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Abstract

This paper investigates contextual language
models, which produce token representa-
tions, as a resource for lexical semantics
at the word or type level. We con-
struct multi-prototype word embeddings from
bert-base-uncased (Devlin et al., 2018).
These embeddings retain contextual knowl-
edge that is critical for some type-level tasks,
while being less cumbersome and less sub-
ject to outlier effects than exemplar models.
Similarity and relatedness estimation, both
type-level tasks, benefit from this contextual
knowledge, indicating the context-sensitivity
of these processes. BERT’s token level knowl-
edge also allows the testing of a type-level
hypothesis about lexical abstractness, demon-
strating the relationship between token-level
behavior and type-level concreteness ratings.
Our findings provide important insight into the
interpretability of BERT: layer 7 approximates
semantic similarity, while the final layer (11)
approximates relatedness.

1 Introduction

The rampant success enjoyed by contextualized lan-
guage models (CLMs) like CoVe (McCann et al.,
2017), ElMo (Peters et al., 2018), BERT (Devlin
et al., 2018), and RoBERTa (Liu et al., 2019b) has
precipitated a deluge of research into analyzing and
interpreting their functionality. But to date, there
has been little work analyzing their lexical seman-
tic knowledge. This paper seeks to answer two
questions: 1) Is it possible to generate useful static
word-type embeddings from BERT activations for
word tokens? 2) What sort of semantic relations are
represented in embeddings generated from BERT?

‘Useful’ word embeddings are those which suc-
cessfully represent target semantic relations and
enable the testing of linguistic and cognitive hy-
potheses. Many linguistic tasks and questions con-
cern word meanings at the type level—that is, what

a word means in general, abstracted away from any
particular context. Similarity, relatedness, and ab-
stractness are often construed as properties at the
type-level: most similarity and relatedness datasets
contain judgments on isolated word pairs, and ab-
stractness datasets contain judgments on isolated
words.

CLMs produce representations at the token level:
the vector representation of a word varies depend-
ing on its context of occurrence. How can contex-
tual representations be helpful for type-level tasks?
Similarity and relatedness are context-sensitive pro-
cesses. For example, the relevant features of water
used for calculating its similarity to land are dif-
ferent from those for calculating its similarity to
coffee. BERT’s contextual knowledge is useful for
dealing with the effects of this variation on simi-
larity and relatedness judgments. Relative abstract-
ness/concreteness is another property often treated
as a type-level phenomenon. However, this prop-
erty may be detectable through token-level interac-
tions. We hypothesize that a high degree of con-
textual variation may be an indicator of type-level
abstractness. In other words, abstract words are
more ‘heterogeneous’ than concrete words. Tradi-
tional static representations, which represent words
as infinitesimal points, are not suitable to test this
hypothesis. In contrast, BERT enables the represen-
tation of a single word as a constellation of points,
with each point corresponding to a different usage
or usage type. In BERT, heterogeneity translates to
the dispersion of tokens or prototypes in space.

The most obvious extension of contextualized
word embeddings to the type level is to build ex-
emplar models from token representations. Such
models represent a word as the sum total of ob-
served occurrences, i.e. the set of all token vectors.
Full exemplar representations are computationally
expensive, and subject to noise from outliers. At
the other end of the spectrum, some have tried av-
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Figure 1: 2D t-SNE visualization of layer 8 vectors
for tokens of asylum and madhouse sampled from the
BNC.

eraging over exemplar models to generate a single
vector for each word (Bommasani et al., 2020).
However, these models do not leverage the contex-
tual knowledge resident in BERTs later layers.

Our approach aims to capture the regularities
in contextual variation while reducing the noise it
introduces. A set of BERT token vectors for a sin-
gle word naturally tends to separate spatially into
groups of similar usages, or ‘usage types’ (Giu-
lianelli et al., 2020). Usage types often correspond
to polysemous or homonymous senses, idiomatic
constructions, and affordances.1 Figure 1 shows
a t-SNE visualization of tokens for madhouse and
asylum. The dominant usage of asylum is as politi-
cal refuge, but there is a cluster corresponding to
asylum as an institution of confinement for people
with psychiatric diagnoses, which shares similar
negative connotations to madhouse, a derogatory
colloquialism for such institutions.

To test whether these usage types retain enough
contextual information to aid in context-sensitive
lexical tasks, we use K-means clustering of BERT
token representations to derive multi-prototype lex-
ical embeddings. The embeddings are evaluated
on the standard lexical tasks of similarity and re-
latedness estimation. Clustered BERT-based repre-
sentations provide high-quality predictions of hu-
man judgments for both tasks. They are also em-
ployed to test a cognitive hypothesis which holds
that one of the factors contributing to relative ab-
stractness/concreteness a word is how much its
meaning varies in context. We find that the average

1Affordances are the different ways a thing can present
itself to an individual (Gibson, 2015 [1979]). For instance,
water can manifest as a drink, a chemical substance to be stud-
ied, a span to be travelled across, a medium for recreational
sports, or a municipal resource, just to name a few.

dispersion of tokens in a cluster bears a significant
relationship to abstractness.

The contributions of this paper are as follows:

1. Application of BERT for type-level lexical
modeling, and the testing of type-level lexical-
semantic hypotheses.

2. Clustering of contextualized representations
into multi-prototype embeddings, which main-
tain the advantages of contextualization with-
out the complexity burden of exemplar mod-
els, leading to improved performance on simi-
larity and relatedness estimation.

3. Insight into the semantic interpretability of
BERT, most notably that middle layers best
approximate similarity while the final layer
approximates relatedness.

2 Related work

The pre-trained BERT language model is a bidi-
rectional Transformer (Vaswani et al., 2017) en-
coder. It has either 12 fully-connected layers
(bert-base) or 24 (bert-large). The model
is trained on two tasks: masked token prediction
and next sentence prediction. For bert-base,
the representation of an input sequence consists in a
12-layer activation network with 768-dimensional
vectors for each input token (where tokens cor-
respond to sub-word WordPieces [Schuster and
Nakajima, 2012]) at each of 12 layers. The prepon-
derance of research surrounding analysis and inter-
pretability of BERT has been dubbed BERTology,
after the poster-child of the contextual revolution
(cf. Rogers et al., 2020 for an excellent survey).

