different languages by chang-
ing only language-specific parts. This would help to focus the manual classification effort for millions of
products that needs to be enhanced on a continuous basis. Furthermore, we want to include all ECOICOP
categories in a generalized manner.
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