Probing Tasks Most studies of word meaning
in BERT follow an agenda of extrinsic evaluation
(Artetxe et al., 2018). Tenney et al. (2019a) found
that CLMs improve over non-contextual counter-
parts largely on syntactic tasks, with smaller gains
on semantic tasks. Tenney et al. (2019b) introduced
edge-probing tasks to analyze the layer-wise struc-
ture of BERT, and found that early layers perform
syntactic tasks like part-of-speech and dependency
tagging, while later layers encode information per-
tinent to semantic tasks like coreference resolution,
relation labeling, and semantic proto-role labeling.
We aim to advance this kind of structural analysis
of BERT through the intrinsic evaluation of repre-
sentations at different layers.
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Contextual Word Embeddings Existing appli-
cations of CLMs to lexical tasks use exemplar
models or single-prototype models. Wiedemann
et al. (2019) successfully employed a K-nearest-
neighbor approach to BERT exemplar models for
word sense disambiguation (WSD). Coenen et al.
(2019) created a visualization tool that generates
a ‘word cloud’ from BERT tokens, browsable by
layer.2 They also achieved a state-of-the-art F1
score on a WSD task with the simple scheme in-
volving sense-annotated training data from Peters
et al. (2018).

Ethayarajh (2019) generated static embeddings
from CLM models, using the first PCA compo-
nent sets of token representations. Bommasani
et al. (2020) experimented with averaging tokens
for context-agnostic word vectors. This approach
performs well on similarity and relatedness tasks
compared to traditional static embeddings. How-
ever, averaging evaporates much of BERT’s con-
textual variation, cutting off its potential to aid in
similarity estimation. It’s no surprise that averages
derived from earlier layers of BERT performed best
at similarity estimation. Later layers demonstrate
more contextual variation (Ethayarajh, 2019), mak-
ing the mean less meaningful.

Similarity The most common method for intrin-
sic evaluation of word embeddings is similarity
estimation. However, major critiques have been
leveled at the standard similarity datasets, and even
at the construct of similarity itself. Depending on
which comparison a word enters into, there is vari-
ation in which senses (and/or features) of the word
are considered for the calculation. Nelson Good-
man’s (1972) dismissal of similarity argues that
the selection of properties to consider varies so
widely as to be essentially arbitrary. Thus, similar-
ity datasets which ask raters to assess the similarity
between two words out of context are argued to
be premised on the flawed notion that similarity is
fixed (Faruqui et al., 2016).

Two words are never absolutely similar or dis-
similar. Rather, in assessing the likeness between
two words, one implicitly selects some grounds for
assessing their likeness. In Tversky’s classic (1977)
feature-matching model, the similarity of two items
is computed from the number of shared properties
they have as compared to the number of properties
they hold distinct. Tversky notes that property se-

2https://storage.googleapis.com/
bert-wsd-vis/demo/index.html.

lection is subject to variation. To give an extreme
example involving polysemy, the relevant features
for comparing bishop with rabbi are different from
those for relevant for comparing bishop and rook.

Given the complaints lodged against similarity,
and the existence of contextual similarity datasets
(Erk et al., 2013; Pilehvar and Camacho-Collados,
2019; Stanovsky and Hopkins, 2018), why bother
applying BERT to non-contextual datasets at all?
And for that matter, what is the value of modeling
word-pair similarity judgments? The pared down
format of word-pair judgments foregrounds the
cognitive regularities of the underlying process by
which humans select a grounds for comparison. De-
spite potential variability in similarity judgments,
inter-annotator agreement for word-pair similarity
ratings is fairly high (Medin et al., 1993). In one
sense, an apple is like candy: both are sweet snack
foods. However, they are consistently judged to be
dissimilar (2.08 in Simlex999 on a scale of 1-10;
SD=0.75). Together, apple and candy co-determine
a grounds for likeness, narrowing the context or the
features under consideration (one is healthy, the
other rots your teeth).

Medin et al. (1993) argue that similarity is a
process, and this process is governed by con-
straints which give rise to regularities. For example,
antonyms such as black-white are judged to be max-
imally dissimilar in isolation, but are judged more
similar when presented alongside a comparison
such as black-red containing a related word. As the
authors so vividly put it, “Nelson Goodman (1972)
called similarity a chameleon, but we believe that
similarity is more like two yoked chameleons: The
entities entering into a comparison jointly constrain
one another and jointly determine the outcome of a
similarity comparison” (272).

Viewed as a context-sensitive, constraint-based
process, it seems natural that similarity judgments
should benefit from context-sensitive lexical rep-
resentations. In single-prototype embeddings, the
properties or features which are considered are nec-
essarily constant. The same vector is considered in
every similarity calculation for a single word. By
representing a word as a set of vectors, each cor-
responding to a prototypical usage, we can access
the usage types relevant to different comparisons
separately.

Relatedness Similarity is paradigmatic: highly
similar words are more likely to occupy the
same ‘slot’ in a sentence (i.e., The bug is on the

https://storage.googleapis.com/bert-wsd-vis/demo/index.html
https://storage.googleapis.com/bert-wsd-vis/demo/index.html
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rug/carpet). Semantic relatedness, on the other
hand is syntagmatic: two highly related words are
likely to appear in succession, as in She filled the
car with gasoline. As a comparison between two
isolated words, the argument for context-sensitivity
of similarity also applies to relatedness judgments.
The next section describes a BERT-based approach
to inject a degree of context-sensitivity into simi-
larity and relatedness estimation.

3 Multi-prototype BERT embeddings

As stated, BERT token representations demonstrate
greater contextual variation at each progressive
layer (Ethayarajh, 2019). To capture the contex-
tual knowledge of later layers, we construct multi-
prototype embeddings from many token represen-
tations of a single word.

The usage types captured by clusters do not al-
ways correspond directly to dictionary word senses,
but they often discriminate between senses of pol-
ysemous and homonymous words, metaphorical
senses, as well as syntactic roles and constructions.
(Giulianelli et al., 2020). For this reason, count-
based multi-prototype models have long been rec-
ognized for their usefulness to WSD tasks (Schütze,
1998; Reisinger and Mooney, 2010; Pilehvar and
Camacho-Collados, 2019). We observed that nat-
ural clusters often capture cognitive affordances.
Whether or not they are linguistically significant,
these loose categories likely play a role in cognitive
processes like similarity. To recast our earlier ob-
servation: the affordance(s) of water that comes to
mind in the comparison of water-land are different
from the idea that surfaces when comparing water-
coffee. We use clustering to approximate BERT’s
usage-types and the affordances they capture, and
demonstrate their usefulness for lexical tasks.

3.1 Materials & Methods

The transformation of token-vectors into multi-
prototype vectors requires several steps, described
here for a single word w.

Data Collection First, a set S of up to 100 sen-
tences containing a token t of w was sampled at
random from the British National Corpus (BNC,
Burnard, 2000).3 As the human judgments in our
evaluation datasets were collected agnostic to part
of speech, and are particular to word forms, no

3Indices of the sampled sentences are available at https:
//github.com/gchronis/MProBERT

lemmatization or tagging was used. Any sentences
too large to input to BERT were discarded.

Then, each sentence s ∈ S was passed to the pre-
trained bert-base-uncased model, and the
layer-wise network activations obtained. If BERT
split the token t into subword WordPieces4, we
followed the now-standard practice of averaging
t’s subword vectors to obtain a single token vector
for t at each layer. This process yielded a vector
for each token at each of 12 layers.

Clustering At each layer, w’s token vectors at
that layer were clustered using K-means. Separate
embeddings were calculated for each layer l ∈ L =
{0..11}, and for each number of K-means clusters
K ∈ {1, ..., 10, 50}.5 For a given choice of K
and l, the set of cluster centroids π(w)l1 . . .π(w)

l
K

constitute the multi-prototype representation for
w. These centroids correspond to K prototypical
usages of w. In the rare case that |S| < K for
w, it was not possible to construct a K-prototype
representation for w. Consequently, scores could
not be calculated for a handful of words for some
parameter combinations. However, scores for at
least 99% of the comparisons for all datasets were
collected forK=1-10 (See A.2). This detail renders
comparison between models less than ideal, but the
differences are so minimal as to make the issue
negligible.

Evaluation Cosine distance, the typical method
of relation estimation, will not work for multi-
prototype models, as it is a function of two vectors.
Reisinger and Mooney (2010) compute distance us-
ing the centroids of clusters. MAXSIM of words w,
w′ is the maximum cosine similarity of any cluster
centroid of w to any centroid of w′. In our case,
the layer l introduces an additional parameter, such
that MaxSim(w,w′, l,K) =

max
1≤j≤K,1≤k≤K

cos(πl
j(w),π

l
k(w

′))

where πj,l(w) corresponds to the centroid of the
jth cluster for word w at layer l. Effectively, the
similarity of two words is equal to the similarity

4Note that this process is referred to as ‘tokenization’, and
the resulting WordPieces are typically referred to as tokens.
To avoid confusion, this paper reserves the word ‘token’ to
refer to an occurrence of an entire word in sentential context.

5Results for k=50 were evaluated for the sake of curiosity
about the extreme case but are not discussed—such embed-
dings are more like exemplar models than multi-prototype
models.

https://github.com/gchronis/MProBERT
https://github.com/gchronis/MProBERT
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Figure 2: Spearman’s ρ for BERT multi-prototype em-
beddings correlated against SimLex-999 similarity for
each combination of layer and number of K-means
clusters (p < 1e−60).

of their two closest prototypes. We also experi-
mented with their AVGSIM, defined as the mean
of all pairwise similarities between w’s centroids
against those of w′. For AVGSIM, two words are
close if many of their prototypes are close. In stark
contrast to Reisinger and Mooney (2010), we found
MAXSIM to universally outperform AVGSIM, and
so report results on the former only.

4 Similarity and Relatedness

4.1 Datasets

The embeddings were evaluated against three
similarity datasets and four relatedness datasets.
For similarity, we used SimLex999 (Hill et al.,
2015), SimVerb3500 (Gerz et al., 2016), and
WordSim353sim (Agirre et al., 2009). The latter
is a partition of WordSim353 (Finkelstein et al.,
2001) devised to approximate similarity. Sim-
Lex999 contains 999 word pairs balanced for con-
creteness and annotated specifically for similarity.
SimVerb3500, containing 3500 verb pairs, was also
designed specifically to target similarity. For relat-
edness datasets we used WordSim353rel (Agirre
et al. (2009)’s complementary relatedness subset);
MEN, containing 3000 word pairs (Bruni et al.,
2014), and YP-130, consisting of 130 verb pairs
(Yang and Powers, 2006). Though it was not col-
lected with specific instructions to the raters, for
the sake of comparison to other approaches, we
also evaluate on the original WordSim353 dataset,
and report results with the relatedness datasets.

Figure 3: Spearman’s ρ for BERT multi-prototype em-
beddings correlated against MEN relatedness ratings
for each combination of layer and number of K-means
clusters (p < 1x10−100).

4.2 Results
Overall, clustering yielded great improvement, es-
pecially at later layers.

Similarity Performance on all similarity datasets
peaked between layers 7-9, somewhere between
5-8 clusters. This pattern is exemplified by the
heatmap in Figure 1, which displays Spearman’s
ρ correlations against SimLex999 for embeddings
at each layer and each choice of K. Performance
on SimLex999 reaches a peak score at layer 8 with
5 clusters (ρ = 0.608). SimVerb3500 follows a
strikingly similar pattern, with the highest perfor-
mance at layer 7 with 7 clusters (ρ = 0.531). For
WordSim353sim, performance peaks at layer 9 with
8 clusters (ρ = 0.826), but the performance is nearly
matched by layer 11 with 4/5 clusters (ρ = 0.825).

Relatedness Across the board, layer 11 achieves
the best performance on relatedness tasks. The pat-
tern is illustrated in Figure 3, which shows Spear-
man’s ρ correlations between MAXSIM predictions
and MEN ratings for each layer and choice of
K. Clustering induces significant performance im-
provements at layers 8 and up. Layers 0-1 show
little variation due to clustering, and layer 2-7 per-
formance actually degrades. MEN performance
peaks at layer 11 with 9 clusters (ρ = 0.793). The
other datasets show a similar pattern, with peak
performance at layer 11 between 7 and 9 clusters:
K=7 for WordSim353rel (ρ = 0.665), K=9 for
YP-130 (ρ = 0.715), and K=7 for WordSim353
(ρ = 0.747).
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Similarity Relatedness

SL-999 SV-3500 WS-353sim WS-353 WS-353rel MEN YP-130

Distributional 0.563 0.364 0.795 0.738 0.681 0.801 0.535
SP-15 CBOW GloVe FastText FastText GloVe GloVe

CLM-based 0.550 0.455 - 0.730 - 0.200 -
XLNet-24 (4) XLNet-24 (3) - BERT-24 (6) - BERT-pca-1 (1) -

MProBERT 0.605 0.528 0.807 0.741 0.653 0.781 0.711
(layer=7, K≤9) (layer=11, K≤9)

Table 1: Performance of best unioned multi-prototype BERT embeddings (M-ProBert) for both similarity and
relatedness estimation tasks (Spearman’s ρ) compared to other CLM-based word embeddings and to state-of-the-
art corpus-based distributional models. Best results in bold. Parentheses for CLM models indicate layer number.

Model Selection It is possible to sidestep the is-
sue of model selection by following Reisinger and
Mooney (2010) in taking the union of all of the
prototypes of different cluster sizes. This method
works as well or nearly as well as selecting the
best value for K, with the union of all clusters for
K ≤ 9 giving the best results overall.

As a general model for similarity estimation, we
suggest layer 7 with the union of all clusters for
K ≤ 9. For relatedness, we suggest embeddings
built from layer 11 using the union of all clusters
K ≤ 9. For both similarity and relatedness, K =
7 does provide marginally better results, but the
success of the unioned model demonstrates that
post hoc selection of K is not necessary to achieve
good performance.

Table 1 compares the best unioned models for
similarity and relatedness to state-of-the-art dis-
tributional approaches trained on running mono-
lingual text (without the injection of structured
knowledge), as well as to other CLM-based static
embeddings. For distributional models we com-
pared to Symmetric Pattern embeddings (SP-15,
[Schwartz et al., 2015]), GloVe (Pennington et al.,
2014), CBOW (Mikolov et al., 2013), and Fast-
Text (Bojanowski et al., 2017). For other CLM-
based embeddings, we compared to Bommasani
et al. (2020), who tested layer-wise token aggrega-
tions for numerous architectures: BERT, RoBERTa,
GPT2, XLNet, and DistilBert. We also compared
to Ethayarajh (2019), who examined the first PCA
component of individual layers of several CLMs.
Performance drastically improves over other CLM-
based embeddings, and our generalized similarity
estimation model surpasses the distributional state-
of-the-art on all three datasets.6

6Benchmark scores are self-reported by the authors or ob-
tained from Lastra-Dı́az et al. (2019)’s reproducible survey.
Future work should reimplement these models to test the sta-

4.3 Discussion
In contrast with Bommasani et al. (2020), who find
performance to peak at early layers, our model’s
performance peaks at later layers, which we know
to possess more fine-grained contextual informa-
tion (Ethayarajh, 2019). Multi-prototype embed-
dings harness the power of this contextual infor-
mation for the type-level tasks of similarity and
relatedness estimation. The fact that contextual
information aids in similarity estimation supports
the hypothesis that similarity, even between iso-
lated words, is a dynamic, context-sensitive pro-
cess. Indeed, word-pair or ‘context-free’ similarity
estimation is not truly a type-level task. Each word
in a pair constitutes the linguistic context for the
interpretation of the other word. By capturing the
most typical contexts for a word, multi-prototype
embeddings enable the selection of a grounds for
likeness, approximated here with MAXSIM.

Multi-prototype vs Exemplar The optimal
number of prototypes is relatively small. Perfor-
mance increases with K up to a point, after which
it begins to degrade minimally but steadily (Fig-
ure 4.2). This behavior can be explained in terms
of the model taking into account more outliers with
a very highK. The higherK is, the more likely we
are to find small clusters very far from the rest of
the tokens, representing a rare but highly specific
usage type, or even totally unique usages in clusters
all by themselves. As K is maximized towards an
exemplar model, the likelihood increases that any
pair of words will have exemplars that are near to
each other, thus increasing the predicted similarity.
We hypothesize that this kind of overestimation of
similarity is the reason performance degrades.

More generally, we found multi-prototype mod-
els with relatively few (K≤10) prototypes better

tistical significance of the performance gains.
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purposed than more exemplar-like models (K=50)
for estimating semantic relationships. In addition
to being more lightweight, multi-prototype vectors
appear to be a beneficial abstraction over exemplar
models, at least for the present task. Whether or
not exemplars are stored in memory, knowledge
of individual outliers is not relevant to these tasks,
which deal with stereotypical or prototypical class
relationships rather than relationships between in-
dividuals.

Similarity vs Relatedness The analysis also un-
covered differences in the semantic relations ap-
proximated by different layers. The final layer
of BERT approximate relatedness, while layer 7
is optimal for estimating similarity. This finding
bears an interesting connection to recent insights
in BERTology. The middle layers of bert-base
(6-9) are consistently noted to be the most trans-
ferable, i.e., to perform the best across tasks (He-
witt and Manning, 2019; Goldberg, 2019; Jawahar
et al., 2019; Liu et al., 2019a). The final layers,
on the other hand, are the most specific to the next
sentence prediction task. The connection suggests
that successful representation of semantic similar-
ity may be critical to many NLP tasks, moreso
than relatedness. Our results support the thesis
that static vectors cannot surfaces all aspects of
lexical semantic meaning at once (Artetxe et al.,
2018). But, perhaps when forced to compromise
on one general purpose embedding for downstream
applications, one which approximates similarity
may be preferable over those which approximate
relatedness—these embeddings appear to work best
on a wide variety of downstream tasks.

The difference in preferred layer for different
tasks confirms that similarity and relatedness, so
important a distinction to distributional models,
ought to be treated separately in CLMs as well.

Clusters While we do not undertake a systematic
analysis into the types of usage-clusters captured
by K-means, qualitative examination indicates that
the gains from clustering come from expected be-
havior. For example, at layer 8 with K=3, the
clusters for river correspond to the natural feature
and associated sensory imagery, the name construc-
tion river X, and adjectival uses (e.g. river warden,
river dolphin). The clusters for stream correspond
to to a a fluid medium through which other entities
pass (e.g. blood stream, gas stream), the natural
feature, and a substance in motion constituting the

stream (many but not all of which examples take
the form stream of X, where X is not a typical
fluid).7 Among these clusters, MAXSIM selects the
two corresponding to the concrete natural feature.

The clusters selected by MAXSIM do not al-
ways correspond to a clear cohesive usage-type.
Sometimes it selects a catchall prototype, or one
one that encompasses multiple distinct usage types.
However, even in these cases, K-means separates
out distractor usages such as proper names and
specific constructions that would otherwise shift
the mean of a single prototype into less relevant
realms. The SimLex999 rating between cat and
lion is 6.75 (SD=0.84). The single prototype model
(l=8) predicts 5.79. The multi-prototype model
(l=8, k=7) is more accurate at 6.33. MAXSIM se-
lects a cat cluster that lacks an obvious interpre-
tation (though it does frequently contrast cats to
other animal species). Importantly, MAXSIM ex-
cludes a cluster containing cats as pets, a cluster
in which a cat is a grammatical subject, and one
for a colloquialism meaning ‘obtain’. The selected
lion cluster contains lions which interact directly
with humans. They have surprising docile charac-
teristics like being ‘tamed’ or ‘lying down like a
lamb’. The discarded clusters correspond to lion as
wild animal, as a name, the idiom lion’s share, and
metaphorical human lions.

The cat-lion example shows that the model im-
plements the principle of context-sensitivity for
similarity estimation. The chosen prototypes are
not the most stereotypical, but actually those which
downplay the distinctive features of domesticity in
cats and wildness in lions. The relatively high hu-
man rating may be attributed to the recognition that
the two species have many shared biological traits
compared to other animals, and MAXSIM is able
to find this common ground. Refer to Appendix B
for example sentences from different clusters.

5 Abstractness and contextual variation

To demonstrate the potential of multi-prototype em-
beddings, we next leverage our model to test a cog-
nitive hypothesis about concreteness. Specifically,
we examine the difference between abstract and

7The blend between syntactico-grammatical and seman-
tic prototypes underscores the relationship between form and
meaning. The construction stream of X invites a focus on the
movement of the substance and tends towards more metaphor-
ical uses, allowing count nouns, whereas X stream invites a
focus on the channel created by the substance and is limited
to more ‘fluidlike’ fluids.
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concrete words with respect to spatial dispersion
among prototypes.

Roughly speaking, abstract concepts are classi-
cally characterized as those that are “neither purely
physical nor spatially constrained” (Barsalou and
Wiemer-Hastings, 2005, 129). Concrete words are
recognized and comprehended faster (West and
Holcomb, 2000), remembered longer (Paivio, 1971,
2013; Fliessbach, Weis, Klaver, Elger, and Weber,
2006), and more resilient to brain damage (Katz
and Goodglass, 1990) than abstract words.

The dominant explanation for concreteness ef-
fects is called the Dual-Coding Hypothesis (Paivio,
1971, 2013; Crutch and Warrington, 2005). It holds
that concrete and abstract concepts are organized
differently in the brain: the former are grounded
in experience, while the latter are based solely on
other concepts. The sensory richness of concrete
concepts explains their memory advantage. Signifi-
cant distributional-semantic research has tested the
Dual-Coding Hypothesis, with mixed results (cf.
Hill et al., 2013, 2014a,b).

Dual-Coding Theory demands discrete types of
conceptual representations, and raises an uncom-
fortable metaphysical issue of whether a concept
can be about anything other than the purely phys-
ical. Embodied views of abstract representation
(Kousta et al., 2011) hold that both linguistic and
experiential information contribute to rich repre-
sentations for all concepts, and that the apparent
distinction arises from statistical patterns in the
proportion of sensorimotor to affective experiential
information undergirding the concepts. The ques-
tion then arises of how to account for concreteness
effects without positing distinct representations.

A recent psychological theory contends that con-
creteness effects are a consequence of ‘situational
systematicity’ (Davis et al., 2020): abstract con-
cepts are constituted by a larger and more complex
set of relationships, dispersed through space and
time, and are therefore more subject to contextual
variation. If the hypothesis is valid, it might con-
tribute to an explanation of concreteness effects
without reliance on the claim that abstract concepts
lack experiential grounding: simple, systematic,
contextually invariant concepts would naturally be
easier to remember.

Testing the situational systematicity hypothesis
demands a way to measure the complexity and
contextual variability in concepts. Multi-prototype
BERT meets this demand, at least for modeling

variability, which can be viewed a proxy for com-
plexity. Single-prototype models cannot be used
to test this hypothesis—they lack such fine-grained
information about contexts of occurrence.

5.1 Setup
We analyze the 1028 unique words in the Sim-
Lex999 dataset, each of which is annotated with its
USF concreteness norm (Nelson et al., 2004). As a
measure of heterogeneity we use average pairwise
token distance among clusters. For a given K and
l, we calculate the average pairwise cosine distance
between all tokens in a cluster, and then average
that value across clusters. This value measures how
heterogeneous a word’s usage-types tend to be.

5.2 Results
Results indicate a relationship between abstractness
and dispersion. However, the nature of this relation-
ship changes throughout the layers of the network.
Figure 4 shows the correlation between concrete-
ness and average pairwise token distance through-
out the layers of bert-base withK set to 9. The
strongest correlations are observed for this choice
of K, reaching a maximum of ρ = −0.264 at
layer 9. The same pattern of correlations, from
significantly positive to significantly negative, was
observed for all choices of K.

Figure 4: Spearman’s correlation between USF con-
creteness norms and average inter-token distance for
K=9 multi-prototype vectors (p < 0.1, N = 1028).
Correlations for layers 0, 5, and 6 were not significant.

The correlation changes direction depending on
the layer: there is a significant positive correlation
at layers 1-5, and a significant negative correlation
at 7-11. A strong negative correlation means that
abstract words tend to demonstrate greater variance
at these layers than do concrete words.

5.3 Discussion
The heterogeneity hypothesis predicts a negative
correlation between concreteness and variance.
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This pattern is upheld at layers 7-11. At these lay-
ers, tokens in the clusters of an abstract word tend
to be somewhat farther apart from one another than
those in a concrete word. Ethayarajh (2019) noted
that inter-token variance increases throughout the
layers of BERT. While true in general, variance
increases more for abstract words than concrete
words. However, the hypothesis is not upheld at
early layers. Early layers tend to separate concrete
tokens while later layers tend to separate abstract
tokens.

Where the model demonstrates more variance
between tokens, it encodes more detailed knowl-
edge of that word. Where it displays less variance,
these internal differences are collapsed. That is,
where variance is low, the model is ‘focused’, or
zoomed in, on representing differences between
words, and where variance is high, the model is ‘fo-
cused’ on representing variation in how one word
is used. The reason for this shift in correlation from
positive to negative, or in other words the shift in
‘focus’ from concrete to abstract words, remains
opaque. The immediate conclusion to be drawn
from this analysis is that abstractness, a type-level
property, bears a significant connection to behav-
ior at the token level. This supports the idea that
properties at the word level are dependent on in-
teractions at the token level, and demonstrates the
utility of token-level representations for lexical se-
mantics at the type level.

Implications for the situational systematicity hy-
pothesis are inconclusive. Contextual variation rep-
resents just one dimension along which concrete
and abstract concepts vary. On its own, the correla-
tion between dispersion and concreteness does not
capture the data explained by Dual-Coding Theory.
The results of the present analysis, while prelimi-
nary, constitute a proof-of-concept for how at least
some differences between abstract and concrete
words might be accounted for without positing
richer representations for one type over the other.
Incorporating more properties and using of more
sophisticated measures of contextual variation may
prove to distinguish representations of concrete and
abstract words even further.

6 Conclusion

We have presented evidence that the spatially com-
plex lexical representations afforded by CLMs are
useful in type-level lexical modeling, and in in-
vestigating type-level semantic questions. We first

addressed the common tasks of predicting word
similarity and relatedness, and demonstrated that
BERT produces high-quality multi-prototype word
embeddings. We then used these representations
test a hypothesis about word-level abstractness, and
uncovered a significant connection between this
type-level property and the relationships between
tokens.

Multi-prototype embeddings represent word
meaning as a constellation of points, as opposed
to a single point. The strength of multi-prototype
embeddings (and other alternatives such as proba-
bilistic, Gaussian, and exemplar-based models) lies
in this word-internal complexity. A vector lacks
internal complexity—it is infinitesimal. As such, it
can only be compared to other vectors on the basis
of their location in space. Internally complex repre-
sentations, on the other hand, can be compared on
the basis of their internal geometry. When words
have a shape, we can ask how the shape of words,
or of lexical categories, compare to one another.
Computational lexical semantics ought to seek out
and apply mathematical methods for comparing the
higher-order structure or topology of word meaning
in such models.

Future Work In this experiment we limit the
sample size for each word to 100, and use a fixed
K for each word. While increasing the number
of data points would perhaps lead to more natural
fine-grained clusters, and therefore more sensible
K-means clusters for a higher K, we predict that
outliers would still lead to the over-prediction of
similarities. In order to maximize the contribu-
tion to the longstanding debate between exemplar
and prototype models for semantic memory, the ef-
fects of increased sample size should be evaluated.
In addition, the optimal number of prototypes is
not the same for every word. We hypothesize that
the application of non-parametric and hierarchical
clustering methods will demonstrate a tendency
towards a relatively low number of prototypes, fur-
ther validating multi-prototype models of semantic
memory as well as improving performance.

Future work will apply CLMs to to other lexical
tasks and questions, such as metaphor. Metaphor
interpretation is a context-sensitive process akin to
similarity judgment. The Rational Speech Act for-
malization of metaphor interpretation (Kao et al.,
2014) utilizes hand-crafted feature vectors; it might
be extended by inducing metaphorical sense repre-
sentations from BERT-based prototypes.
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A Reproducibility Details

A.1 Data Collection
Tokens from the British National Corpus (Burnard,
2000) were collected using NLTK v3.4.5. The sen-
tences in the corpus were shuffled to ensure a ran-
dom sample of tokens for each word. Lists of token
sentences for each word, along with their original
BNC indices, are available in the word data di-
rectory in the supplemental material. To generate
token vector representations, we used the Hugging-
Face pytorch pretrained bert implemen-
tation of the pre-trained bert-base-uncased.

A.2 Evaluation Datasets
For a few words, the BNC did not contain enough
tokens to generate multi-prototype embeddings for
some choices of K. These words are not included
in the analyses for that choice of K. For instance,
if only 7 tokens of a word were collected, andK=8,
predictions were not calculated for pairs containing
that word. Fortunately, this was very rare, and most
words in the evaluations datasets have at least 50
tokens in the BNC, if not more. Tables 2 and 3
give detailed information about which word-pairs
from each dataset, if any, were not evaluated at
each cluster. As a consequence of the pruning,
the Spearman’s ρ correlation was sometimes calcu-
lated on minimally different data from one cluster
to the next. However, the differences are so min-
imal as to make the issue negligible. Importantly,
for the unioned models which we compare to other
approaches, over 99% of all word-pairs were eval-
uated for each dataset.

A.3 Supplemental Material
The codebase for this project, including scripts for
collecting data, generating BERT representations,
calculating clusters, evaluating models, and visual-
izing results, is available at https://github.com/
gchronis/MProBERT. Here one can also find lists
of the tokens included in this analysis along with
their BNC indices.

B Clusters

K-means clustering of token BERT representations
captures polysemy as well as different usage types.
Tables 4 and 5 shows a selection of sentences in
clusters for stream and river at layer 8 for k=3
clusters. Tables 7 and 6 show a representative se-
lection of tokens from each of the clusters at layer
8 for k=7. While the prototypes are often aligned
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Dataset K Percentage
Evaluated

Omitted Words Omitted pairs

WordSim353 sim
8 99.51 {aluminum} {aluminum-metal}
9 99.01 {aluminum, kilometer} {mile-kilometer, aluminum-metal}
10 99.01 {aluminum, kilometer} {mile-kilometer, aluminum-metal}

WordSim353 rel 9 99.6 {kilometer} {territory-kilometer}
10 99.6 {kilometer} {territory-kilometer}

WordSim353
8 99.72 {aluminum} {aluminum-metal}
9 99.15 {kilometer, aluminum} {mile-kilometer, territory-kilometer,

aluminum-metal}
10 99.15 {kilometer, aluminum} {mile-kilometer, territory-kilometer,

aluminum-metal}

SimLex999

4 99.8 {orthodontist} {orthodontist-dentist, doctor-
orthodontist}

5 99.7 {disorganize, orthodon-
tist}

{orthodontist-dentist, doctor-
orthodontist, disorganize-organize}

6 99.7 {disorganize, orthodon-
tist}

{orthodontist-dentist, doctor-
orthodontist, disorganize-organize}

7 99.7 {disorganize, orthodon-
tist}

{orthodontist-dentist, doctor-
orthodontist, disorganize-organize}

8 99.5 {aluminum, disorga-
nize, orthodontist}

{metal-aluminum, tin-aluminum,
orthodontist-dentist, doctor-orthodontist,
disorganize-organize}

9 99.5 {aluminum, disorga-
nize, orthodontist}

{metal-aluminum, tin-aluminum,
orthodontist-dentist, doctor-orthodontist,
disorganize-organize}

10 99.5 {aluminum, disorga-
nize, orthodontist}

{metal-aluminum, tin-aluminum,
orthodontist-dentist, doctor-orthodontist,
disorganize-organize}

Table 2: Words from each dataset for which fewer than K tokens were collected, along with word pairs that were
consequently omitted from evaluation. Where K is not listed, the number of tokens collected for each word was
sufficient to constructK-prototype vectors. Each entry reports the percentage of word-pairs in the dataset evaluated
for that K.



240

Dataset K Percentage
Evaluated

Omitted Words Omitted pairs

YP-130

3 99.23 {commercialize} {distribute-commercialize}
4 99.23 {commercialize} {distribute-commercialize}
5 99.23 {commercialize} {distribute-commercialize}
6 99.23 {commercialize} {distribute-commercialize}
7 99.23 {commercialize} {distribute-commercialize}
8 99.23 {commercialize} {distribute-commercialize}
9 99.23 {commercialize} {distribute-commercialize}
10 99.23 {commercialize} {distribute-commercialize}

MEN

1 99.93 {ipod} {chair-ipod, ipod-rope}
2 99.93 {ipod} {chair-ipod, ipod-rope}
3 99.93 {ipod} {chair-ipod, ipod-rope}
4 99.87 {donut, ipod} {cafe-donut, chair-ipod, ipod-rope, donut-panda}
5 99.87 {donut, ipod} {cafe-donut, chair-ipod, ipod-rope, donut-panda}
6 99.87 {donut, ipod} {cafe-donut, chair-ipod, ipod-rope, donut-panda}
7 99.67 {donut, colorful, ipod} {colorful-outfit, cafe-donut, colorful-toy, colorful-frame,

colorful-duck, colorful-wood, colorful-lab, chair-ipod,
ipod-rope, donut-panda}

8 99.67 {donut, colorful, ipod} {colorful-outfit, cafe-donut, colorful-toy, colorful-frame,
colorful-duck, colorful-wood, colorful-lab, chair-ipod,
ipod-rope, donut-panda}

9 99.67 {donut, colorful, ipod} {colorful-outfit, cafe-donut, colorful-toy, colorful-frame,
colorful-duck, colorful-wood, colorful-lab, chair-ipod,
ipod-rope, donut-panda}

10 99.67 {donut, colorful, ipod} {colorful-outfit, cafe-donut, colorful-toy, colorful-frame,
colorful-duck, colorful-wood, colorful-lab, chair-ipod,
ipod-rope, donut-panda}

SimVerb3500

1 99.94 {misspend} {misspend-pass, pass-misspend}
2 99.94 {misspend} {misspend-pass, pass-misspend}
3 99.8 {broil, misspend} {bake-broil, broil-cook, broil-burn, broil-fry, broil-boil,

misspend-pass, pass-misspend}
4 99.8 {broil, misspend} {bake-broil, broil-cook, broil-burn, broil-fry, broil-boil,

misspend-pass, pass-misspend}
5 99.69 {broil, plow, misspend} {plow-dig, bake-broil, sow-plow, mow-plow, broil-cook,

broil-burn, broil-fry, broil-boil, plow-hit, misspend-pass,
pass-misspend}

6 99.6 {intoxicate, broil, plow,
misspend}

{plow-dig, bake-broil, sow-plow, drink-intoxicate, mow-
plow, broil-cook, broil-burn, broil-fry, broil-boil, plow-
hit, dislike-intoxicate, belong-intoxicate, misspend-pass,
pass-misspend}

7 99.6 {intoxicate, broil, plow,
misspend}

{plow-dig, bake-broil, sow-plow, drink-intoxicate, mow-
plow, broil-cook, broil-burn, broil-fry, broil-boil, plow-
hit, dislike-intoxicate, belong-intoxicate, misspend-pass,
pass-misspend}

8 99.6 {intoxicate, broil, plow,
misspend}

{plow-dig, bake-broil, sow-plow, drink-intoxicate, mow-
plow, broil-cook, broil-burn, broil-fry, broil-boil, plow-
hit, dislike-intoxicate, belong-intoxicate, misspend-pass,
pass-misspend}

9 99.6 {intoxicate, broil, plow,
misspend}

{plow-dig, bake-broil, sow-plow, drink-intoxicate, mow-
plow, broil-cook, broil-burn, broil-fry, broil-boil, plow-
hit, dislike-intoxicate, belong-intoxicate, misspend-pass,
pass-misspend}

10 99.51 {intoxicate, hypnotize,
broil, plow, misspend}

{plow-dig, bake-broil, sow-plow, drink-intoxicate, mow-
plow, spell-hypnotize, hypnotize-control, broil-cook,
broil-burn, broil-fry, broil-boil, plow-hit, hypnotize-
remember, dislike-intoxicate, belong-intoxicate,
misspend-pass, pass-misspend}

Table 3: Continued from last page. Words from each dataset for which fewer than K tokens were collected, along
with word pairs that were consequently omitted from evaluation. Where K is not listed, the number of tokens
collected for each word was sufficient to generate K clusters. Each entry reports the percentage of word-pairs in
the dataset evaluated for that K.
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in part by grammatical constructions, there is an
interesting concordance between form and seman-
tic subsense or conceptual affordance. Cluster 2
for stream mostly contains examples of the phrase
stream of X. This construction has the effect of
focusing attention on the substance constituting
the stream and emphasizing its movement. Interest-
ingly, the examples in this cluster which do not con-
tain this construction also emphasize the movement
of a substance. Compare with X stream, where the
stream is construed as a medium or channel through
which other entities pass.
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Cluster ID Sentences

0 Care must be taken to select the correct neutralizing agent for the specific odorous gas to be
treated and there are obvious difficulties when both acidic and alkaline compounds are present in
the gas stream.
Alcohol is absorbed into the blood stream via the stomach and takes effect within 5-10 minutes.
Every infected stream has a ‘parent’ stream, and it may have more than one ‘daughter’ stream.
That is to say, the infant must convert stimulation from light rays, sound waves, from the speech
stream into the appropriate representational grist if it is to get the kind of information that it
requires from the world; but this gleaning of information does not constitute thought.

1 Without waiting for the others he plunged down the bank into the stream, slipping and slithering
heedlessly over the protruding roots and rocks.
The horses were quietly cropping the rich grass by the stream.
Using cement of their own manufacture, they skilfully build tubular houses for themselves out of
materials that they pick up from the bed of the stream.
A small lagoon is formed by the stream between a sandbank and the rock wall.

2 Thus a stream of pulses lasting 1 second each and given at 10 second intervals could be the
‘background’ (they could be sound pulses or pulses on a screen, for example); the ‘signal’ being
sought could be the absence of a pulse, one that was shorter or longer than the standard value or
one that appeared too soon or too late.
Without stopping, the combine disgorged a stream of grain into the trailer.
Burning straw was the best fun — it was poked through the grill at the front of the grate and,
when it caught fire, smoke would stream out of the other end.
As he ate and drank she found herself chattering away to him out of nervousness, a stream of
things that went through her head, the small happenings of a day.

Table 4: Example sentences from each stream cluster with k=3 and l=8. Cluster 0 is a bit of a catchall cluster,
encompassing idioms like ‘came on stream’, but it contains all mentions of a stream as a medium through which
other media pass. Cluster 1 represents the natural feature. Cluster 2 captures, but is not limited to, the usage
‘stream of X’. Other usages in this cluster share with the construction a focus on the movement of the substance
constituting the stream rather than the substance as a medium to move through. Consequently, cluster 2 contains
more abstract streams, in that many of its arguments (often count nouns) are not typically thought of as fluids. Note
the relationship between grammatical form and semantic subsense / conceptual affordance.

Cluster ID Sentences

0 In this tale, two weeds grew on a river bank; one of them conserved its energy, and grew low
and small and brown, with its sights set on a long life, while the other put forth all its strength
into growing tall and into colouring itself a beautiful green.
The lights dazzled, but on the broad face of the water there were innumerable V shaped eddies,
showing the exact position of whatever the river had not been able to hide.
Across the river and through the streets of Cliffe men fought in close combat before the royalists
scattered.
How can he get all three safely over the river?

1 The River Doon flows north-west from Dalmellington, past Patna and Dalrymple, under the
Auld Brig o’ Doon at Alloway, where Tam o’ Shanter escaped from pursuing witches in Burns’s
magnificent poem :
The Malá Strana or Lesser Town spreads beneath the castle to the banks of the River Vltava.
Turkey’s Prime Minister Suleyman Demirel arrived in Nakhichevan on May 28 to attend the
opening of a bridge between Azerbaijan and Turkey over the river Arax.
The river Sol is the southernmost of the Empire’s rivers.

2 A few low hovels that had once been homes to river people were now derelict, and an empty
building which was once a sailmaker’s and then a barge-builder’s premises now stood empty
after its last owner, a steam-traction engineer, foundered in the changing times.
In 1972 the Government of Sind Province declared the river dolphin protected by law and
prohibited its killing and trapping.
As in India, a river, a hill, mountain or lake, in Celtic legend, is personified by a god-like person.
The same accountants apparently proposed getting rid of river wardens and people in pollution
control.

Table 5: Four occurrences of river in the BNC belonging to each cluster with k=3 and l=8. Cluster 0 corresponds
to a river as a natural feature, cluster 1 is captures the construction river X where X is the name of the river, and
cluster 2 contains river used as an adjective to describe things associated with rivers.
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Cluster ID Sentences

0 Homer described it as a monster with the body of a goat, tail of a DRAGON and head of a lion,
belching flames.
With one sister slightly older and another two years younger there were real female ” spats’ at
times with the sisters fighting like young lion cubs.
A creature appeared, a lion, red and huge, bounding up the narrow winding streets of Edinburgh,
splashing through rivers of blood which poured from the castle.
The vertebrates found from that period include mammoth and other extinct elephants, extinct
rhino, hippopotamus, giant deer, lion, spotted hyaena, tortoise and macaque (from the ‘monkey
gravel’ of West Runton, Norfolk — where else?).

1 Finally, let us rekindle that vision in Isaiah 11 where the lion does not eat the lamb but lies down
in a symbiotic relationship with it.
Looking down from a height of ten or twelve feet, she saw an old friend, the MGM lion.
He was like a man fearing his moment had come, he said, covering his eyes in silent prayer —
yet astonished to find the lion in the same pose.
The peace-keepers successfully tame the roaring lion.

2 The Blue Lagoon was the old Red Lion renamed, no one knew why, on the corner of Bankside
and Trinity Street.
Mrs Johnston, 35, was found dead at The Lion public house on Moorfields in Liverpool city
centre last Thursday lunchtime.
It was further established that Bacon had purchased some arsenic from a shop in Red Lion
Square only days before, allegedly to kill rats.
Glaxo sold its factory, as did Gresham Lion, and its successor, Dowty, which could not make the
business succeed, sold to the Taiwanese.

3 The company, which claims the lion’s share of the object database market, has yet to record a
profit.
If this is done, care must be taken to ensure that each slice receives its proper priority in order of
payment, otherwise one party may take the lion’s share of the income at the expense of the other.
But he gave the lion’s share of the credit for the victory to Snodin, playing his first full 90
minutes for two and a half years after a series of hamstring and knee injuries put his career in
doubt.
Yet last week he had married Magda Tannenbaum, daughter of Sigmund Tannenbaum of Bradford
and Hamburg, a wool merchant of legendary wealth, enormous possessions, and no son to inherit
the lion’s share of them.

4 Three days after Fraser’s departure a large new flag bearing the arms of Dunbar and March, a
white lion on red, flew from the castle’s topmost tower, indicative that the Earl had arrived.
The arms granted to his chosen foundation were the fleur-de-lis of France and the royal lion of
England, above the three lilies of the Virgin Mary.
The sun shone through an elaborate crest of arms in coloured glass, with the lion of Venice
rampant above a flurry of plumes and a Latin motto, the glass throwing dark Harlequin patterns
on to his expressionless face.
The green left sleeve brassard carries a red-on-yellow rampant Lion of Scotland patch, which
we are told is special to the CO and his crew.

5 Henry the Lion
At Acre, the ramparts of Richard Coeur de Lion’s massive fortress stretch down to a tideless
Mediterranean while tiny Arab figures promenade in the dusk past the serail.
The play was the true story of bachelor Mr Lewis, author of The Lion, The Witch And The
Wardrobe, and his meeting at the age of 50 with writer Joy Davidman.
They sent ambassadors to England to encourage marriage arrangements between two of Henry’s
daughters and Henry the Lion and one of Barbarossa’s sons.

6 He was one of the first eminent European scientists to make a career in the USA, and rapidly
became a lion : his lectures and books were popular, and he built up a school and museum at
Harvard.
She was one fine lion and I do n’t blame Raja, only it wasn’t me.
He was only too well aware of the Talmudic dictum that a handful does not satisfy a lion, but he
was neither apologetic nor guilty over it.
He looked frightening and she had a momentary sensation of having caged herself in with an
angry lion.

Table 6: Four tokens from the BNC from each cluster for lion with k=7 and l=8. Cluster 0 corresponds to a
lion as a wild animal, with respect to other animals and the features which distinguish lions from them. Cluster
1 corresponds to lions interacting with humans and especially acting in ways that are unstereotypically docile.
Cluster 2 corresponds to place names containing Lion. Cluster 3 corresponds to the idiom lion’s share. Cluster
4 corresponds to lions on heraldic coats of arms. Cluster 5 corresponds to human or character names containing
Lion. Cluster 6 corresponds to metaphorical senses of lion to describe a human.
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Cluster ID Sentences

0 Did you believe that, Thomas is part of an eight cat routine at Circus International at, it’s been at
Sutton Coldfield, it’s at Northfield over the weekend, but these are just domestic cats, ordinary
domestic cats.

1 ‘Cat got yer’ tongue?’
Paul says he saw a little cat swallowing a big dog.
The list consisted of an assortment of well known mammals, birds, reptiles, fish and invertebrates,
and also included three domestic species : dog, horse and cat.
I, I know that one hey diddle diddle the cat and the fiddle the cow jumped over the moon, the
little dog laughed to see such fun and the dish ran away with the spoon

2 He sat looking at the fire with lowered eyelids, a contented expression on his face, looking like a
big overfed cat.
Ecstatic, the boy tried on one mask after another, roaring like a lion or mewing like a cat.
He took off his clothes, and Isobel curled up on the bed watching him, like a little cat.
Lacuna was looking like a cat that had seen its prey.

3 Obviously, if you are eating more fibre-rich food you are likely to cat more grams of fibre.

4 A FAMILY gave up their holiday to pay £700 for a life-saving operation on their cat Tilly.
She lives in a terraced house in Lancashire with her mum and dad and her cat, Arthur.
He sat up and stroked the cat gently, scratching between the backs of its ears, making Bonaventure
purr with pleasure.
She took out her pen and paper and wrote a very angry letter to the doctor about the death of her
valuable cat.

5 A cat does not want to die with the smell of humanity in his nostrils and the noise of humanity
in his delicate peaked ears.
‘All right,’ said the Cat.
After this, he became a nicer cat, + was n’t so proud of himself all the time.
‘There you are !’ she said, and the cat lifted its tail up with pleasure and rubbed its head against
the branch.

6 Cat.
Cat.
Cat.

Table 7: Four tokens from the BNC from each cluster for cat with k=7 and l=8. Cluster 0 corresponds to a unique
circus context. Cluster 1 corresponds (loosely) to a cat in relation to other animals. Cluster 2 corresponds to similes
likening people to cats by way of stereotypical catlike behavior. Cluster 3 contains a colloquial use of the word to
mean ‘obtain’. Cluster 4 corresponds to domestic pets. Cluster 5 is not very cohesive, but includes many examples
of cats as grammatical subjects or in more agentive roles. Cluster 6 is the word Cat in isolation.


